
Econometrics, Chapter 1 Outline

In this chapter we will discuss curve �tting and introduce the regression
model. Justi�cation for the least squares procedure is provided.

1 Curve �tting

� Types of data

1. time series �describes the movement of a variable over time
2. cross-section �looks at the individual characteristics of a �rm or individ-

ual at a point in time
3. pooled data �combination of time series and pooled data

Suppose we hypothesize that there is a relationship between two variables, X
and Y. Economic theory would tell us what we should expect this relationship
to be, but we will use econometrics to estimate this relationship. In order to
estimate this relationship, we need data. If we were to have every possible
observation on a variable, we would then have the population of that variable.
However, most of the time we will have a sample of the available data. Thus,
we will need to perform statistical tests to see if the estimates we obtain are
signi�cant (we will get to that later in the course). For now, suppose we
have two variables, X and Y. I have created some numbers for X and Y and
placed them in the table below; the scatterplot shows the graphical relationship
between X and Y. I have also created two more variables, V and Z, and created
a table and a scatterplot for them as well.

Y X
13.5 15
12 9
14.5 18
12.5 12
10.5 5
17 26
14.5 18
12 10
16 24

V Z
49.6 8
24.4 6
64.9 -9
24.4 -6
14.5 5
36.1 7
36.1 -7
64.9 9
49.6 -8
14.5 -5

When we attempt to �t �curves� to the data, what we are actually going
to do is attempt to �t a straight line to the data. This is where the term
�linear� comes into play in our analysis. In some cases, attempting to �t a
straight line through the data may not be the best option. Looking at X and
Y above, it seems that a straight line might yield a good approximation of the
relationship between X and Y, but it does not look like a straight line (we are
only going to try to �t one line to ALL of the data points) will yield a very good
approximation of the relationship between V and Z. You should be aware that
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sometimes a linear approach is NOT the best approach to approximating the
relationship between two variables �however, we will focus on linear regression
techniques.

1.1 What line to �t?

We can attempt to �t an in�nite number of lines through the X and Y data.
We could connect the lowest point (5,11) and the highest point (26,17). We
could try to draw a line in by hand that looks like it will �t and then try to
measure the slope and intercept by hand. However, the method that we will
use is the least squares method. We use the least squares method to �nd
the line of best �t. The line of best �t is de�ned as the line which minimizes
the sum of the squared (vertical) deviations of the points of the graph from the
points of the straight line that we choose. So what we do is draw a line through
the data, measure how far the data point is vertically from the line (that is the
deviation), and square that value (that is the squared deviation). We do this
for each data point and then sum the squared values. This gives us our �sum of
squared deviations�. What we would then do is draw a di¤erent line through
the data and �nd the sum of the squared deviations of that line � if the sum
of squared deviations of the second line was lower than the sum of the squared
deviations of the �rst line, then the second line would be a better �t than the
�rst line. Of course, we could draw a third line and repeat the process and see
if it has a lower sum of squared deviations than the second line. Hopefully you
get the idea.

1.2 Why use least squares?

We could use other methods of trying to �nd the line of best �t. Two alter-
native criteria that the book proposes is using the sum of the deviation values
themselves (NOT squaring them) and using the sum of absolute value of the
deviations. When using the sum of the deviations we would want to try to get
the sum as close to zero as possible. One reason that we do NOT want to use
the sum of the deviations without squaring them has to do with the following
example. Suppose we have two data points. The X value of both data points
is 10. The Y value of the �rst data point is 17 and the Y value of the second
data point is 7. Clearly, the line that best approximates this relationship is
a vertical line at X = 5. However, ANY line that passes through the point
(5,12) will have a sum of deviations equal to zero, since one data point will be
5 units above the line and the other will be 5 units below the line. Thus it
may be possible to �nd a line that has a sum of deviations equal to zero that
does not give a good approximation of the data. As has also been suggested,
we could try to minimize the sum of the absolute value of the deviations, as
this would eliminate the problem of having two data points cancel each other
out (since we are summing only positive values). There are two reasons we do
not use absolute value. The �rst is that using the sum of the absolute value
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of the deviations puts less weight on a data point that is very, very far away
from the line than the least squares method does while it puts more weight than
least squares on data points that are fairly close to the line. The second reason
that we use the least squares method rather than the absolute value method
is mathematical. For those of you that have had calculus, whenever you see
�minimize�or �maximize�you should think derivative. If you recall what the
absolute value function looks like, it has a kink in it (it is not smooth), which
makes it nondi¤erentiable, which makes it a mess to work with. The least
squares method also has the added bonus in that it permits statistical testing
of the estimates of the slope and intercept that we will obtain.

2 Derivation of least squares

Note: Before reading this section you should be familiar with the use of sum-
mation operators. See the notes on the appendix to chapter 1 for a review.

2.1 Proposing a model

After we have looked at our data, we need to propose a model. As I have said,
we will work with LINEAR models in this class. Most of our models will look
like:
Y = �+ �X

***CAUTION: You should take note of one thing that the authors of the
book do. They will use x (lowercase) and X (capital) to mean two DIFFERENT
things. Also, y (lowercase) and Y (capital) mean DIFFERENT things. The
lowercase letters mean that the variables are measured in �deviations form�. I
will explain what that means when we get there. The capital letters just refer
to the actual values for X and Y. I bring this up because I was working one
of the problems at the end of one of the chapters and I forgot that they did
this and I spent about 2 hours on the problem before I realized that the reason
I couldn�t get the right answer was because I was using capital X�s when the
book had used lowercase X�s***

Notice that when we write down our model, we put Y on the left-hand
side and X on the right-hand side. We have, in e¤ect, decided that X has an
in�uence on Y. We call X (or, more generally, the right-hand side variable)
the independent variable because we are assuming it is NOT in�uenced by
anything. We call Y the dependent variable because we are assuming that X
helps determine Y.

2.2 Finding the least squares estimates of � and �

Recall that we want to minimize the sum of squared deviations from our line.
How do we write the sum of squared deviations mathematically?
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NP
i=1

(Yi � Ŷi)2

The Yi is just the actual data value for each Y . The Ŷi is our predicted
value for Yi which is based on the line we drew. The letter i is the index for our
summation notation, and

P
tells us to some up all the squared deviations from

1 to N , where N is the number of observations (data points) we have. Our
goal is to minimize this sum of squared deviations. Note that the lowest sum
of squared deviations you can ever have is zero since we are adding together
numbers that must all either be positive (because we are squaring numbers) or
zero.

In order to minimize the sum of squared deviations
�
NP
i=1

(Yi � Ŷi)2
�
we �rst

need to plug in for Ŷi. What can we substitute in for Ŷi? Since Ŷi is our
predicted value of Yi, we know that Ŷi will be given to us by the equation of our
line. So Ŷi = �+�Xi, where Xi is the X value that corresponds to the Y value.
So we plug in �+ �Xi for Ŷi. We now have our sum of squared deviations as:

NP
i=1

(Yi � �� �Xi)2

Recall that to minimize a function we need to take the derivative and set it
equal to zero. But just what are we taking the derivative of? Well, we have
two unknowns, � and �, that we are trying to estimate, so we need to take the
derivative of our function with respect to � and also with respect to �. So
we need two derivatives. Actually, we will take partial derivatives, which are
denoted by @ rather than total derivatives, which would be the normal dy=dx
stu¤ most people are probably used to. Partial derivatives are easy to take
� they just assume that other variables in the equation are constants. For
example, if we take the partial derivative of our sum of squared deviations with
respect to �, we just treat � as if it were a constant. So:

@
@�

NP
i=1

(Yi � �� �Xi)2 = �2
NP
i=1

(Yi � �� �Xi)

@
@�

NP
i=1

(Yi � �� �Xi)2 = �2
NP
i=1

Xi(Yi � �� �Xi)

Now, set both equations equal to zero, and solve for � and �.

�2
NP
i=1

(Yi � �� �Xi) = 0

�2
NP
i=1

Xi(Yi � �� �Xi) = 0

The book does a pretty decent job of explaining how to solve for � and �
on page 17, and I urge you to attempt to solve for � and � on your own (it will
give you practice using the summation rules in the appendix and hint: solve for
� �rst) and then use the book if you get stuck. I, however, will just skip to the
answers:

� =

NP
i=1

Yi

N � �
NP
i=1

Xi

N
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� =
N

NP
i=1

XiYi �
NP
i=1

Xi

NP
i=1

Yi

N
NP
i=1

X2
i �

�
NP
i=1

Xi

�2
Notice that � is written only in terms of Xi and Yi, so we can calculate �

directly from the observed data. As for �, notice that it includes a � in its
solution as well as Xi and Yi. This is �ne since we know that � only consists
of Xi and Yi. We could plug in the formula for � into the formula for � so
that we would just have Xi and Yi in the formula for �, but this would lead to
a very messy formula for �. We can now obtain our least squares estimates for
� and �, and �nd the estimated model.

***After the book gives you the two formulas for � and �, it discusses
�deviations form�. Deviations form just means that the each observation of
the variable has had its mean subtracted from it. So, instead of using X we
would use x, where xi = Xi � �X, where �X is the mean of X. I personally do
not like deviations form as it obscures some things, but that is precisely why
the authors use it, to make the math easier. I will try NOT to use deviations
form in class since my board written x and X will probably look the same.***

You should now be able to compute the least squares estimates for the data
that I have created above.
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