
Chapter 5 Notes

These notes correspond to chapter 5 of Mas-Colell, Whinston, and Green.

1 Production

We now turn from consumer behavior to producer behavior. For the most part we will examine producer
behavior in isolation, leaving the study of general equilibrium for the next course. We begin with a discussion
of the producer�s objectives and develop some assumptions underlying producer behavior. We will then
discuss the producer�s problem and study the speci�c case of cost and supply for a production technology
that produces a single output.
Generally speaking we will consider our producers to be �rms, although it should be noted that the

theory developed applies equally to all types of producers, whether they are called �rms, production units,
families, etc. There may be additional assumptions/restrictions that one desires to make when discussing
�rms that are not controlled by agents that no not have identical preferences. The theory developed here
applies directly to a �rm composed of a single individual or agents with identical preferences. Whether
these assumptions are applicable for other models of �rms, such as partnerships, corporations with owners
and managers, etc., is a decision each researcher needs to make on his or her own.
The �rm is an interesting economic �agent�. There are many potential questions one can ask about the

�rm. Such questions could be:

1. Who owns the �rm? Does the identity of the owner change the �rm�s objectives?

2. Who manages the �rm? If the owner and the manager are di¤erent agents, how does this a¤ect the
�rm�s behavior?

3. How is the �rm organized? Do di¤erent organizational forms of the �rm promote or inhibit e¢ ciency?

4. What can the �rm do?

These are interesting and important questions that an individual could turn into a long and fruitful
academic career, and by no means is this an exhaustive list. Our primary focus will be on the 4th item,
What can the �rm do? In particular, we will begin by assuming that the �rm can transform inputs into
outputs. The �rm�s goal is to make pro�ts � speci�cally, the �rm�s goal is to maximize pro�ts. It is
possible that the �rm has other goals �many �rms set pro�t targets or sales targets (in $) or sales targets
(in quantity of items sold) or wish to maximize sales. We will focus on pro�t maximization as (1) it provides
a close approximation to the goals of many �rms; (2) it is consistent with utility maximization if the �rm
is controlled by a single individual or agents with identical preferences; and (3) it allows us to use the tools
developed in the study of consumer theory to solve the �rm�s problem.
Now, if you were to start a business one thing you would want to know is exactly how your �rm would

transform inputs into outputs (and ultimately pro�ts). In the theory constructed, the how is assumed to
be simply a black-box of production. We do not know how, just that there is some technology that exists
that allows the �rm to transform inputs into outputs. Thus, our view of the theory is fairly accurately
represented by the Underpants Gnomes in South Park.1 The Underpants Gnomes have a business plan:

� Phase 1: Collect underpants
1Episode 217, titled Gnomes, originally aired on 12/16/1998.
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� Phase 2: (Gnome shrugs shoulders, suggesting he does not know)

� Phase 3: Pro�t

Well, they skip the stage where they turn the inputs into outputs, but for the most part this is dead
on. Our �rms transform inputs (underpants, phase 1) into outputs to make pro�ts (phase 3), and the exact
process is unknown (phase 2). We will be slightly (but not much) more formal than shrugging our shoulders
when discussing the production process, but will simply specify it as a �production function�, and will list
certain properties of that function. Again, should you attempt to enter the business world, most lending
agents will want a little more than a shrug of the shoulders or that you have some unspeci�ed production
function. However, for general theoretic purposes the generic �production function�will su¢ ce.
While the Underpants Gnomes portrayal of the theory is a little harsh, it is important to note that the

theory does not discuss the how of production. It is also important to note that given some minimum
assumptions about �rms, which in essence is what we will discuss, the economy will be able to obtain a
competitive equilibrium outcome (we will discuss this in chapter 10 and you will also see this next semester
in discussing general equilibrium). Thus, there is beauty in the simplicity of the theory in that it allows for
equilibrium to be achieved with minimal assumptions.

2 Production Sets

Consider an economy with L commodities. A production vector (also input-output vector, netput vector,
or production plan) is a vector y = (y1;:::; yL) 2 RL that describes the net outputs of the L commodities
from a production process. In the most general notation, it is assumed that inputs are negative numbers
(a �rm uses 7 units of y1, so 7 units are consumed) and that outputs are positive numbers (a �rm makes 5
units of y2, so 5 units are created). It could be that L = 5 so y 2 R5 and y = (7;�4; 2; 0;�6). In this case,
the �rm will use 4 units of y2 and 6 units of y5 (net) in the production process and will create 7 units of y1
and 2 units of y3 (net). The entry for y4 = 0, so that there is no net production of y4. Note that the �rm
may use 9 units of y2 in the production process, but that the production process returns 5 of those units.
Our vector y simply provides the net production of the L commodities.
The �rst question to ask is which production vectors are possible. This is the analog to the consumer�s

consumption set �which consumption bundles are possible. The set of all production vectors that constitute
feasible plans for the �rm is the production set, denoted Y � RL. Any y 2 Y is possible, and any y =2 Y is
not. Note that because we are allowing for inputs and outputs that we do not make the restriction that Y
is constrained to be positive as we did in consumer theory.
Like the consumer, the �rm faces constraints. These constraints may be technological constraints, legal

constraints, pre-commitments restricted by contracts �there are any number of constraints the �rm may face.
We can describe the production set Y by the transformation function F (�), where Y =

�
y 2 RL : F (y) � 0

	
and F (y) = 0 if and only if y is an element of the boundary of Y . The set of boundary points of Y ,�
y 2 RL : F (y) = 0

	
is known as the transformation frontier. If F (�) is di¤erentiable, and the production

vector y satis�es F (y) = 0, then for any commodities ` and k, the marginal rate of transformation of y` for
yk is:

MRT`k =
@F (y) =@y`
@F (y) =@yk

The marginal rate of transformation is simply a measure of how much the net output of yk can increase if
the �rm decreases the net output of y` by one unit.

2.1 Some properties of production sets

The following is a list of some standard properties of production sets. It is not a complete list, nor is it
meant to imply that all of the properties hold for all production sets.

1. Y is nonempty �just like the consumer�s problem is uninteresting if the consumer has no wealth to
spend, the �rm�s problem is uninteresting if it cannot do anything. This assumption simply states
that the �rm needs to be able to do something in order for us to study it.
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2. Y is closed �we know that a set is closed if its complement is open. Essentially, the closedness of the
production set means that it includes the transformation frontier.

3. No free lunch �We cannot have y 2 Y and y � 0. If both y 2 Y and y � 0 then this would mean that
the �rm could produce some output without using any inputs. Even the Underpants Gnomes needed
underpants.

4. Possibility of inaction �We can have 0 2 Y . Thus, the �rm is allowed to be inactive. This seems to
be a reasonable assumption if the �rm has not yet undertaken any commitments to costly activities
and is only thinking about the possibility of becoming a �rm. However, it may not be as reasonable if
the �rm has already incurred some costs �the �rm may still decide to be inactive, but it has already
made some commitments.

5. Free disposal �holds if the absorption of any additional amounts of inputs without any reduction in
output is always possible. The extra amount of inputs can be disposed of or eliminated at no cost.

6. Irreversibility �If y 2 Y and y 6= 0, then �y =2 Y . If I make outputs using inputs, I cannot reverse
the production process and turn the output back into the same amount of original inputs.

7. Nonincreasing returns to scale � If Y exhibits nonincreasing returns to scale, for any y 2 Y , then
�y 2 Y for � 2 [0; 1]. This means that the production process can be scaled down.

8. Nondecreasing returns to scale � If Y exhibits nondecreasing returns to scale for any y 2 Y , then
�y 2 Y for � � 1. This means that the production process can be scaled up.

9. Constant returns to scale � If Y exhibits constant returns to scale for any y 2 Y , then �y 2 Y for
� � 0. The production process can be scaled up or down.

10. Additivity (free entry) �Let y; y0 2 Y . Then y + y0 2 Y , or Y + Y � Y . This implies that if y 2 Y ,
then ky 2 Y for all k = Z > 0, where Z is the set of integers. From an economic viewpoint, additivity
means that a �rm with one production plant can set up a second production plant and that the second
plant will not interfere with the �rst. Also, if one �rm produces y and the other produces y0, then
aggregate production is y + y0. So production sets must satisfy additivity when free entry is possible.

11. Convexity �We know what convexity is. The production set Y is convex. If y; y0 2 Y and � 2 [0; 1],
then �y + (1� �) y0 2 Y . Convexity incorporates two ideas about production possibilities. Number
one is nonincreasing returns. If inaction is possible, then convexity implies nonincreasing returns
because �y+(1� �) 0 2 Y . Also, balanced plans are more productive than imbalanced plans, so that
if y and y0 produce the same amount of output, some convex combination of y and y0 will produce at
least as much output as y and y0. Again, this is similar to the consumer typically choosing mixed
bundles rather than bundles of predominantly one type of good.

12. Y is a convex cone �This occurs when Y is convex and also satis�es constant returns to scale. Y
is a convex cone if for any production vector y; y0 2 Y and constants � � 0 and � � 0, we have
�y + �y0 2 Y .

Proposition 1 The production set Y is additive and satis�es the nonincreasing returns condition if and
only if it is a convex cone.

Proof. If the production set Y is a convex cone, then it is additive. Let y; y0 2 Y .
Statement Reason

1. y + y0 2 Y 1. De�nition of convex cone
2. Y is additive 2. From 1 and def. of additive

Proof. If the production set Y is a convex cone, then it satis�es the nonincreasing returns condition. Let
y 2 Y .

Statement Reason

1. �y 2 Y 1. De�nition of convex cone
2. Y satis�es nonincreasing returns 2. From 1 and def. of nonincreasing returns
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Proof. If Y is additive and satis�es the nonincreasing returns condition, then it is a convex cone (or,
y; y0 2 Y and � and � are positive constants, then �y + �y0 2 Y )

Statement Reason

1. k 2 Z such that k > max (�; �) 1. We know that there is no greatest integer
2. ky 2 Y; ky0 2 Y 2. Additivity

3. �y =
�
�
k

�
ky, �y =

�
�
k

�
ky 3. Arithmetic

4. �k < 1,
�
k < 1 4. From 1

5. �y 2 Y , �y0 2 Y 5. Nonincreasing returns
6. �y + �y0 2 Y 6. Additivity
This result should be considered carefully. Nonincreasing returns states that �rms can scale production

processes down. Additivity states that the operation of additional plants do not interfere with one another.
If both of these hold then convexity is obtained. Note that this does not say that a convex combination of
the technology is �better� than one of the extreme technologies, just that it is available in the production
set.

3 Pro�t Maximization (PMP)

The �rm�s goal is to maximize pro�ts. For now, we assume that �rms are price-taking, meaning that the
prices for the L commodities (both inputs AND outputs) are given and that the �rm�s behavior does not
a¤ect these prices. The �rm�s pro�t is then:

py =
PL

`=1 p`y`.

The �rm�s pro�t maximization problem is then:

max
y

py s.t. y 2 Y

or
max
y

py s.t. F (y) � 0.

The pro�t function, � (p), associates to every p the amount � (p) = max fpy : y 2 Y g. We also have the
supply correspondence at p, y (p), which is the set of pro�t-maximizing vectors y (p) = fy 2 Y : py = � (p)g.
If the transformation function is di¤erentiable then we can �nd �rst-order conditions to characterize the
solution to the consumer�s problem. To do this we can set up the Lagrangian as we did for consumer theory:

max
y

L (y; �) = py + � (�F (y))

The �rst-order conditions are given by:

@L
@y`

= p` � �
@F (y�)

@y`
= 0 for all ` = 1; :::; L

Alternatively, the �rst-order condition can be rearranged so that:

p` = �
@F (y�)

@y`

The ratio of the �rst-order condition for commodities ` and k is:

p`
pk
=
@F (y�) =@y`
@F (y�) =@yk

=MRT`k

Note that this condition is similar to the one found in consumer theory that equates the marginal rate of
substitution with the price ratio when the consumer is at an optimum (and the nonnegativity constraints
are not binding).
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3.1 The distinct output case

The previous discussion applies to the general theory of production. In most cases the researcher (as well
as the real-world �rm) is concerned with the case of distinct inputs and distinct outputs. We retain the
world of L commodities, and assume that there are M outputs and L �M inputs. We denote outputs as
the vector qM 2 RM+ and inputs as the vector zL�M 2 RL�M+ . Note that in the case with distinct inputs
and outputs that both the outputs AND the inputs are assumed to be nonnegative, so q = (q1; :::; qM ) � 0
and z = (z1; :::; zL�M ) � 0.
The most basic case is that of multiple inputs and a single output (M = 1). This case can be described

by the production function, f (z). The production function describes the maximum output of q that can
be produced using the z inputs. In the simplest economic models, the inputs are given generic identities
like �capital�and �labor�. Slightly more complex models may allow for di¤erent types of capital (old and
new technologies), or di¤erent types of labor (perhaps skilled and unskilled laborers). But in the general
theories of economics speci�c factors of production are typically not speci�ed.
If output is held constant at q, then the marginal rate of technical substitution (MRTS) of z` for zk at z

is:

MRTS`k =
@f (z) =@z`
@f (z) =@zk

:

The MRTS is a measure of how much of zk is needed to keep output at q = f (z) when z` is marginally
decreased.
When Y is a single-output technology, we can write:

max
z�0

pf (z)� wz

where p is a scalar denoting the price of the output good and w is a vector of input prices. Finding the
�rst-order conditions we see that:

p
@f (z)

z`
� w` � 0

and when z` > 0,

p
@f (z)

z`
= w`

w`
p

=
@f (z)

z`

Note that @f(z)z`
is simply the marginal product of the input z`, or MPz` . This result states that the MPz`

is equal to the relative price of the input to the output. Alternatively, if we �nd the ratio of the �rst-order
conditions for two inputs, we get:

w`
wk

=
@f (z�) =@z`
@f (z�) =@zk

.

Note that @f(z�)=@z`
@f(z�)=@zk

is the marginal rate of technical substitution of the inputs, or alternatively the ratio of
marginal products. We can rewrite this as:

MPk
wk

=
MP`
w`

.

If a �rm is optimizing and using the inputs,2 then their ratio of marginal products to price must be equal.
This is similar to the consumer problem where the ratio of marginal utilities to price are equal at the
optimum.
Finally, if Y is convex then the �rst-order conditions are necessary and su¢ cient conditions for deter-

mining a solution.

Proposition 2 Suppose that � (�) is the pro�t function of production set Y and that y (�) is the associated
supply correspondence. Assume that Y is closed and satis�es free disposal.

2 If an input is not used then this is akin to a corner solution in consumer theory and this result need not hold.
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1. � (�) is homogeneous of degree one in p

2. � (�) is convex in p

3. If Y is convex, then Y =
�
y 2 RL : py � � (p) for all p >> 0

	
4. y (�) is homogeneous of degree zero in prices

5. If Y is convex, then y (p) is a convex set for all p. Moreover, if Y is strictly convex, then y (p) is
single-valued (if nonempty).

6. (Hotelling�s Lemma) If y (p) consists of a single point, then � (�) is di¤erentiable at p and r� (p) =
y (p).

7. If y (�) is a function di¤erentiable at p, then Dy (p) = D2� (p) is a symmetric and positive semide�nite
matrix with Dy (p) p = 0.

Points 1, 2, and 4 are results that are fairly similar to those in the consumer�s problem. Result 1 states
that if all prices double, then pro�t will double (technically, if we change all prices by the same percentage,
then pro�ts will change by the same percentage). Result 2 states that convex combinations of prices produce
pro�ts at least as high as the extremes. Result 4 states that if all prices change by the same percentage,
then supply will remain unchanged. Result 5 provides results for the supply function based upon the
convexity of the production set. Result 3 provides an alternative description of the technology, similar to
the indirect utility function, v (p; w), providing a description of preferences. We can then use result 6 to
directly calculate supply (similar to using Roy�s Identity to �nd demand functions from the indirect utility
function) from the pro�t function. Result 7 follows from result 6 and provides the law of supply �holding all
other prices constant, supply of a commodity will change in the same direction as its price. Note that this
is unambiguous, as opposed to the case of consumer theory where the demand for a good may increase if its
price increases (Gi¤en goods). Since there are no budget constraints (generally) in producer theory, there
are no wealth e¤ects to be concerned about and this matrix of second derivatives is akin to the matrix of
second derivatives of the expenditure function, which is the substitution matrix in consumer theory. Thus,
the matrix of second derivatives of the pro�t function, D2� (p), may be regarded as a substitution matrix.

4 Cost minimization (CMP)

The �dual� problem for the producer is the cost-minimization problem. The producer�s goal with this
problem is to choose an output level and then determine the cost-minimizing amount of inputs based upon
the prices of the inputs and the production technology that will produce this level of output. Since this
problem is just the dual of the pro�t-max problem, why study cost minimization?

1. There are a number of useful results that follow from the cost-minimization problem.

2. If a �rm is not a price-taker in the output market then we cannot use the pro�t function for analysis.
But if the �rm remains a price-taker in the input market, we can use results from the cost minimization
problem.

3. When Y has nondecreasing returns to scale, the value function and optimizing vectors of the CMP are
better behaved than � (p) and y (p).

Our focus is on the single-output case. Let z be a nonnegative vector of inputs with input prices given
by w and f (z) be the production function that produces output q. The �rm�s problem is then:

min
z�0

wz s.t. f (z) � q.

The optimized value of the CMP is the cost function, c (w; q). The optimizing set of input choices, z (w; q),
is known as the conditional factor demands correspondence. Note that this optimizing set of input choices
is conditional on the amount of output produced, q. The Lagrangian can then be constructed:

min
z�0

L (z; �) = wz + � (q � f (z))
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and we can use the �rst-order conditions to solve for the cost function and conditional factor demands. The
�rst-order conditions are:

@L
@z`

= w` � �
@f (z�)

@z`
= 0 for all ` = 1; :::; L

Rearranging we �nd

w` = �
@f (z�)

@z`

And taking the ratio of the �rst-order conditions for commodities ` and k we �nd:

w`
wk

=
@f (z�) =@z`
@f (z�) =@zk

=MRTS`k.

It seems like overkill to keep repeating this statement, but these equality conditions (MRTS = w`
wk
, MRS =

�p1
p2
, MRT = p`

pk
) from the consumer and producer problems are extremely important for our analysis.

Again, this only holds for the inputs the �rms use, so if there is some input zi such that zi = 0 in the �rm�s
problem, then these equality conditions do not hold. Figure 4 shows the isoquant (meaning �same quantity�)
for f (z1; z2) = 10 (the curved black line) assuming the �rm�s production function is f (z1;z2) = z

1=3
1 z

1=3
2 .

The input prices are assumed to be w1 = 1000 and w2 = 1. The cost for the line below the isoquant (purple
line) is 1000 while the cost for the purple line above the isoquant is 3000. The cost for the red line is 2000.
The idea in this problem is similar to the consumer�s expenditure minimization problem ��x a level of utility
and �nd the lowest level of expenditure. The �rm is merely �xing a quantity level and �nding the lowest
cost at which it can produce that quantity.

0 1 2 3 4 5
0

500

1000

1500

2000

z1

z2

Isoquant for the Cobb-Douglas production function of 10 = z1=31 z
1=3
2

For the mechanics of the problem, the conditional factor demands can be found by solving the �rst-order
conditions for the input levels in terms of w and q (do not forget the �rst-order condition for �, which I have
not been including because we "know" we need to �nd that condition). To �nd the cost function, simply
take the factor demands, which are functions of w and q, and substitute them into wz, so that c (w; q) would
look something like w1z1 (q; w) + w2z2 (q; w).

Proposition 3 Suppose that c (w; q) is the cost function of a single output technology Y with production
function f (�) and that z (w; q) is the associated conditional factor demand correspondence. Y is closed and
satis�es free disposal.

1. c (�) is homogeneous of degree one in w and nondecreasing in q
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2. c (�) is a concave function of w

3. If the sets fz � 0 : f (z) � qg are convex for every q, then Y = f(�z; q) : wz � c (w; q) for all w >> 0g.

4. z (�) is homogeneous of degree zero in w

5. If the set fz � 0 : f (z) � qg is convex then z (w; q) is a convex set. Moreover, if fz � 0 : f (z) � qg
is strictly convex then z (w; q) is single-valued.

6. (Shepard�s Lemma) If z (w; q) consists of a single point, then c (�) is di¤erentiable with respect to w at
w and rwc (w; q) = z (w; q)

7. If z (�) is di¤erentiable at w, then Dwz (w; q) = D2
wc (w; q) is a symmetric and negative semide�nite

matrix with Dwz (w; q)w = 0.

8. If f (�) is homogeneous of degree one, then c (�) and z (�) are homogeneous of degree one in q.

9. If f (�) is concave, then c (�) is a convex function of q.

The �rst property states that if input prices double then costs will double. Also, costs either remain the
same or increase as quantity of the output increases.
The second property states that the cost function is concave in w.
The third property provides some results on the production set Y under convexity of the production

function.
The fourth property states that if all input prices double, then the cost-minimizing conditional factor

demands remain the same for a given level of output.
The �fth property states that the conditional factor demands are convex if the production function is

convex.
The sixth property states that the conditional factor demands are the derivatives of the cost function with

respect to the input prices. This is similar to Roy�s Identity and Hotelling�s Lemma, where the Walrasian
demand functions and the supply function can be derived from the indirect utility function and the pro�t
function.
The seventh property provides some results on the Hessian matrix of the cost function. In particular,

own input price e¤ects are negative, so that if an input price increases, the conditional factor demand will
decrease. Also, the cross input price derivatives are equal (symmetry) and Euler�s formula holds.
The eighth property provides states results about the cost function and the conditional factor demands

given the homogeneity of the production function. If doubling inputs leads to a doubling of output in
the production function, then doubling of output leads to a doubling of cost as well as a doubling of the
conditional factor demands.
The ninth property provides results on the convexity of the cost function based on the concavity of the

production function.
Now that we have de�ned the cost function, the �rm�s pro�t maximization problem can be restated.

max
q�0

pq � c (w; q)

This is the �traditional speci�cation� of the �rm�s pro�t-maximization problem. Note that pq is simply
revenue and that c (w; q) is the �rm�s cost given input prices and its choice of q. The necessary FOC for a
level of q to be optimizing is:

p� @c (w; q
�)

@q
� 0:

Thus price must be less than or equal to marginal cost, and if q� > 0 then price equals marginal cost.
PLEASE REMEMBER that this is only true when the �rm�s output decision has no impact on the price of
the output (i.e. the �rm is a price-taker in the output market). Alternatively, we can say that the �rm�s
pro�t maximizing output occurs at the point where marginal revenue, p, equals marginal cost, @c(w;q�)

@q .
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Note that right now we are not discussing any notion of equilibrium, thus the �rm may be making positive,
negative, or zero pro�t.3

Now, consider the cost function, c (w; q) = C (q), of the single output case with �xed input prices. Also,
consider the average cost function, AC (q) = C(q)

q and the marginal cost function MC (q) = dC(q)
dq . The

average and marginal cost functions will be di¤erent functional forms depending on the assumptions of our
production technology.
First consider the case of a convex production set where there are strictly decreasing returns to scale.

Note that inactivity is possible. The �rm�s cost function may look like the left-hand side of �gure 4 with
AC (q) and MC (q) on the right-hand side. Note that the supply at a particular price is given by the
marginal cost function.

C(q)

MC(q)

AC(q)

q q

p

Strictly decreasing returns to scale.

Next consider the case of constant returns to scale. In this case, the �rm�s cost function is a linear function
since when we double output we double cost (property 8 of the cost function). Then AC (q) =MC (q) and
both are equal to some constant parallel to the x-axis, as in �gure 4. Note that the supply is zero until the
price reaches that constant because the �rm�s pro�t when price is below that constant would be negative for
an quantity choice of the �rm. Once price has surpassed that constant then the supply is in�nity.

C(q)

q

AC(q) = MC(q)

q

p

Constant returns to scale.

Now consider the case of a nonconvex technology. This is the typical case considered in the principles of
microeconomics classes as depicted in �gure 4. Marginal cost begins below average cost then crosses average
cost at the minimum of average cost and then remains above average cost. Supply is given by 0 until price
equals the minimum of average cost and then by the marginal cost function.

3 I will discuss the zero-pro�t condition a little more in detail in chapter 10. It is my belief that this condition and the
concept of rationality discussed in chapter 1 are two of the most misunderstood concepts of basic economics.
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C(q)

MC(q)

AC(q)

q q

p

A nonconvex technology.

It is also possible that there are nonsunk setup costs (usually called �xed costs) of operation, depicted
in �gure 4. The �rm does not have to pay these costs unless it enters into the production stage, and once
the �rm enters into the production stage it pays this cost once. Note that these costs do not depend on
the amount of output produced. For a strictly convex variable cost production technology, the picture is a
�combination�of the case with strictly decreasing returns to scale and the nonconvex production technology.
Again, supply is zero until price equals the minimum of average cost and then it is equal to the �rm�s marginal
cost.

C(q)

MC(q)

AC(q)

q q

p

A technology with �xed costs.
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