
Classical Demand Theory�

Chapter 3 provides an overview of classical demand theory. We have already discussed some properties of
Walrasian demand functions, but we never really made any assumptions about how consumers were making
choices, just that they were making choices. In this chapter we will impose some additional assumptions on
consumer behavior.

1 Consumer�s Preference Relation

We have already assumed our preference relation, %, to be rational, which by de�nition means it is complete
and transitive. We now impose two more assumptions, desirability and convexity.

De�nition 1 The preference relation % on X is monotone if x 2 X and y >> x implies y � x. It is
strongly monotone if y � x and y 6= x imply y � x.

What does this mean, and what is the di¤erence between monotone and strongly monotone? Think in
terms of vectors. For monotone, where we have y >> x, it means that every element of y is greater than

every element of x. As an example, if y =

24 12
9
6

35 and x =
24 7
2
5

35, then y >> x. For strongly monotone,
where we have y � x and y 6= x, it means that every element of y is at least as large as every element of x,

but that at least one element of y must be greater than one element of x. As an example, if y =

24 12
9
6

35 and
x =

24 12
9
5

35, then y � x and y 6= x. This assumption is satis�ed if our commodities are economic goods,

not economic bads. But economic bads can be rede�ned in terms of economic goods (amount of pollution,
which is a bad, rede�ned as absence of pollution, which is a good).
A weaker desirability assumption is that of local nonsatiation.

De�nition 2 The preference relation % is locally nonsatiated if for every x 2 X and every " > 0, there is
y 2 X such that ky � xk � " and y � x.

Note that ky � xk is the Euclidean distance between y and x, de�ned as
�XL

`=1
(y` � x`)2

�1=2
. Think

about �nding the distance between two points in the Cartesian plane, and then just extrapolate that to L
dimensions.
What does local nonsatiation mean? It means that if you draw a �circle� (think R2) with any radius

" > 0 around any point x 2 X, there must be some y 2 X inside that circle such that y � x. Note that in
this case we can have y << x and yet y � x �with local nonsatiation, we are not necessarily assuming that
"more is better".
Given % and bundle x, we can de�ne 3 related sets of consumption bundles:

1. Indi¤erence set: set of all bundles indi¤erent to x. fy 2 X : y � xg
�These notes correspond to chapter 3 of Mas-Colell, Whinston, and Green.
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Figure 1: Indi¤erence sets.

2. Upper contour set: set of all bundles at least as good as x. fy 2 X : y % xg. Note that the upper
contour set includes the indi¤erence set.

3. Lower contour set: set of all bundles that x is at least as good as: fy 2 X : x % yg. Note that the
lower contour set includes the indi¤erence set.

These sets are depicted in the right-hand side graph of Figure 1. Local nonsatiation does tell us that
we cannot have �thick�indi¤erence sets. An example of a thick indi¤erence set is depicted in the left-hand
side graph of Figure 1.
The second new assumption is convexity. We have already discussed convexity in terms of consumption

sets and budget sets. Now we will discuss convexity in terms of the preference relation.

De�nition 3 The preference relation % on X is convex if for every x 2 X, the upper contour set is convex;
that is, if y % x; z % x, and z 6= y, then �y + (1� �) z % x for any � 2 [0; 1].

Why impose convexity? Two reasons:

1. Consumers typically like to consume mixed bundles, that is they do not like having a bundle of goods
that consist solely of one item.

2. With convexity we get diminishing marginal rates of substitution. That is, for any given consumption
bundle x consisting of good x1 and good x2, a consumer will have to obtain increasingly larger amounts
of x1 to be persuaded to give up each additional unit of x2.

Another useful assumption we will make regards strict convexity.

De�nition 4 The preference relation on % on X is strictly convex if for every x, we have that y % x; z % x,
and z 6= y implies that �y + (1� �) z � x 8� 2 (0; 1).

Note the subtle di¤erence between convexity and strict convexity. Convexity tells us that if y and z are
both at least as good as x, then any weighted average of y and z is also at least as good as x. Strict convexity
tells us that if y and z are at least as good as x, then any weighted average of y and z is PREFERRED to
x. (Also note that we have closed brackets, [], with convexity and open brackets, (), with strict convexity.
This is because with convexity, by assumption z % x and y % x and using the endpoints of 0 and 1 does not
contradict the assumption. However, with strict convexity there is no guarantee that y � x or z � x, which
is what we would have if we included the endpoints.)
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2 Preference and Utility

Life becomes much easier if we can represent our consumer�s preference relation with a continuous utility
function. We have already discussed the need for rationality of % in order to have a utility function
that represents preferences. However, even adding local nonsatiation and convexity do not guarantee the
existence of a continuous utility function. We will need to assume that % is continuous.

De�nition 5 The preference relation % on X is continuous if it is preserved under limits. That is, for any
sequence of pairs f(xn; yn)g1n=1, with xn % yn8n, x = limn!1 x

n, and y = limn!1 y
n, we have x % y.

The most intuitive concepts, like continuity, or �not picking your pencil up o¤ the page�, can have the
damnedest de�nitions. All this de�nition says is that if we have a sequence of fxng and a sequence of fyng,
and if a consumer prefers every element of xn to the corresponding element of yn, that the consumer cannot
change his mind at the limit and prefer y to x. Alternatively, we can say that % is continuous if the upper
contour set and lower contour sets are both closed (we will discuss a formal de�nition of a closed set shortly
�think about the closed unit interval, [0; 1], versus the open unit interval, (0; 1)).

Proposition 6 If the rational preference relation % on X is continuous, then there is a continuous utility
function u (x) that represents %.

Note that we are only assuming that % is rational and continuous, and no mention is made of convexity
and nonsatiation. They are not needed to guarantee that a continuous utility function exists. The bottom
line is that continuity is essentially a mathematically useful assumption, while completeness and transitivity
impose rationality on the consumer�s preferences, and monotonicity and convexity are assumptions about
tastes. We will also add that u (x) is twice continuously di¤erentiable. Again, this makes the math much
more tractable (always say tractable rather than easy whenever possible �it makes you sound sophisticated).
Note that the monotonicity of % implies that u (�) is increasing, that is u (x) > u (y) if x >> y. The

convexity of % implies that u (�) is quasiconcave.

De�nition 7 A function u (�) is quasiconcave if the set
�
y 2 RL+ : u (y) � u (x)

	
is convex for all x, or,

equivalently, if u (�x+ (1� �) y) � min (u (x) ; u (y)) for any x; y and � 2 [0; 1].

Think about what quasiconcavity means �if we take a weighted average of two bundles, then the utility
of that weighted average is greater than or equal to the minimum of the two original bundles. For strict
quasiconcavity replace � with > and � 2 [0; 1] with � 2 (0; 1). For a function to be concave, we need
f (�x0 + (1� �)x00) > �f (x0) + (1� �) f (x00) 8� 2 (0; 1). Concave simply says that for any two points in
the function, any weighted average of the two points evaluated by the function is greater than the weighted
average of the evaluated values of the two points. Thus, if we pick any two points on the function and
draw a line between them the function will lie above that line. Note that this is a stronger assumption than
quasiconcavity, and the goal is to provide the weakest possible assumptions to obtain the result.
Let�s take a look at the di¤erence between concave and quasiconcave using pictures. Note the similarities

in the pictures of the concave and quasiconcave functions. The key is that both have a unique maximum,
but that quasiconcave allows more functional forms (also note that a concave function is quasiconcave, but
that a quasiconcave function may not be concave). In the picture that is neither, there are local maxima.
The goal will be to �nd the consumer�s optimal bundle, and with a function that is not quasiconcave we
may be doing all the work only to �nd out we are at a local maximum (or worse yet we may not realize it
is a local maximum).

3 The Utility Maximization Problem (UMP)

Finally, an actual problem. You all know this problem �the consumer�s goal is to maximize utility, given
that they have a budget constraint. We can be a little more formal, saying something like the consumer�s
goal is to choose the most preferred consumption bundle x (p; w) given prices p >> 0 and w > 0 (and hence,
budget constraint p � x � w). Write this out as a maximization problem:
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Figure 2: Depictions of concave and quasiconcave functions.
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max
x�0

u (x) subject to (or s.t.) p � x � w

This is a nice problem, but does it have a solution? There are two questions that you will want to ask
when setting up your models. The �rst is, Does a solution exist? The second is, Is the solution unique?
So existence and uniqueness are two concepts that model builders, at least in the sense of classical demand
theory, strive for.1

Proposition 8 If p >> 0 and u (�) is continuous, then the UMP has a solution.

This is great, because it gives us existence. But we will need a few de�nitions and �prior knowledge�to
show this.

De�nition 9 A set S is compact if it is closed and bounded.

That�s �ne, but what are closed and bounded sets?

De�nition 10 A set S is closed if its complement Sc is open.

Again, nice, but what is an open set?

De�nition 11 A set S is open if for all of its elements x 2 S, there exists some " > 0 such that the open
ball B" (x) is in the set.

Since the de�nition is longer we must be getting somewhere, but what is an open ball?

De�nition 12 The open ball with center x0 and radius " > 0 (a real number) is the subset of points in Rn :
B"
�
x0
�
�
�
x 2 Rn : d

�
x0; x

�
< "
	
, where d

�
x0; x

�
is the distance from x0 to x

The closed ball with center x0 and radius " > 0 (a real number) is the subset of points in Rn :
B�"
�
x0
�
�
�
x 2 Rn : d

�
x0; x

�
� "
	
, where d

�
x0; x

�
is the distance from x0 to x

Note that the di¤erence between an open ball and a closed ball (besides the asterisk) is in the inequality.
So, an open ball contains all the points within a circle of given radius " but NOT the boundary of the circle,
while a closed ball contains all the points within a a circle of given radius " including the boundary points
(circle is for R2). So if a set is open then any element of the set can be contained within SOME open ball
(not every, but at least one) centered at that point. Think of the open unit interval (0; 1) (the term open
kind of gives it away). Even for points very close to 0 and 1 we can draw SOME open ball around them
and all the points in the open ball will be in the set. Now, think of the closed unit interval [0; 1]. A set
is closed if its complement (the complement is the set of all elements in the universal set � in our current
example, the real number line �that are not in our set) is open. The complement to the closed unit interval
is (�1; 0) [ (1;1), which is an open set.

De�nition 13 A set S is bounded if it is entirely contained within some open or closed ball. That is, S is
bounded if there exists some " > 0 such that S � B" (x) or S � B�" (x) for some x 2 Rn.

Basically, if I can draw a circle around the set, then it is bounded.
Why do we need this information? It will be useful to show that our budget set, Bp;w is a compact

set. First, consider whether or not Bp;w is bounded. Since p >> 0; Bp;w is bounded (also, recall that we
are restricting our consumption set X to be RL+). Why? Think about the question in two dimensions, for
goods x1 and x2. If both prices are strictly greater than zero and w is �nite, then there must be a maximum
amount of w that I can spend on either x1 and x2, denoted by w

p1
and w

p2
respectively. Take whichever is

larger, w
p1
or w

p2
, and draw a closed ball of radius equal to the larger value plus 1. Then our consumer�s

entire budget set will fall in that closed ball. If we had any price equal to zero then our budget set would

1When we discuss game theory there are some game theorists who believe the fact that multiple equilibria exist in theory is
useful because multiple equilibria exist in the real world. The question then becomes how one of those equilibria was selected
in one case and how another was selected in a second case. So uniqueness is not necessarily that important to some game
theorists, but they still strive for existence.

5



][

][

)(
Compact set but discontinuous
function

Compact set and continuous
function

Continuous function but
noncompact set

f(x)

f(x)

f(x)

Figure 3: Examples that show a maximum may not be guaranteed without certain assumptions.

not be bounded as we could consume an in�nite amount of the good that had price zero (it�s hard to draw
a ball around in�nity).
Now, consider whether or not Bp;w is closed. Our budget set is fBp;w : p � x � wg 8x 2 RL+. The

complement of that is the set BCp;w = fp � x > wg 8x 2 RL+ [ x 62 RL+. This set BCp;w is open, so Bp;w is
closed. Thus, because Bp;w is closed and bounded it is compact.
There is a nice result called the Weierstrass Theorem (extreme value theorem) that states that a continu-

ous function attains a maximum (as well as a minimum) on any compact set. While we will not go through
the details, it guarantees that there is actually a maximum to our problem, so that a solution does exist.
Figure 3 shows examples of why we need both a continuous function and a compact set to guarantee the
existence of a maximum. If the set is compact but the function is discontinuous then it is possible to have
the function be open where the maximum would be. Thus, the maximum would never be reached. The
same is true if the function is continuous but the set is not compact. The maximum may be at the boundary
of the set, but since that boundary is never reached the maximum is never reached. The bottom picture
provides an example where a maximum is attained, although it is only an example and not a proof. It would
be simple to construct examples for the other cases where a maximum is attained, but these counterexamples
are su¢ cient to disprove the suggestion that a maximum would be guaranteed without a continuous function
or a compact set. So we now have existence, and shortly we will discuss uniqueness.

3.1 Walrasian Demand Correspondence

Note: On page 53 of the text, equation 3.D.1 is incorrect. There is a partial with respect to c`, but there is
no c anywhere else on page 52, 53, or 54. The partial should be with respect to x`.
We have already discussed the Walrasian demand correspondence, x (p; w), in general terms. Now, it is

the rule that assigns the set of optimal consumption vectors.
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Proposition 14 Suppose that u (�) is a continuous utility function representing a locally nonsatiated pref-
erence relation % de�ned on the consumption set X = RL+. Then, the Walrasian demand correspondence
x (p; w) possesses the following properties:

1. Homogeneity of degree zero in (p; w) : x (�p; �w) = x (p; w)

2. Walras�law: p � x = w 8x 2 x (p; w)

3. Convexity (additional assumption)/uniqueness: If % is convex, so that u (�) is quasiconcave, then
x (p; w) is a convex set. Moreover, if % is strictly convex, so that u (�) is strictly quasiconcave, then
x (p; w) consists of a single element (i.e. is unique).

We have already discussed homogeneity of degree zero and Walras� law in relation to the Walrasian
demand correspondence. However, in chapter 2 these were assumptions. Now, they are properties of
the Walrasian demand correspondence that result from our additional assumptions of continuity and local
nonsatiation.
Proof. If u (�) is a continuous utility function representing a locally nonsatiated preference relation % de�ned
on the consumption set X = RL+, then, the Walrasian demand correspondence x (p; w) is homogeneous of
degree zero.

Statement Reason

1.
�
x 2 RL+ : p � x � w

	
1. Our set of feasible consumption bundles
under prices p and wealth w

2. x (p; w) is the optimal consumption 2. Assumption
vector for p and w
3.
�
x 2 RL+ : �p � x � �w

	
3. Our set of feasible consumption bundles
under prices �p and wealth �w

4. x (�p; �w) is the optimal consumption 4. Assumption
vector for �p and �w
5.
�
x 2 RL+ : �p � x � �w

	
= 5. Division by ��

x 2 RL+ : p � x � w
	

6. x (p; w) = x (�p; �w) 6. Since the feasible sets are the same (step 5) and
x (p; w) and x (�p; �w) are the optimal bundles
from the feasible sets, they must be equal

7. x (p; w) is homogeneous of degree zero 7. From 6 and def. of homogeneous of degree zero
Proof of Walras law.

Proof. If u (�) is a continuous utility function representing a locally nonsatiated preference relation % de�ned
on the consumption set X = RL+, then, the Walrasian demand correspondence x (p; w) satis�es Walras�law.
We will prove this by contradiction, so we will assume that p � x < w
Statement Reason

1. p � x < w 1. Our contradictory statement
2. There is another another bundle y in 2. Local nonsatiation
Bp;w such that p � y < w and y � x
But this contradicts the fact that x is the optimal consumption bundle because y is preferred to x. Thus,

Walras�law must hold.
Proof of convexity of x (p; w) when % is convex.

Proof. If % is convex, so that u (�) is quasiconcave, then x (p; w) is a convex set. We have two bundles, x
and x0, with x 6= x0, and x; x0 2 x (p; w). Need to show that x00 = �x+ (1� �)x0 2 x (p; w)8� 2 [0; 1]. To
show that, we need to show that (1) x00 is feasible and (2) that u (x00) � u (x) = u (x0).
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Statement Reason

1. u (x) = u (x0) 1. x (p; w) assigns the optimal bundle(s),
so these must have the same utility

2. u (x) � u� 2. Useful de�nition
3. x00 = �x+ (1� �)x08� 2 [0; 1] 3. De�ning our new bundle
4. x00 2 Bp;w 4. Convexity of Bp;w
5. u (x00) � u� 5. Quasiconcavity of u (�)
6. x00 is feasible and has utility at least 6. Steps 4 and 5
as large as x and x0

7. x00 2 x (p; w) 7. De�nition of x (p; w)
Now, prove that if % is strictly convex, so that u (�) is strictly quasiconcave, then x (p; w) consists of a

single element (uniqueness).
Proof. If % is strictly convex, so that u (�) is strictly quasiconcave, then x (p; w) consists of a single element
(uniqueness). We can start by assuming that x (p; w) is NOT unique, so that we have two bundles x and
x0, with x 6= x0, and x; x0 2 x (p; w). De�ne x00 = �x+ (1� �)x0 2 x (p; w)8� 2 [0; 1].

Statement Reason

1. u (x) = u (x0) 1. x (p; w) assigns the optimal bundle(s),
so these must have the same utility

2. u (x) � u� 2. Useful de�nition
3. x00 = �x+ (1� �)x08� 2 [0; 1] 3. De�ning our new bundle
4. x00 2 Bp;w 4. Convexity of Bp;w
5. u (x00) > u� 5. Strict quasiconcavity of u (�)
6. x00 is feasible and has utility greater 6. Steps 4 and 5
than x and x0

7. x (p; w) is unique 7. Step 6 contradicts the fact that x and
x0 2 x (p; w) because we have a feasible
bundle with strictly higher utility in x00

3.2 Inequality Constrained Optimization

We now know that given our consumer�s problem there is a solution and it is unique (provided the assumptions
we made on % and u (�) hold). Now we will discuss the mechanics of actually solving the consumer�s problem
and �nding x (p; w).
Consider a general 2-good problem with goods x1 and x2. We assume that % is rational, continuous,

monotone, and strictly convex, so that u (x1;x2) is continuous, increasing, and strictly quasiconcave. The
consumer faces prices p1 > 0 and p2 > 0 for goods x1 and x2 respectively, and has a level of wealth w > 0, and
that p1x1 + p2x2 � w. We will also assume (for the current example) that x�1 (p; w) > 0 and x�2 (p; w) > 0,
where x�1 (p; w) and x

�
2 (p; w) are the consumer�s optimal consumption levels of x1 and x2. This means there

is an interior solution, and not a corner solution. The consumer�s problem is then:

max
x1;x2

u (x1; x2) s.t. p1x1 + p2x2 � w

Some steps:

1. Rewrite p1x1+p2x2 � w as w�p1x1�p2x2 � 0 (there is a reason for this which we will discuss later).

2. Form the Lagrangian,
L (x1; x2; �) = u (x1;x2) + � [w � p1x1 � p2x2]

3. Ponder where this � came from ... (again, we will discuss this shortly ... mechanics right now)

If x�1 (p; w) > 0 and x
�
2 (p; w) > 0, we get the following Kuhn-Tucker conditions:
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@L
@x1

=
@u (x�1; x

�
2)

@x1
� ��p1 = 0

@L
@x2

=
@u (x�1; x

�
2)

@x2
� ��p2 = 0

w � p1x1 � p2x2 � 0

�� [w � p1x1 � p2x2] = 0

The �rst 2 conditions are the �rst order conditions (FOCs) with respect to our consumer�s 2 choice
variables, x1 and x2 (it is a maximization problem after all). The 3rd condition is our inequality constraint (it
is an inequality constrained maximization problem after all). The last condition is called the complementary
slackness condition. The consumer�s goal is to maximize u (x1; x2), NOT L (x1; x2; �). This complementary
slackness condition assures us that u (x1; x2) = L (x1; x2; �). This means that either �� = 0 or w � p1x1 �
p2x2 = 0. But we know from Walras�law that w� p1x1 � p2x2 = 0, so we also know that condition 3 holds
with equality. Now we have a system of 3 equations (the FOCs and the constraint which is now an equality)
and 3 unknowns (x1; x2; �).
Something we can see is that at the optimum,

@u (x�1; x
�
2)

@x1
= ��p1

@u (x�1; x
�
2)

@x2
= ��p2.

Note that @u(x�1 ;x
�
2)

@x1
is the marginal utility of good x1, or MUx1 and that

@u(x�1 ;x
�
2)

@x2
is the marginal utility

of good x2, or MUx2 . If we take the ratio of those 2 equations, we get: MUx1
MUx2

= p1
p2
, or MUx1

p1
=

MUx2
p2

.
These equations should look familiar from principles or intermediate economics classes as the "conditions"
for a consumer�s optimization problem. Note that p1

p2
is the slope of the budget line (the negative of the

slope) and that MUx1
MUx2

is the marginal rate of substitution, or the slope of the indi¤erence curve at x�1 and
x�2, so that the slope of the indi¤erence curve is equal to the slope of the budget line at that point, or, in
very technical terms, the budget line is tangent to the indi¤erence curve at that point.
Now, what is �? This variable � tells us the marginal or shadow value of relaxing the constraint in

the UMP. When applied to the budget constraint, it is the marginal value of wealth. Think about when
� > 0 and � = 0. If � > 0, then wealth has a positive marginal value, and more w will increase u (�) or
L (�), if we hold the other variables constant. If � = 0 (and this is only for this example), then additional
w is worthless to the consumer, even holding the other variables constant. That is because the constraint
would be non-binding, and the consumer would have chosen x�1 and x

�
2 such that w� p1x�1 � p2x�2 > 0. Our

concern as of right now is not with a speci�c value of �, but whether or not � > 0 or � = 0.
Here is an actual example with a utility function. Let uB (x1; x2) = � lnx1 + (1� �) lnx2. The

consumer�s problem is:
max
x1;x2

uB (x1; x2) s.t. p1x1 + p2x2 � w

We know that we will need to formulate the Lagrangian,

L (x1; x2; �) = uB (x1;x2) + � [w � p1x1 � p2x2]

and to obtain the Kuhn-Tucker conditions:

@L
@x1

=
@uB (x

�
1; x

�
2)

@x1
� ��p1 = 0

@L
@x2

=
@uB (x

�
1; x

�
2)

@x2
� ��p2 = 0

w � p1x1 � p2x2 � 0

�� [w � p1x1 � p2x2] = 0
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We know that if uB (x1; x2) = � lnx1 + (1� �) lnx2, then

@uB (x
�
1; x

�
2)

@x1
=

�

x1
@uB (x

�
1; x

�
2)

@x2
=

1� �
x2

We also know that w � p1x1 � p2x2 = 0 because of Walras�law, so we have 3 equations with 3 unknowns.
I won�t type out all the rearranging of terms for this term to �nd the solution, but you should be able to
verify that

x�1 (p; w) =
�w

p1

x�2 (p; w) =
(1� �)w

p2

�� =
1

w
> 0.

Now suppose that p1 = 10, p2 = 5, � = 1
3 , and w = 100. We can actually �nd our consumer�s optimal

bundle in terms of a number. Plugging in those values we get that x�1 (p; w) =
10
3 , x

�
2 (p; w) =

40
3 , and

�� = 1
100 > 0. Moreover,

MUx1
MUx2

= 1=3
10=3=

2=3
40=3 = 2. Also,

p1
p2
= 2. So, MUx1

MUx2
= p1

p2
.

3.2.1 Slightly more general notation

We may not have a guarantee of an interior solution, but we still want to restrict x1 � 0 and x2 � 0. So,
our consumer�s problem is still to maximize utility subject to his budget constraint, but now we have the
additional constraints that x1 � 0 and x2 � 0. Writing this out for a two good problem we have:

max
x1;x2

u (x1; x2) s.t. p1x1 + p2x2 � w, x1 � 0, x2 � 0.

We can still follow the same steps as before, making sure that all our constraints are written as � constraints.
Since x1 � 0 and x2 � 0 are already written in this manner, that just leaves rewriting the budget constraint
as w � p1x1 � p2x2 � 0. Now we can form the Lagrangian:

L (x1; x2; �1; �2; �3) = u (x1; x2) + �1 [w � p1x1 � p2x2] + �2 [x1] + �3 [x2]

We will now have a full set of Kuhn-Tucker conditions for both our choice variables and our Lagrange
multipliers:

@L
@x1

� 0; x1 � 0; x1 � @L
@x1

= 0
@L
@x2

� 0; x2 � 0; x2 � @L
@x2

= 0
@L
@�1

� 0; �1 � 0; �1 � @L
@�1

= 0
@L
@�2

� 0; �2 � 0; �2 � @L
@�2

= 0
@L
@�3

� 0; �3 � 0; �3 � @L
@�3

= 0

:

Note that in this case we have complementary slackness conditions for the choice variables because we are
uncertain as to whether or not the constraint is binding. If we end up at a corner solution, then either
x1 = 0 or x2 = 0, so one of the constraints will be binding. Notice why when we assumed that we had
an interior solution that we did not have @L

@x1
� 0 and @L

@x2
� 0,2 but @L@x1 = 0 and

@L
@x2

= 0. If x1 > 0 and
x2 > 0, then those partial derivatives must be zero. Technically, these Kuhn-Tucker conditions are one
piece of the necessary and su¢ cient conditions for a general maximization problem with no guarantee of an
interior solution. The theorem is called the Arrow-Enthoven Theorem. While we will not go through the
theorem in detail, the list of the conditions needed is listed below.

1. The Kuhn-Tucker conditions, provided above.

2Note that we have @L
@xi

� 0. The reason for this is that we are not allowing the objective function to increase in any
direction.
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2. That the utility function u (x) is quasiconcave.

3. That the constraint functions are quasiconvex.

4. That the gradient of u (x) evaluated at the optimum not equal zero � if it did we would be at the
unconstrained maximum, and have no need for the Arrow-Enthoven theorem.

5. That the Slater condition holds �there is a viable interior in the feasible set � if all the constraints
hold with equality, then we can use equality constrained maximization methods.

6. The gradients, evaluated at the optimum, of the constraint functions which are active at the optimum
are linearly independent (essentially, there are no redundant constraints). This ensures that at the
optimum the constraint functions are locally di¤erent, so that a solution exists.

3.2.2 An example with a second binding constraint

Given our original problem, with u (x1; x2) = � lnx1 + (1� �) lnx2, budget constraint w� p1x1 � p2x2 � 0,
and an interior solution (note: think x1 > 0 and x2 > 0), we know that x�1 (p; w) =

�w
p1
and x�2 (p; w) =

(1��)w
p2

. Furthermore, when � = 1
3 ; p1 = 10; p2 = 5; and w = 100, x

�
1 (p1 = 10; p2 = 5; w = 100) =

10
3 and

x�2 (p1 = 10; p2 = 5; w = 100) =
40
3 . Now we will add the constraint that x1 � 4, which forces the consumer

to consume 4 units of good x1. Additionally, we will make one more assumption, that w > 4p1 rather than
w > 0. This ensures that our consumer can actually a¤ord 4 units of x1. Now, before we even start, will
this new constraint be binding using the parameters of � = 1

3 ; p1 = 10; p2 = 5; and w = 100? Of course
it will, since the consumer only chose to consume 10

3 < 4 units of x1 when the constraint was not imposed.
Now, let�s set up the Lagrangian:

L (x1; x2; �1; �2) = � lnx1 + (1� �) lnx2 + �1 [w � p1x1 � p2x2] + �2 [x1 � 4] :

We get:
@L
@x1

= �
x1
� �1p1 + �2 = 0

@L
@x2

= (1��)
x2

� �1p2 = 0
w � p1x1 � p2x2 � 0

x1 � 4 � 0
�1 � [w � p1x1 � p2x2] = 0

�2 � [x1 � 4] = 0

:

We know that the budget constraint will hold with equality, so that w � p1x1 � p2x2 = 0. Now focus on
our last equation, x1 � 4 � 0. Either x1 � 4 = 0 or �2 = 0 (there is the remote possibility that both occur,
which would happen using our numbers if we changed w from 100 to 120. However, �2 = 0 in this case
because the constraint does not bind, meaning that the consumer would choose LESS than 4 units at his
optimal consumption bundles). Now, if �2 = 0 then the constraint is not binding and we are right back to
where we started, with x�1 (p; w) =

�w
p1
and x�2 (p; w) =

(1��)w
p2

(just impose �2 = 0 in @L
@x1

to see this). If the
constraint is binding, then x�1 (p; w) = 4. If we know that x

�
1 (p; w) = 4, then from the budget constraint we

know that x�2 (p; w) =
w�4p1
p2

. So, our Walrasian demand function would be:

x�1 (p; w) =

�
4 if �2 > 0
�w
p1
if �2 = 0

x�2 (p; w) =

(
w�4p1
p2

if �2 > 0
(1��)w
p2

if �2 = 0

:

Now, how do we check for our speci�c problem? From @L
@x2

we know that �1 =
(1��)
x2p2

. Substituting this

back into @L
@x1

we can see that �2 =
(1��)p1
x2p2

� �
x1
(Note: if w = 120, and the remaining parameters are

kept as before, then x1 = 4 and x2 = 16. Plug those values into the equation for �2 and this illustrates that
�2 = 0 despite the fact that x1 = 4. Since the consumer would have chosen x1 = 4 without the constraint,
the constraint is not binding.). Now, if �2 = 0, then we are right back to the original utility maximization
problem because x1 =

x2�p2
(1��)p1 . When we plug this back into the budget constraint and solve for x2 we �nd

that x�2 =
(1��)w
p2

and x�1 =
�w
p1
if �2 = 0. However, once we substitute in our original parameters of � = 1

3 ,
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p1 = 10, p2 = 5, and w = 100, we see that x�1 =
10
3 , which violates the constraint that x1 � 4, and so we

know that �2 > 0.
In the general problem, which is to maximize u (x1; x2) subject to the budget constraint, you would

typically have to check 8 di¤erent cases.

x1 x2 �

+ + +
+ + 0
+ 0 +
0 + +
0 0 +
0 + 0
+ 0 0
0 0 0

You would have to check the cases that all of the

choice variables are positive, all are equal to 0, or some variables are positive and some are equal to zero.
With 3 choice variables we would have 23 = 8 possibilities, with 4 we would have 16, with 5 we would have
32, etc. However, in our general two good problem with a budget constraint we know that � > 0, and we
know that since w > 0 and p1x1 + p2x2 = w, and x1 and x2 are both greater than or equal to zero that
we cannot have � positive with both x1 = x2 = 0, so we are now down to 3 cases. Either �; x1; x2 > 0, or
�; x1 > 0 and x2 = 0, or �; x2 > 0 and x1 = 0. So basically all you would have to do is check to see if either
x1 = 0 or x2 = 0. You can do this by checking whether utility is higher at either x1 = w

p1
and x2 = 0, or

x1 = 0 and x2 = w
p2
, or at the interior solution you found. For our parameters of � = 1

3 , p1 = 10, p2 = 5,
and w = 100, and our optimal bundles x1 = 10

3 and x2 = 40
3 , we had u

�
10
3 ;

40
3

�
= 1

3 ln
10
3 +

2
3 ln

40
3 = 2:

128 2. For u (10; 0) = 1
3 ln 10 +

2
3 ln 0 we get something unde�ned since ln 0 is unde�ned, and the same for

u (0; 20) = 1
3 ln 0 +

2
3 ln 20. So we "know" that we have an interior solution, at least with this problem. It

is easier to see this if we use u (x1; x2) = x�1 x
1��
2 . For our parameters the optimal consumption bundle is

still x1 = 10
3 and x2 = 40

3 , so that u
�
10
3 ;

40
3

�
= 10

3

1=3 40
3

2=3
= 8: 399 5. If x1 or x2 equal 0, then our utility

will be 0, which is less than 8.3995.

3.3 The Indirect Utility Function

For each (p; w) >> 0, the utility value of the UMP is denoted v (p; w). It is equal to u (x�) for every x� 2
x (p; w), where x� denotes the optimal consumption bundle. So, for our two good example of u (x1; x2), we
have v (p; w) = u (x�1 (p; w) ; x

�
2 (p; w)). That is, we can write utility as a function of prices and wealth. The

bene�ts should become clear momentarily. As an example, we know that if u (x1; x2) = � lnx1+(1� �) lnx2,
then x�1 (p; w) =

�w
p1
and x�2 (p; w) =

(1��)w
p2

. Substituting these back into the utility function we get:

v (p; w) = � ln

�
�w

p1

�
+ (1� �) ln

�
(1� �)w

p2

�
so that utility is now a function of prices and wealth.

Proposition 15 Suppose that u (�) is a continuous utility function representing locally nonsatiated preference
relation % on X = RL+. The indirect utility function v (p; w) is

1. homogeneous of degree zero

2. strictly increasing in w and nonincreasing in p` for any ` = 1; :::; L

3. Quasiconvex: that is the set f(p; w) : v (p; w) � vg is convex for any v

4. Continuous in p and w

5. Roy�s Identity holds: If v (p; w) is di¤erentiable at (p; w) and @v(p;w)
@w 6= 0, then

x` (p; w) = �
@v (p; w) =@p`
@v (p; w) =@w

12



x2

x1

w
p1

w’
p1’

w’
p2’

w
p2

x(p’,w’)

x(p,w)

For homogeneity, consider whether u (x�1 (p; w) ; x
�
2 (p; w)) = u (x�1 (�p; �w) ; x

�
2 (�p; �w)) for any � >

0. Well, x�1 (�p; �w) = x�1 (p; w) and x
�
2 (�p; �w) = x�2 (p; w) so that u (x

�
1 (�p; �w) ; x

�
2 (�p; �w)) =

u (x�1 (p; w) ; x
�
2 (p; w)) for any � > 0. Since u (x

�
1 (p; w) ; x

�
2 (p; w)) = v (p; w) and u (x

�
1 (�p; �w) ; x

�
2 (�p; �w)) =

v (�p; �w), then v (p; w) = v (�p; �w). For strictly increasing in w, just consider that if you have more w
then you will purchase more of at least one good, and given the restrictions we put on % and u (�) this
means that we will obtain higher utility. For nonincreasing in p` consider that if p` increases then I will
have to either decrease my consumption of x` or some other good, UNLESS I am at a corner solution where
I am already consuming x` = 0, in which case my utility will be no higher than it was before because my
consumption bundle will not change (hence NONINCREASING versus strictly decreasing). We will skip
the proof of continuity, and show quasiconvexity with a picture. The idea is to show that given budget sets
(p; w) and (p0; w0), both of which obtain the same utility level v, any convex combination of those budget
sets, (p00; w00) = (�p+ (1� �) p0; �w + (1� �)w0) for any � 2 [0; 1] will obtain AT MOST utility of v. So,
if v (p; w) � v and v (p0; w0) � v, then v (p00; w00) � v. In Figure 3.3 we can see that the budget set (p; w) is
given by the budget constraint with endpoints w

p2
and w

p1
, and that (p0; w0) is given by the budget constraint

with endpoints w
0

p01
and w0

p02
. Now, consider (p00; w00) when � = 1. This will just be (p; w), and the maximum

utility the consumer can attain as v at x (p; w). When � = 0, then (p00; w00) = (p0; w0), and the maximum
utility the consumer can attain is also v at x (p0; w0). If we look at how the budget constraint changes as
� changes along the unit interval from 1 to 0, then we will just start at (p; w) and move to (p0; w0). In
other words, if we focus on w00

p002
, then that will just range between w0

p02
and w

p2
. Also, w

00

p001
must range between

w0

p01
and w

p1
. Furthermore, the budget constraint for (p00; w00) must cross through the intersection of (p; w)

and (p0; w0). This is because at the intersection of those points all convex combinations are of that single
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intersection (if you take a convex combination over the same point you simply get back that point).
As for Roy�s Identity, consider that the indirect utility function is simply the Lagrangian evaluated at

the optimal choices of x1, x2, and �, or v (p; w) = L (x�; ��). If we di¤erentiate v (p; w) with respect to p1,
we get

@v (p; w)

@p`
=
@L (x�; ��)

@p`
= ���x�`

because p` only enters the Lagrangian in the budget constraint. So now we know that

@v (p; w)

@p`
= ���x�`

but we also know that

�� =
@L (x�; ��)

@w
=
@v (p; w)

@w
:

To see this, just di¤erentiate the Lagrangian with respect to w. Now we have

@v (p; w)

@p`
= �@v (p; w)

@w
x�` or x

�
` = �

@v (p; w) =@p`
@v (p; w) =@w

:

Thus, if we know the indirect utility function v (p; w), then we can derive the Walrasian demand functions
directly from v (p; w) without doing the UMP.

4 Expenditure Minimization Problem (EMP)

With the UMP, our goal is to �nd the maximum utility level given �xed prices and wealth. With the EMP,
our goal is to �nd the minimum level of wealth necessary that will allow the consumer to attain a utility
level of u > u (0), where u (0) is simply the utility from consuming zero of all goods, given prices p >> 0.
So our constraint from the UMP now becomes our objective function, and our objective function from the
UMP now becomes our constraint. There are certain bene�ts to reframing the problem in this manner.

Proposition 16 Suppose that u (�) is a continuous utility function representing a locally nonsatiated pref-
erence relation % de�ned on the consumption set X = RL+ and that the price vector is p >> 0. We have

1. if x� is optimal in the UMP when w > 0, then x� is optimal in the EMP when the required utility level
is u (x�). Moreover, the minimized expenditure level in this EMP is exactly w.

2. if x� is optimal in the EMP when the required utility level is u > u (0), then x� is optimal in the UMP
when wealth is p � x�. Moreover, the maximized utility level in this UMP is exactly u.

Thus, the UMP and the EMP are related, and we will discuss this relationship in more detail.
The goal with the EMP is to minimize expenditure, subject to meeting a certain utility. Formally we

can de�ne the expenditure function as:

e (p; u) = min
x2Rn+

px subject to u (x) � u

Proposition 17 Suppose that u (�) is a continuous utility function representing locally nonsatiated preference
relation % de�ned on the consumption set X = RL+. The expenditure function e (p; u) is:

1. Homogeneous of degree ONE in prices

2. Strictly increasing in u and nondecreasing in p` for any ` = 1; :::; L

3. Concave in p

4. Continuous in p and u
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As for homogeneity of degree one in prices, e (p; u) = p1x
�
1 + p2x

�
2. So e (�p; u) = �p1x

�
1 + �p2x

�
2 =

� (p1x
�
1 + p2x

�
2) = �e (p; u) for all � > 0.

For strictly increasing in u, recall that e (p; u) will be the minimum expenditure that achieves u. Alter-
natively, u is the maximum utility level achieved by e (p; u). If we want more u, we will need to spend more
money.
For nondecreasing in p`, picture the two-good case. If the price of good x2, denoted p2, increases, and

we are at a unique interior solution with u = u, we will no longer be able to a¤ord that bundle. To return to
u we will need to increase our expenditure. However, it is possible that p2 increases and we do not change
our expenditure if we are at a corner solution consuming all x1. That is why e (p; u) is nondecreasing in p`,
and not strictly increasing.
For concavity in p, de�ne three expenditure functions, e (p; u), e (p0; u), and e (p00; u), where p00 = �p +

(1� �) p0 for � 2 [0; 1]. Note that they all achieve the same utility level u. Our expenditure function will
be concave in p if �e (p; u) + (1� �) e (p0; u) � e (p00; u). We know the following:

1. x minimizes expenditure to achieve u when prices are p

2. x0 minimizes expenditure to achieve u when prices are p0

3. x00 minimizes expenditure to achieve u when prices are p00

The cost of x at p must be no greater than the cost of any other bundle that achieves u. The same is
true of x0 and p0. So

px � px00

p0x0 � p0x00

because x00 achieves the same utility level as x and x0. Multiply the �rst inequality by � 2 [0; 1] and the
second by (1� �) to get:

�px � �px00

(1� �) p0x0 � (1� �) p0x00

Now add the two inequalities to get

�px+ (1� �) p0x0 � �px00 + (1� �) p0x00

�px+ (1� �) p0x0 � (�p+ (1� �) p0)x00

Or
�e (p; u) + (1� �) e (p0; u) � e (p00; u)

Note what this says � it says that for two expenditure functions that achieve the same utility level, any
convex combination of those expenditure functions will require MORE expenditure (or at least the same) to
achieve the same utility level.

4.1 A minimization problem

The expenditure minimization function is given by:

e (p; u) = min
x1;x2

p1x1 + p2x2subject to u (x1; x2) � u

This looks fairly familiar, and the expenditure minimization function is simply equal to the Lagrangian
evaluated at the optimal values of x�1, x

�
2, and �

�. We can set up a Lagrangian, and we will get:

L (x1; x2; �) = p1x1 + p2x2 + � [u� u (x1; x2)]

Note that there is a di¤erence in the minimization problem and the maximization problem. In the maxi-
mization problem we needed the constraint, w�p1x1�p2x2 � 0. In the minimization problem, we need the
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constraint u�u (x1; x2) � 0. Again, this is due to technical details. We can work out �rst order conditions,
constraints and complementary slackness conditions for the minimization problem as well. With an interior
solution, all �rst order conditions and constraints will hold with equality.

@L
@x1

= p1 � �
@u (x1; x2)

@x1
= 0

@L
@x2

= p2 � �
@u (x1; x2)

@x2
= 0

@L
@�

= u� u (x1; x2) = 0

Note that @e(p;u)@x1
= p1 because e (p; u) = L (x�1; x�2; ��). If we had a utility function we could then calculate

the partial derivatives of u (x1; x2) and solve for �
�, x�1, and x

�
2. Plugging x

�
1 and x

�
2 back into p1x

�
1 + p2x

�
2

would yield the expenditure function. NOTE that the x�1 in the EMP is DIFFERENT THAN the x�1 in
the UMP. In the UMP, we had x (p; w). In the EMP, we will have x (p; u). To distinguish between the
two we will call the demand functions derived from the EMP the Hicksian demand functions, and denote
them h (p; u). At this time you should also note the relationship between e (p; u) and v (p; w). From the
initial propositions relating e (p; u) and v (p; w), we know that e (p; v (p; w)) = w and v (p; e (p; u)) = u, so
that both problems capture the underlying aspects of the consumer�s problem.

4.2 Hicksian or Compensated demand functions

As mentioned, we will call our demand functions from the EMP the Hicksian demand functions, and denote
them h (p; u). Note that they may be correspondences, although if % is strictly convex then h (p; u) will be
unique.

Proposition 18 Suppose that u (�) is a continuous utility function representing locally nonsatiated preference
relation % on the consumption set X = RL+. Then for any p >> 0, the Hicksian demand correspondence

1. is homogeneous of degree zero in prices, so that h (�p; u) = h (p; u) for all � > 0

2. has no excess utility: For any x 2 h (p; u), u (x) = u

3. convexity/uniqueness: If % is convex, then h (p; u) is a convex set. If % is strictly convex, then h (p; u)
consists of a single element.

For homogeneity, consider minimizing px subject to u (x) � u. Now consider minimizing �px subject
to u (x) � u. The constant has no e¤ect on the minimizing bundle, although it will e¤ect the wealth level
necessary to achieve that bundle (much like a constant multiplied by the utility function had no e¤ect on
the utility maximizing bundle, although it would a¤ect the utility level).
We rely on continuity of u for the proof of no excess utility. This proof is similar to those we have done

for Walras�law holding, except we use continuity rather than local nonsatiation because h (p; u) is a function
of u.
For convexity and uniqueness, we can use arguments similar to those for establishing convexity and

uniqueness of x (p; w).
At this point we can relate the Hicksian demands to the Walrasian demands, given the relationship

between the EMP and the UMP. We have that:

h (p; u) = x (p; e (p; u))

x (p; w) = h (p; v (p; w))

Note that we use the indirect utility function, which is a function of prices and wealth, as opposed to the
direct utility function, which is a function of the actual consumption goods x.
Why call the Hicksian demand function a compensated demand function? As prices vary, h (p; u) gives

precisely the level of demand that would arise if the consumer�s wealth were simultaneously adjusted to keep
the utility level of u.
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Hicksian demand will satisfy the compensated law of demand. Demand and price move in opposite
directions for price changes that are accompanied by Hicksian wealth compensation. So, as p2 increases, x2
decreases. This is di¤erent from Walrasian demand, which allows for Gi¤en goods.

Proposition 19 Suppose that u (�) is a continuous utility function representing locally nonsatiated preference
relation % de�ned on the consumption set X = RL+ and that h (p; u) consists of a single element for all p >> 0.
Then the Hicksian demand function h (p; u) satis�es the compensated law of demand for all p and p0

(p00 � p0) � [h (p00; u)� h (p0; u)] � 0

Note what this says: if the price change is positive, then the change in Hicksian demand must be negative
(or 0). If the price change is negative, then the change in Hicksian demand must be positive (or 0).
Proof. By assumption consumption bundles h (p0; u) and h (p00; u) are the optimal consumption bundles
when prices are p0 and p00 respectively, and utility is at level u.

Statement Reason

1. p00 � h (p00; u) � p00 � h (p0; u) 1. h (p00; u) minimizes expenditure for price p00 and utility u
2. p0 � h (p00; u) � p0 � h (p0; u) 2. h (p0; u) minimizes expenditure for price p0 and utility u
3. (p00 � p0) � [h (p00; u)� h (p0; u)] � 0 3. Subtraction (we have a nonpositive number minus a nonnegative one)
Thus, the Hicksian demand function satis�es the compensated law of demand.
As with the indirect utility function and Walrasian demand, we can derive the Hicksian demand directly

from the expenditure function, e (p; u). Since e (p; u) = L (x�1; x�2; ��), and price only enters the Lagrangian
in the expenditure function itself, then

@e (p; u)

@p`
=
@L (x�1; x�2; ��)

@p`
= x�` = h` (p; u) :

Thus, the partial derivative of the expenditure function with respect to any price p` is the Hicksian demand
function.

5 Impact of price changes

While �nding the solution to the UMP or the EMP is an important step, many economists focus on what
happens when something changes in the economic system. We will begin by discussing price changes in Hick-
sian demand, as Hicksian demand satis�es the law of demand (price increases, quantity demanded decreases)
while Walrasian demand may or may not. However, Hicksian demand is a function of an unobservable vari-
able, utility. Walrasian demand, however, is a function of the observable variables (or at least variables that
we might be able to observe) price and wealth (or income).
We have that the own-price derivatives of Hicksian demand are negative (or 0) because Hicksian demand

follows the compensated law of demand. This means

@h` (p; u)

@p`
� 0:

Now consider the cross-price derivative of Hicksian demand h` (p; u) with respect to the price of good k, pk.
If @h`(p;u)@pk

� 0 then goods ` and k are complements or complementary goods, because as the price of good
k increases the Hicksian demand for good ` decreases. Thus we are consuming less of good k and less of
good ` when pk increases. If

@h`(p;u)
@pk

� 0 then goods ` and k are substitutes because as the price of good k
increases the Hicksian demand for good ` increases. Note that if the cross-price derivative is equal to zero
then the goods could be classi�ed as either substitutes or complements. However, consider what it means
if the cross-price derivative truly is zero �a change in pk has no e¤ect on the Hicksian demand for good
`. Thus the two goods could be classi�ed as independent. We know that there must be at least one good
which is a substitute for any speci�c good in the economy.3 To see this, consider the 2-good case. If the
price of good k increases, then the consumption of good k will decrease (unless the consumer is at a corner
solution) because Hicksian demand follows the compensated law of demand. Now, if the consumer is to
remain at the same utility level, and he is consuming less of good k, then he must consume more of good `.

3With the exception of the 2-good case of perfect complements which we discussed in class, in which there was no substitution
e¤ect.
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5.1 Decomposing Hicksian demand changes

The purpose of using Hicksian demand is because Hicksian demand follows the compensated law of demand.
But, we cannot observe Hicksian demand because one of its arguments is unobservable (utility level). We
can exploit the relationship between Hicksian demand and Walrasian demand to obtain information on price
e¤ects.4

Proposition 20 (The Slutsky Equation) Suppose that u (�) is a continuous utility function representing
locally nonsatiated preference relation % de�ned on X = RL+. Then for all (p; w) and u = v (p; w) we have

@h` (p; u)

@pk
=
@x` (p; w)

@pk
+
@x` (p; w)

@w
xk (p; w) for all `; k.

Or, rewriting in terms of the cross-price e¤ect of the Walrasian demand:

@x` (p; w)

@pk
=
@h` (p; u)

@pk
� @x` (p; w)

@w
xk (p; w) for all `; k.

Proof. We know that h` (p; u) = x` (p; e (p; u)) at the optimal solution to the consumer�s problem. We can
di¤erentiate with respect to pk and evaluate at p and u.

Statement Reason

1. @h`(p;u)@pk
= @x`(p;e(p;u))

@pk
+ @x`(p;e(p;u))

@w
@e(p;u)
@pk

1. Chain rule for di¤erentiation

2. @h`(p;u)@pk
= @x`(p;e(p;u))

@pk
+ @x`(p;e(p;u))

@w hk (p; u) 2. Earlier result on relation
of e (p; u) to h (p; u)

3. hk (p; u) = xk (p; e (p; u)) = xk (p; w) 3. Earlier result on relation
of hk (p; u) to xk (p; w)

4. e (p; u) = w 4. Earlier result on relation
of e (p; u) to w

5. @h`(p;u)@pk
= @x`(p;w)

@pk
+ @x`(p;w)

@w xk (p; w) 5. Substitution
For the Walrasian demand, the change in quantity of good ` with respect to a change in the price of

good k is known as the Total E¤ect of the change in price of good k. The total e¤ect is decomposed into

the Substitution E¤ect
�
@h`(p;u)
@pk

�
and the Income (or Wealth) E¤ect

�
@x`(p;w)
@w xk (p; w)

�
. The Substitution

E¤ect is the change in quantity demanded of good ` due to the fact that good ` is now relatively more (less)
expensive if the price of another good (say good k) increases (decreases) when the prices of all other goods
stay the same. Thus, if the price of a good k increases, we would expect that a consumer would purchase
more of a second good ` because ` is now a relatively less expensive substitute (unless of course the goods
are complements). The Income E¤ect is the change in quantity demanded of good ` due to the fact that
the consumer has control over how he spends his wealth. There need be no actual change in w for there to
be an income e¤ect, but if the price of good k increases, then the consumer may not just decide to reduce
consumption of good k at the rate of the price increase. For example, if pk doubles, the consumer may keep
consumption of good ` the same and simply reduce consumption of good k to 1

2 its previous level, but is not
required to act in this manner. The consumer may cut consumption by more (or less) than 1

2 and adjust
consumption of good ` accordingly. The consumer may even increase the amount of good k when a price
increase occurs �this is the case of a Gi¤en good, and it occurs because the Income E¤ect overwhelms the
Substitution E¤ect. Consider the Slutsky equation for a change in the own-price of a good:

@x` (p; w)

@p`
=
@h` (p; u)

@p`
� @x` (p; w)

@w
x` (p; w)

We know that if p` increases that the Substitution E¤ect
�
@h`(p;u)
@p`

�
will be negative. However, there is no

such restriction on the Total E¤ect
�
@x`(p;w)
@p`

�
as it may be positive or negative (recall the case of Gi¤en

goods). It will be positive if the Income E¤ect is more negative than the Substitution E¤ect (remember,

4For a recent reference on using the Slutsky equation in empirical work, see Fisher, Shively, and Buccola (2005). Activity
Choice, Labor Allocation, and Forest Use in Malawi. Land Economics, Vol. 81:4
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Figure 4: Decomposing the e¤ect of a price change on a Gi¤en good.

this is an OWN-price equation, so the Hicksian demand must decrease when its own price increases). In
this case, we have a Gi¤en good because @x`(p;w)

@p`
> 0. Thus, it is an usually large negative income e¤ect

that is driving the Gi¤en good result. Typically one would think that income e¤ects would be positive
(we know that x` (p; w) � 0, so focus on @x`(p;w)

@w ). This is just the derivative of the Walrasian demand
function with respect to wealth, and usually if wealth increases consumers consume more of a good (hence
the reason we call these goods �normal goods�). However, if a good is a Gi¤en good then it must have
a wealth e¤ect negative enough to overwhelm the negative substitution e¤ect. Thus any good that is a
Gi¤en good must be an inferior good. However, this does not mean that all inferior goods are Gi¤en goods
�if the derivative of the Walrasian demand is negative (so that the good is inferior), it is possible that the
wealth e¤ect is LESS negative than the substitution e¤ect. In this case, while the good is inferior, its total
e¤ect will still be negative. Figure 4 shows the e¤ect of a price change of a Gi¤en good decomposed into its
total, substitution, and income e¤ects. The initial budget constraint is in black and the optimal bundle is
represented by x1. The new budget constraint after an increase in the price of good x1 is given in red and
its optimal consumption bundle is represented by x2. The blue budget constraint is the budget constraint
that returns the consumer to his original utility after the price change and the optimal bundle is represented
by xh. Now, the total e¤ect is simply the change in good x1 when its price changes, so we compare the
quantity of x1 consumed under the initial budget constraint with the quantity consumed under the budget
constraint when p1 increases. Note that there is an INCREASE in consumption of x1 when p1 increases �
thus we have a Gi¤en good (the exact "equation" to �nd this is quantity of x1 consumed at bundle x2 minus
quantity of x1 consumed at bundle x1). To �nd the income e¤ect, compare the quantity of x1 consumed
under the new budget constraint with the quantity of x1 consumed under the budget constraint with the
new relative prices that returns the consumer to his initial utility level (the Hicksian compensation budget
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constraint as it is labeled). Again, to �nd this take the quantity of x1 consumed at xh and subtract the
quantity of x1 consumed at x2. The substitution e¤ect is simply the change in consumption of x1 at x1 to
consumption of x1 at xh (take the amount of x1 consumed at xh and subtract the amount of x1 consumed
at x1). Note that since this is an own-price e¤ect on Hicksian demand it must be negative. We can do
the exact same analysis for good x2 when the price of good x1 increases. For good x2, its total e¤ect is
negative, while its substitution e¤ect is positive (only two goods so they must be substitutes) but its income
e¤ect is MORE positive than its substitution e¤ect, leading to the negative total e¤ect.5

Now, there are a few additional results that rely on the Hessian matrix of the expenditure function
e (p; u). A Hessian matrix is simply a matrix of 2nd partial derivatives. If we take the derivative of the
e (p; u) once with respect to p we will obtain a row vector of length L, where L is the number of goods (we
will have one derivative for each of the L goods). Recall that our Hicksian demand without a subscript,
h (p; u) is really a vector of Hicksian demands, one for each good, or h (p; u) =

�
h1 (p; u) h2 (p; u)

�
for

the two-good world. Alternatively, we could write @e(p;u)
@p =

h
@e(p;u)
@p1

@e(p;u)
@p2

i
. The technical term for

the �rst partial derivative of a vector is the gradient, so the Hicksian demand function is nothing more than
the gradient of the expenditure function in pure math terms. Note that the vectors are the same because
@e(p;u)
@p = h (p; u). The Hessian matrix is simply an LxL matrix of second partial derivatives. For our

two-good world, we would have:

@2e (p; u)

@p2
=

"
@2e(p;u)
@p1@p1

@2e(p;u)
@p1@p2

@2e(p;u)
@p2@p1

@2e(p;u)
@p2@p2

#
=

"
@h1(p;u)
@p1

@h1(p;u)
@p2

@h2(p;u)
@p1

@h2(p;u)
@p2

#
:

Now, a proposition:

Proposition 21 Suppose that u (�) is a continuous utility function representing locally nonsatiated preference
relation % on the consumption set X = RL+. Suppose also that h (�; u) is continuously di¤erentiable at (p; u)
and denote its LxL derivative matrix by Dph (p; u). Then

1. Dph (p; u) = D2
pe (p; u)

2. Dph (p; u) is a negative semide�nite matrix.

3. Dph (p; u) is a symmetric matrix.

4. Dph (p; u) p = 0:

We have already discussed the �rst result. The second and third results have to do with the fact that since
e (p; u) is a twice continuously di¤erentiable concave function, it has a symmetric and negative semide�nite
Hessian matrix. The fourth result follows from Euler�s formula since h (p; u) is homogeneous of degree zero
in prices. Recall from chapter 2 that homogeneity of degree zero implies that price and wealth derivatives
of Walrasian demand for any good `, when weighted by these prices and wealth, sum to zero. For Hicksian
demand, we have only that h (p; u) is homogeneous in p, so we will only consider the e¤ect of prices. Euler�s
formula from chapter 2 said if x (p; w) is homogeneous of degree zero in prices and wealth, then: 

LX
k=1

@x` (p; w)

@pk
pk

!
+
@x` (p; w)

@w
w = 0 for ` = 1; :::; L

Or:

@x1 (p; w)

@p1
p1 +

@x1 (p; w)

@p2
p2 +

@x1 (p; w)

@w
w = 0 for ` = 1

@x2 (p; w)

@p1
p1 +

@x2 (p; w)

@p2
p2 +

@x2 (p; w)

@w
w = 0 for ` = 2:

5Obtaining the correct sign for these e¤ects may be a little confusing. The key is to take the amount of the good at the
NEW bundle, and subtract the amount of the good at the original bundle.
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Well,

Dph (p; u) p =

"
@h1(p;u)
@p1

@h1(p;u)
@p2

@h2(p;u)
@p1

@h2(p;u)
@p2

#
�
�
p1
p2

�
=

"
@h1(p;u)
@p1

p1 +
@h1(p;u)
@p2

p2
@h2(p;u)
@p1

p1 +
@h2(p;u)
@p2

p2

#
which is the same Euler�s formula as we had before. As for the terms �symmetric� and �negative semi-
de�nite�matrix, a symmetric matrix is simply a matrix that equals its transpose (to transpose a matrix
simply take the �rst column of the original matrix and make that the �rst row of the transpose, then take
the second column of the matrix and make that the second row of the transpose, etc.). So, for our two-good
world, if Dph (p; u) is our matrix and DT

p h (p; u) is its transpose,

Dph (p; u) = D
T
p h (p; u)

Or "
@h1(p;u)
@p1

@h1(p;u)
@p2

@h2(p;u)
@p1

@h2(p;u)
@p2

#
=

"
@h1(p;u)
@p1

@h2(p;u)
@p1

@h1(p;u)
@p2

@h2(p;u)
@p2

#
Notice that the two o¤ diagonal elements are switched. Thus, since Dph (p; u) is symmetric,

@h1(p;u)
@p2

=
@h2(p;u)
@p1

, or using the expenditure function notation, @
2e(p;u)
@p1@p2

= @2e(p;u)
@p2@p1

. Thus, it does not matter which price
you use to di¤erentiate with �rst �the result will be the same. For a refresher on the de�nition of negative
semide�niteness, take a look at the mathematical appendix. That Dph (p; u) is negative semide�nite ensures
us that the own-price derivatives of the Hicksian demand function are less than or equal to zero (note that
the own-price derivatives of the Hicksian demand function are the elements along the diagonal of Dph (p; u)).

6 Parting comments

Chapter 3 contains a wealth of material. We began by adding some additional assumptions about the
consumer�s preference relation (local nonsatiation, convexity, and continuity). We then moved into the
consumer�s problem, which is to maximize utility. We examined Lagrangian methods for this problem,
which work when the problem is well-de�ned (in other words, would you consider using Lagrange�s method
if the objective function is not di¤erentiable). We were able to derive Walrasian demands from the UMP and
state some results about those correspondences/functions. We then examined the expenditure minimization
problem, and obtained the Hicksian demands from that problem. We related Walrasian and Hicksian
demands to one another, and then examined the impact of a price change on the demand functions.
Why bother with all of these assumptions and results? When you are building a model you need to

consider how the assumptions you make impact the behavior of your consumer �speci�cally, you need to
know what you are allowing your consumer to do and what the consumer is not allowed to do. As an
example, with the EMP we know that own-price e¤ects on Hicksian demand must be negative, but in "the
real-world" we sometimes see the case of Gi¤en goods. By looking solely at the EMP one cannot see positive
own-price e¤ects, but when relating this back to the Walrasian demands we see how it is possible to observe
Gi¤en goods.
Finally, remember that this chapter represents only one possible way in which a consumer may be solving

his or her problem. We assume that the consumer is a utility maximizer. That may not be the case. It
is possible that the consumer is a utility satis�cer, meaning that once a consumer hits a certain level of
utility he/she is content (consider the case of a �rm attempting to maximize pro�ts and attain a pro�t
goal �those are two di¤erent objectives, and analogous to a consumer being a utility maximizer or a utility
satis�cer). Suppose that the optimal bundle for a consumer is 500 of x1 and 630 of x2. What if the
consumer is at a bundle of 502 of x1 and 627 of x2, and is just barely away from the optimal bundle (this
is in the "real-world" �if the optimal bundle is 500, 630 for a problem, and you write down 502, 627, then
you are wrong (!!!)). It may be the case that the increase in utility is so in�nitesimal to the consumer that
he doesn�t bother to change consumption to the optimal level, or doesn�t even notice that there is much
di¤erence between 500,630 and 502,627. In that case, the consumer is satis�ed with their utility level and
they are not optimizing. Now that I think of it, if this interests you then you might want to consider looking
at Herb Simon and the notion of bounded rationality, which says that there are limits to the computations
that the human mind can make. Further, the entire analysis we have done so far has been static �if the
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consumer sees prices p and has wealth w, then the consumer chooses a consumption bundle x. We have
not considered a dynamic problem where a consumer might have excess of a good that is storable. Think
about it: do you buy the exact same bundle every time you go to the grocery store �of course not, because
unless (1) you use an awful lot of toothpaste each time you brush your teeth or (2) you brush your teeth 90
times a day using a regular quantity of toothpaste or (3) you buy an incredibly small amount of toothpaste
each time you go to the store, then you usually have some toothpaste left over from a purchase of toothpaste
last week, and you do not buy toothpaste this week. The only changes we have considered are changes in
prices, and even then we have done this statically �hence the term "comparative statics". There has been
no transition while consumers attempt to move from one optimal bundle to the next � they just "know"
what their optimal bundles are with the new price, and they purchase that bundle. I�m am sure there are
plenty of other objections you could raise to consumer theory.
So why do all this? First, it is the standard model of consumer theory in the literature. If you want

to change the standard, you need to understand it. Second, as a �rst approximation utility maximization
isn�t horrible. If there are only minor errors (like the example with 500,630 and 502,627) then it provides
a good �rst approximation (of course, we wouldn�t know if there were large errors because all we would
observe is the actual purchases at p and w, and not an individual�s utility function). Third, the math
with maximization is relatively easy compared to the math necessary for other concepts of a consumer�s
objectives. Finally, it provides a starting place for analysis. If things seem inconsistent with the model,
then perhaps the model needs to be changed. Maybe the change is only a minor tweak, or maybe it needs
to be completely revamped. But that is why you all will be doing research �to investigate the pros and
cons of various speci�cations (if not speci�cally of the consumer�s problem then of some other problem).
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