
Chapter 11
Qualitative Choice Models

1 Introduction

We have seen how to transform qualitative information into dummy variables
so that the qualitative information can be used as explanatory variables to help
improve the �t/prediction of our regression model. We are now going to extend
the analysis and allow qualitative information to be the independent variable
in the regression model. We will focus on qualitative information where there
are only two possible classes of observations (male and female, union worker
and non-union worker, did you vote yes or no, etc.) as opposed to qualitative
information where there are more than two possible classes of observations (did
you vote for Bush, Gore, Nader, Buchanan, etc.). When we only have two
possible classes of observations we have binary choice models. Our goal will be
to determine the probability that an individual with a given set of characteristics
will choose one choice rather than the other.

2 Binary Choice Models

Binary choice models are models in which the dependent variable takes on only
the values 0 and 1. Again, our goal is to determine the probability with which a
given individual falls into one category or the other. We will discuss two types
of binary choice models, the linear probability model and the probit model.

2.1 Linear probability model

The linear probability model assumes the relationship between the binary depen-
dent variable and the independent variables is linear. Thus, Yi = �+�Xi+ "i.
This is nothing new to us, the only di¤erence being that now Yi only takes on
the values 0 and 1.
We can also look at this in terms of probabilities. Let the Pr(Yi = 1) = Pi.

Then, Pr(Yi = 0) = (1�Pi) (since Yi is either 0 or 1). So, E[Yi] = 1� (Pi)+0�
(1�Pi) = Pi. Also, from our regression model, E[Yi] = E[Yi = �+�Xi+"i] =
� + �Xi. Putting the two together gives us: Pi = � + �Xi. However, this
is only true IF 0 � � + �Xi � 1, since probabilities must be between 0 and
1. If � + �Xi � 0, then E[Yi] = 0. If � + �Xi � 1, then E[Yi] = 1. When
we estimate the linear probability model we use ordinary least squares (just
run a regular regression in SAS, specifying a binary variable as the dependent
variable in the model statement in SAS), and we can interpet the coe¢ cient
estimates for the linear probability model as the e¤ect of a one-unit change
in the independent variable on the probability of the dependent variable. For
instance, if our coe¢ cient estimate for �2 is �2 = :10, with the linear probability
model we can say that a one-unit increase in X2 will increase the probability
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of the observation being a 1 by 10%. NOTE: This is only true for the linear
probability model, and not the probit model.

2.1.1 Problems with linear probability

One of the main problems with using the linear probability model �for observa-
tions close to the extremes of the observation interval for each of the independent
variables we may have a predicted probability that is greater than 1 or less than
0, which is not possible in practice. So we arbitrarily assign the predicted val-
ues a value of 1 if b� + b�Xi � 1 and 0 if b� + b�Xi � 0. However, we may be
assigning an �incorrect�probability that an event will occur, as in each case we
are assigning a 100% chance that an observation with a given set of individual
characteristics will be either a 1 or a 0.
A second problem that occurs is a statistical problem �the linear probability

model is heteroscedastic. Fortunately we know the form of the heteroscedas-
ticity � �̂2i = Ŷi[1 � Ŷi]. Thus we can use weighted least squares to �nd the
e¢ cient estimates.
The �rst problem is a much bigger problem than the second, and the pro-

bit model was developed to insure that we do not have predicted probabilities
greater than 1 or less than 0.

3 Probit model

The probit model is the only non-linear model we will discuss in this class.
Since it is non-linear we CANNOT use the least squares procedure to estimate
the coe¢ cients, but we will use the method of maximum likelihood. Maximum
likelihood is a fairly intuitive concept, although the estimation of the model
can be messy. Basically, maximum likelihood estimators �look�at your data
and determine what parameters (recall that the parameters are the unknown
coe¢ cient estimates, �1, �2, �3, etc.) could have generated the data that you
have observed.

3.1 Technical details of maximum likelihood

Technically the maximum likelihood estimator is found by maximizing the like-
lihood function (hence the name maximum likelihood). The likelihood function
is just the product of the marginal density functions of the observations. More
or less, a density function just tells us the probability that a given observation
will occur (this is a true statement for discrete density functions, not as true
for continuous density functions but true enough for our purposes). So we just
multiply the marginal densities for each observation together and then maxi-
mize the likelihood function (this involves taking the derivative of the density
function with respect to the unknown parameters, setting them equal to zero,
and solving for the unknown parameters). Generally we cannot �nd analytical
solutions to the likelihood function because it is non-linear so we must use an
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estimation routine to �nd these parameters (an iterative routine like we used
for the Cochrane-Orcutt estimation of � in chapter 6). I know that I cautioned
you that we could not be certain that we found the minimizing error sum of
squares when we used the Cochrane-Orcutt method to estimate �, but you can
rest assured that we WILL move towards the global maximum of the likelihood
function, and �nd the true maximum, at least in the case of the Probit model.

3.2 The model

We have been writing all of our regression models as linear functions of the
parameters, Y = �1+�2X2+�3X3+". The probit model is a non-linear function
of the parameters. If we let Pi be the probability Yi = 1, then Pi = F (�+�Xi),
where F (�) represents some cumulative probability distribution. The probit
model assumes that F (�) is the normal probability distribution (you should see
the notes on probability distributions on the web site). The normal probability
distribution is a mess:

Pi = F (Zi) =
1p
2�

ZiZ
�1

e�
1
2 t

2

dt

This tells us the probability that a given value will be less than Zi. Since
we will have Zi = �+ �Xi, we can substitute �+ �Xi in for Zi in the equation
above. Now, remember that we need to multiply all of these marginal density
functions together, and THEN take the derivative. The resulting function will
not be a pretty thing to take the derivative of, which is why we won�t actually
do the maximization.

3.3 Interpretation

Estimating the model with SAS is quite simple, as it only involves one more
line of code than the ordinary least squares regression model. The output
�le will look very similar to the ordinary least squares regression output �you
will have coe¢ cient estimates and standard errors, and from there you can
construct t-statistics. However, interpretation of the coe¢ cient estimates of a
probit model are a little di¢ cult to understand. The actual coe¢ cient estimate
tells us the marginal e¤ect (one-unit change) of the independent variable on
the underlying Z variable. The Z variable is really a continuous variable that
represents di¤erent degrees along a spectrum. This is probably best explained
with an example. Suppose we are trying to determine whether a person will
vote Republican or Democrat. We have all of our data and we let vote = 1
if this person voted Republican and vote = 0 if this person voted Democrat.
We then have independent variables (income, age, schooling, etc.) that we use
to predict how a person would vote. We get estimated coe¢ cients for these
variables � these coe¢ cients tell us the marginal e¤ect on the underlying Z
variable, NOT on the probability of voting Republican or Democrat. In this
particular example, the underlying Z variable may be viewed as a range of
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political views, where the range moves from liberal to conservative. Thus, the
estimated coe¢ cient tells us how much more liberal or conservative a person will
come if we add an extra unit of income, or another year of age, or another year
of schooling, etc. This is slightly di¤erent than what the estimated coe¢ cient
of the linear probability model tells us � it tells us the change in probability
associated with a one-unit change in the independent variable.
One useful thing to look at is the sign of the variable, as it tells us which

direction we are moving in along the range.

3.4 Statistical testing

Statistical testing of probit estimates is simple. The maximum likelihood es-
timator is approximately distributed as a normal random variable for large
samples, which means that we can use either the normal distribution or the
t-distribution for hypothesis testing. I suggest using the t-distribution since
this is what we have been using all along. Recall that to perform a hypothesis

test we take: �̂��null
s�̂

, which turns into �̂
s�̂
if we are testing the null hypothesis

that � = 0.

3.5 Prediction

There is one more point I want to make with the probit model. We have been
predicting the value of the dependent variable based on the estimated regression
coe¢ cients and the observed independent variables throughout the course. We
cannot do this as easily with the probit model since it is a non-linear model.
You cannot just plug in the X variables, add them up, and then assume that
they equal the Y variable.
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