
Chapter 2 outline, Econometrics

This is the chapter that reviews statistics. In this chapter we will cover
(among other things):

� random variables

� probability distributions

� estimation

� properties of estimators

� hypothesis testing

� descriptive statistics

My suggestion is to gain a �rm grasp of hypothesis testing from this chapter,
as it will be the most applicable item on the list. However, you should also
understand why we want our estimators to have the properties that they have.

1 Random variables

random variable �variable that takes on alternative values, each with a proba-
bility less than or equal to one (note that the variable may be greater than 1,
but the PROBABILITY is less than or equal to one)
A probability distribution is the process that generates random variables.

There are many di¤erent types of probability distributions. You may be famil-
iar with some �the normal distribution (this is the bell curve distribution), the
uniform distribution (it basically says every possible choice for the random vari-
able has an equal chance of being chosen) and the binomial distribution (think
about �ipping a coin, with heads being assigned a value of 1 and tails a value
of 0).
Probability distributions may be continuous or discrete. A random variable

from a continuous probability distribution can take on ANY value in the real
number line. A random variable from a discrete probability distribution allows
only certain values to be chosen. For an example of a discrete probability
distribution, think about rolling a die. If you use a 6-sided fair die, then each
number (1,2,3,4,5,6) represents a random variable that can be generated from
this probability distribution. What is the probability of generating any of those
numbers with a fair die? It is 16 . So the random variable we obtain from rolling
the die is generated from a discrete uniform distribution. As for a continuous
random variable, think about a variable like temperature. Temperature can
take on both positive and negative values, and depending on how �ne one makes
the scale, it can take on values like 92.64578 degrees.
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1.1 Expected values

The probability distribution that we will use most frequently in this class as the
basis for the linear regression model is the normal distribution. We can com-
pletely describe a continuous normal distribution with two pieces of information,
its mean and variance. (In order to contrast this with another distribution, we
can completely describe a continuous uniform distribution by its endpoints.)
Typically, we will call the mean of the distribution the expected value, which is
exactly what you would think it is. The expected value is the weighted average
of the possible outcomes of a random process. The weights that we apply are
the probabilities that correspond to each particular outcome. I will show an
example of the expected value for the discrete uniform distribution of rolling
the die.

1
6 � 1 +

1
6 � 2 +

1
6 � 3 +

1
6 � 4 +

1
6 � 5 +

1
6 � 6 =

21
6 = 3:5

The 1
6 s are the expected probability of rolling each number, and the possible

outcomes are 1, 2, 3, 4, 5, and 6. In generic mathematical notation, we can
represent the expected value as:

p1X1+p2X2+p3X3+:::+pNXN =
NP
i=1

piXi �note that the pis represent the

probability of each outcome and the Xis represent the outcomes. There are two
ways that we denote expected values, we use �X (this is the Greek letter mu,
and we call the expected value "mu of X") or E[X]. Notice that the formula
for the expected value of X is very similar to the formula that we have obtaining

the arithmetic mean of X (or X̄), which is 1
N

NP
i=1

Xi. In fact, the arithmetic

mean simply assumes equal weight on each of the observations. That weight is

given by 1
N . We could write

NP
i=1

1
NXi to make it look more like the form for the

expected value. One other fact that you should recall from basic probability is

that
NP
i=1

pi = 1, which just says that the sum of the probabilities of all possible

outcomes is 1. Notice that
NP
i=1

1
N = 1.

We have already de�ned the variance of a variable as 1
N

NP
i=1

(Xi � �X)2. We

will now de�ne the variance using the expected value operator, which is a more
general method of de�ning the variance. We denote variance as V ar(X) or �2X
(this is the Greek letter sigma, and we call the variance of X "sigma squared

of X"). So �2X =
NP
i=1

pi[Xi � E(X)]2. Alternatively, we could write that

�2X = E[X � E[X]]2. Once again, this is very similar to the formula that we
already have for the variance. If we replace pi with 1

N and E(X) with �X, then
we would have the exact same formula that I gave on the �rst day.
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1.1.1 Why use expected values?

Why not just use the formulas for arithmetic mean and variance from the ap-
pendix to chapter 1? The reason why we use the expected value notation is
because it does not assume that all the observations are equally weighted like
the formulas from the appendix to chapter 1. As I already mentioned, the
probability distribution that we will base most of our results on is the normal
distribution. The normal distribution does not have equal probability weights
for all of its outcomes, so we need to use the expected value notation because
it is more general and allows for di¤ering probability weights.
There are a few results that we have for expected values, just like we had

some rules for the summation operator.

Result 1 E[aX + b] = aE[X] + b, where X is a random variable and a and b
are constants.

Note what E[aX + b] means. E[aX + b] =
NP
i=1

pi[aX + b]

NP
i=1

pi[aX + b] =
NP
i=1

piaXi +
NP
i=1

pib

We can use our summation operator rules to get:
NP
i=1

piaXi +
NP
i=1

pib = a
NP
i=1

piXi + b
NP
i=1

pi

We know
NP
i=1

pi = 1 and
NP
i=1

piXi = E[X], so

a
NP
i=1

piXi + b
NP
i=1

pi = aE[X] + b

Result 2 E[(aX)2] = a2E[X2], where X is a random variable and a is a
constant
You should practice your knowledge of expectation operators by proving

result 2.

Result 3 V ar(aX+ b) = a2V ar(X), where X is a random variable and a and
b are constants.
Recall var(X) = E[X�E[X]]2, so V ar(aX+b) = E[(aX+b)�E[(aX+b)]]2
First, work on the expected value operator inside all the brackets. We know

that E[(aX + b)] = aE[X] + b. So now we have:
E[(aX + b)� (aE[X] + b)]2
Now, distribute the negative sign through to get:
E[(aX + b)� (aE[X] + b)]2 = E[aX + b� aE[X]� b]2
E[aX + b� aE[X]� b]2 = E[aX � aE[X]]2
Now factor the a out:
E[aX � aE[X]]2 = E[a(X � E[X])]2
Distribute the square:
E[a(X � E[X])]2 = E[a2(X � E[X])2]
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Now, using our
NP
i=1

pi form,

E[a2(X � E[X])2] =
NP
i=1

pi[a
2(X � E[X])2]

We can factor out the a2 to get:
NP
i=1

pi[a
2(X � E[X])2] = a2

NP
i=1

pi[(X � E[X])2]

Returning to the E[X] notation:

a2
NP
i=1

pi[(X � E[X])2] = a2E[(X � E[X])2], which is just a2V ar(X)

1.2 Joint distributions of random variables and 2.1.3 In-
dependence and correlation

Suppose we have two random variables, X and Y . The joint distribution is
given by the list of probabilities of all possible outcomes on both X and Y .
Below is a table for the joint distribution of rolling a pair of six-sided dice.

Die 1/Die 2 1 2 3 4 5 6
1 1

36
1
36

1
36

1
36

1
36

1
36

2 1
36

1
36

1
36

1
36

1
36

1
36

3 1
36

1
36

1
36

1
36

1
36

1
36

4 1
36

1
36

1
36

1
36

1
36

1
36

5 1
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
36

1
36

1
36

1
36

Note that if we sum all of the probabilities in the table the result is 1. Also
note that if we sum along either a column or a row we get a probability of 16 ,
which is just the probability of rolling any of the possible numbers on one of
the dice. Finally, note that this probability distribution is discrete. If we
were working with continuous probability distributions we would not be able to
write down a table like this because continuous distributions assume that every
number along the real number line is able to be chosen (and I have yet to see
anyone write down every single number).

1.2.1 Covariance and the expectations operator

We can write down the covariance of two random variables using the expecta-
tions operator. Once again, we use the expectations operator instead of the
simple formula for the covariance given in the appendix to chapter 1 because
using the expectations operator is more general than the simple formulas.

Cov(X;Y ) = E[(X�E[X])(Y �E[Y ])] =
NP
i=1

NP
j=1

(pij(Xi�E[X])(Yj�E[Y ])),

where pij is the joint probability of X and Y
If we calculate the covariance for the joint distribution of the dice rolling

example above, we get a covariance of: zero. This is exactly what we should

4



Plot of die rolls

0
1
2
3
4
5
6
7

0 2 4 6 8

expect, for two reasons. First, we know that the outcomes of the individual die
rolls are independent of one another, which means that what occurs on one die
roll does not a¤ect the other die roll. If two random variables are independent,
then they will have a covariance of zero. (You should note that a covariance of
zero does NOT imply that they are independent). Second, suppose we plot the
points in the joint distribution of the die rolls. The plot would look as follows:

It doesn�t look like there is a very good linear relationship between X and
Y , so we should expect the covariance to be near zero (if not exactly zero).
There problem we have with covariance is that the magnitude is NOT scale

free; it depends on the units of measurement. Take a look at the sample data
below. In the �rst table, the height is measured in inches and the weight is
measured in pounds. In the second table, I have converted the height from
inches to centimeters by multiplying the height column in the �rst table by
2.5 and I have converted the weight from pounds to ounces by multiplying the
weight column in the �rst table by 16. So all I have done is rescale the variables:
I have NOT changed the relationship between the variables.

5



height weight
64 150
71 200
67 127
74 301
61 158
73 167
79 241
59 114
62 112
67 148
75 159
76 182

height weight
160 2400
177.5 3200
167.5 2032
185 4816
152.5 2528
182.5 2672
197.5 3856
147.5 1824
155 1792
167.5 2368
187.5 2544
190 2912

If we calculate the covariance of the height and weight in the �rst table, we
get a value of: 227.9.
If we calculate the covariance of the height and weight in the second table,

we get a value of: 9076.7.
However, as I already mentioned, nothing has changed about the relationship

of the variables except that they have been measured in di¤erent scales. Since
we would really not like our results to depend on the scales we use to measure
the variables, we have the correlation coe¢ cient. The correlation coe¢ cient is a
scale free measurement of the relationship of two random variables. The corre-
lation coe¢ cient will lie between 1 and -1 (I have worked out a proof for you, use
this link to get there); positive correlation coe¢ cients imply a direct relation-
ship between X and Y while negative correlation coe¢ cients imply an inverse
relationship between X and Y . A correlation coe¢ cient of 1 implies perfect
positive correlation and a correlation coe¢ cient of -1 implies perfect negative
correlation. We use the Greek letter � to denote the correlation coe¢ cient.
�(X;Y ) = Cov(X;Y )p

�2x�
2
y

, where �2x is the variance of X and �2y is the variance of

Y .
If we calculate the correlation coe¢ cient for the height and weight in the

�rst table, we get: 0.689951
If we calculate the correlation coe¢ cient for the height and weight in the

second table, we get: 0.689951.
Thus, regardless of the scale that we use to measure height and weight we

get the same correlation coe¢ cient, which is what we should expect since the
relationship between the variables did not change, only the scale. (NOTE: If
you calculate this correlation coe¢ cient by hand or by using Excel you may get
slightly di¤erent numbers depending on how you calculate the variance of X
and Y . I used the formula that I gave at the beginning of the course for the
variance, the one with N in the denominator. The spreadsheet packages may
use N � 1, for reasons which we will discuss shortly.)
Here are 4 more results using expectations operators.

Result 4 If X and Y are random variables, E[X + Y ] = E[X] + E[Y ]
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Use this link to go to the proof.

Result 5 V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X;Y )
See the book for this proof, pg. 49.

Result 6 If X and Y are independent random variables, E[XY ] = E[X]E[Y ]
See the html �le I have on the web site for the proof of this proposition.

You can use this link.

Result 7 If X and Y are independent random variables, Cov(X;Y ) = 0
See the proof in the book on pg. 49. It uses result 6 above.

2 Desirable properties of estimators

You should notice that I have put this section before section 2.2, mainly because
section 2.2 uses many of the concepts in 2.3. The only information that you
need from section 2.2 to understand section 2.3 is that we de�ne a population
is all the possible outcomes of a process �meaning we have every single data
point. Since it is very unlikely that we ever have the true population when
applying our regression analysis, we will be concerned with samples. Samples
are just subsets of the population. What we would like to have are methods
of estimating the population parameters (the mean, variance, and covariance,
among other things) from the sample(s) that we draw. We would like those
estimators to have some, if not all, of the following properties.

2.1 Lack of bias

If an estimator is unbiased, it means that, on average, the estimator provides
the �true value�. Suppose the true value of our parameter is �. Suppose our
estimator for � is �̂. An unbiased estimator is one where E[�̂] = �, which
means that on average our estimator yields the true parameter.
We de�ne the amount of bias of an estimator as: bias = E[�̂]��. Note that

while an estimator may be unbiased, nothing is implied about the variance of
the distribution of our estimator. At this point you should note that estimators
ARE random variables �they depend on the sample drawn, and as such have a
sample mean (expected value) and a sample variance.

2.2 E¢ ciency

This is probably the 40th de�nition of e¢ ciency that you have seen as under-
graduates in economics. The e¢ ciency that we discuss is the e¢ ciency of the
estimator. Suppose we have 2 estimators for our �true value�of �. Call those
two estimators �̂ (beta hat) and �� (beta upside down hat). Also suppose that
both estimators are unbiased. If �̂ has a lower variance than ��, then we say
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that �̂ is relatively more e¢ cient than ��, because both estimators are unbiased
and �̂ has the lower variance.
We say that an estimator is the most e¢ cient estimator if it is an unbiased

estimator and it has a lower variance than any other unbiased estimator. I
will not go into the details of how to prove that estimators are e¢ cient, al-
though there are two basic methods. The �rst involves something called the
C-R (Cramer-Rao) bound and the second involves the method of Lehman and
Sche¤é. They require some knowledge of matrix algebra, but if you are inter-
ested you can look up these methods in most graduate econometrics texts.
Why do we care about e¢ ciency? Again, suppose we have �̂ (beta hat) and

�� (beta upside down hat). If �̂ has a smaller variance than ��, then I am less
likely to be far away from the �true value�of � if I use �̂, because �̂ does not
vary as much as ��.
***Important note: We only compare the variances of UNBIASED estima-

tors when we look for the e¢ cient estimator. There may be biased estimators
with a lower variance than our unbiased estimator, but that biased estimator
is NOT more e¢ cient because it has some bias. For a method of comparing
biased and unbiased estimators, see the next small section on minimum mean
square error.***

2.3 Minimum mean square error

Sometimes (although not for what we will do in this class) you may wish to
use estimators that are biased but have a smaller variance than any unbiased
estimators. It could be the case that the e¢ cient estimator has a large variance
and the biased estimator, while it has some bias, has a much smaller variance.
The question then becomes, Which would you rather have? An estimator
that is on average correct (unbiased) but may be very far away from the true
parameter at times, or an estimator that is on average not correct (biased) but
usually very close to the true parameter.
We de�ne mean square error (MSE) as: MSE = E[(�̂ � �)2]
We can �easily�rewrite this as: MSE = [Bias(�̂)]2 + V ar(�̂)
Note that if an estimator is unbiased, MSE = V ar(�̂); however, a biased

estimator may have a lower MSE if its variance and bias are both small, and
the unbiased estimator has a large variance.

2.4 Consistency

Consistency as a large-sample (or asymptotic) property of estimators. If our
estimator is consistent, it means that as the sample size gets very large the
probability that our estimator �̂ is di¤erent from our �true value�� becomes
very small.
Consistency is a property that we would prefer to have over all the other

properties (although a consistent, e¢ cient, minimum mean square error esti-
mator would be better than just one that is consistent). The rationale is as
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follows: suppose you have a biased but consistent estimator of a parameter. On
average, you are not correct, but as you gather more and more data you get
closer to obtaining the true value. If you have an unbiased but inconsistent
estimator, this means that on average you are correct, but gathering more data
does NOT get you closer to the true parameter.

3 Estimation

Now that we have discussed desirable properties of estimators, let�s review the
estimators for mean, variance, and covariance that I gave you in chapter 1.

3.1 Estimators of the mean, variance, and covariance

In this section estimators of the mean, variance, and covariance are discussed.

3.1.1 Mean

Recall that we proposed using �X = 1
N

NP
i=1

Xi as an estimate of the mean of the

variable. The question is, Is this a �good�(in terms of the criteria we de�ned
above) estimator for the mean of a variable? In order to show that �X is a good
estimator of the mean, recall that the population mean of a random variable X
is denoted �x. To show that �X is an unbiased estimator of �x we need to show
that E[ �X] = �x.

E[ �X] = E[ 1N

NP
i=1

Xi]

E[ 1N

NP
i=1

Xi] =
1
NE[

NP
i=1

Xi]

Now, we need the expected value of the sum of X 0
is. Think about what this

means:
E[X1 +X2 + :::+XN ] = E[X1] + E[X2] + :::+ E[XN ]
Note that the expected value of drawing any X at random is just �x. So

we have:

E[X1] + E[X2] + :::+ E[XN ] = �x + �x + :::+ �x = N�x
Plugging back into our equation a few steps ago, we get:
1
NE[

NP
i=1

Xi] =
1
NN�x = �x

Thus, our estimator for the population mean, �x, is unbiased.

3.1.2 Variance

Recall that our estimator for the variance in chapter 1 was V ar(X) = 1
N

NP
i=1

[(Xi�
�X)2]
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Is this a good estimator for the variance of a random variable? It looks
like what we want, although we can show that it is a biased estimator of the
variance. A better (in the sense that it is unbiased) estimator of the variance is

given by: V ar(X) = 1
N�1

NP
i=1

[(Xi� �X)2]. The book does a good job of showing

this proof on pages 50-51.

3.1.3 Covariance

Recall that our estimator for the covariance in chapter 1 was Cov(X;Y ) =

1
N

NP
i=1

[(Xi � �X)(Yi � Y )]

Once again, this estimator is biased. An unbiased estimator of the covari-
ance is given by:

Cov(X;Y ) = 1
N�1

NP
i=1

[(Xi � �X)(Yi � Y )]

3.1.4 Sample correlation coe¢ cient

Now that we have our unbiased estimators of the variance and covariance, we
can recalculate the correlation coe¢ cient. All we need to do is replace the
biased estimators that we had previously with the new unbiased estimators.

3.2 The Central Limit Theorem

An important theorem (that we will exploit) is the central limit theorem. The
central limit theorem states: If the random variable X has mean � and variance
�2, then the sampling distribution of �X becomes approximately normal with
mean � and variance �2=N .
What does this mean for us? It means we can simplify our methods of

statistical testing if we have a large enough sample of data by assuming that
the mean of the data is normally distributed.

4 Probability Distributions

Four types of probability distributions that are useful in statistical testing are
discussed below.

4.1 Normal

The normal distribution is the foundation for our statistical testing. It is
commonly referred to as the �bell-shaped� distribution. We can completely
de�ne a normal by its mean and variance. Suppose we have a random variable
X that is normally distributed with mean �x and variance �

2
x. We would write

this as:
X~N(�x; �

2
x)
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This is read just as I have written above: X is normally distributed with
mean �x and variance �

2
x. Now, there is a function that describes the normal

distribution. It is:
1p
2��2x

exp[ �12�2x
(Xi � �x)2]

This function tells us the what the probability is of drawing a random Xi.
If we integrate over this function from �1 to 1, we get:

1R
�1

1p
2��2x

exp[ �12�2x
(X � �x)2]dx = 1, which just means that the area under

the curve is equal to 1, which should make sense since evaluating this integral is
similar to adding up all the probabilities from a discrete probability distribution.
What we will be primarily concerned with is how close a random draw from

that distribution is to the mean. There are two basic equations you should
know for hypothesis testing.
Pr(�x � 1:96�x < Xi < �x + 1:96�x) � 0:95
Pr(�x � 2:57�x < Xi < �x + 2:57�x) � 0:99
What these equations say is the following:
The �rst equation says that the probability of a random draw being within

2 standard deviations of the mean is about 0.95. The second equation says
that the probability of a random draw being within 2.5 standard deviations of
the mean is about 0.99. Thus, it is �very� likely that a random draw will be
within 2 standard deviations and �extremely� likely that a random draw will
be within 2.5 standard deviations.
Now, where do the pairs (-1.96,1.96) and (-2.57,2.57) come from? They

come from the following:
1:96R
�1:96

1p
2��2x

exp[ �12�2x
(X � �x)2]dx � 0:95

2:57R
�2:57

1p
2��2x

exp[ �12�2x
(X � �x)2]dx � 0:99

One other note that needs to be made about the normal is that most of
the other distributions we will talk about depend on the STANDARD normal
distribution. We de�ne a standard normal distribution as one where a random
variable X is distributed normally with mean 0 and variance 1. So we would
write this as X~N(0; 1). We can transform ANY random variable that is
distributed normally into a standard normal by subtracting o¤ the mean from
the random variable and dividing the result by the standard deviation of the
random variable. For instance, suppose X~N(�x; �

2
x). Then,

X��x
�x

~N(0; 1).
A nice result of the STANDARD normal is that if Z~N(0; 1), then we can

say that there is a 95% chance that a random draw will fall between -1.96 and
1.96. There is also a 99% chance that a random draw will fall between -2.57
and 2.57.
I will discuss more about the normal when we get to hypothesis testing. For

now, we like the normal distribution because:

1. It is symmetric and bell-shaped, which is how we assume our variables are
distributed.
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2. The distribution is fully described by its mean and variance �it does not
assume that we know very much about the distribution.

Here is a link that discusses standardizing normally distributed random vari-
ables.

4.2 Chi-square

Another useful (although not the most useful) probability distribution is the
Chi-square distribution, denoted �2. It is useful for testing hypotheses about
the variances of random variables.

Result 11 The sum of the squares of N independently distributed standard
normal random variables is distributed as a chi-square with N degrees of free-
dom.
The chi-square distribution starts at the origin (which means that it is posi-

tive, which is always positive, which is part of the reason it is useful for testing
hypotheses about variances), has a tail that goes to in�nity, and is skewed to
the right. The shape of the chi-square depends on the number of degrees of
freedom, and as the degrees of freedom increase the chi-square begins to look
more like the normal.
Suppose we have some variable Z that is distributed as a chi-square with N

degrees of freedom. We would write this as: Z~�2N .

4.3 t-distribution

The t-distribution is the distribution that we will use most often when we test
hypotheses. We use the t-distribution to test hypotheses when the population
variance of a random variable is not known.

Result 12 Assume that X~N(0; 1) and Z~�2N . If X and Z are independent,
then Xp

Z
N

has a t-distribution with N degrees of freedom.

The t-distribution is symmetric like the normal, but it has larger tails. As
the degrees of freedom increase, the tails become smaller (�atter) and the t-
distribution approximates the normal distribution as the degrees of freedom
become very large.
Suppose we have some random variableW that is distributed as a t-distribution

with N degrees of freedom. We would write that as: W~tN .

4.4 F-distribution

The F-distribution is useful in testing joint hypotheses. We will use the F-
distribution in later chapters for various testing purposes.
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Result 13 If X and Z are independent and distributed as chi square with N1
and N2 degrees of freedom, respectively, then ( XNi

)=( ZN2
) is distributed according

to the F distribution with N1 and N2 degrees of freedom.
The F-distribution is similar to the chi-square in that it starts at the ori-

gin and that it is skewed to the right. If some random variable Y has the
F-distribution with N1 and N2 degrees of freedom, we would write that as:
Y ~FN1;N2

5 Hypothesis testing

We do hypothesis testing to check the reliability of our estimates. What we do
is use the data to make probabilistic statements about our estimates. How do
we do this? We use the information on the distribution of the random variable
to create con�dence intervals. A con�dence interval is just a range of values
that is likely to contain the true value of a population parameter, given a certain
level of con�dence. If we have Z~N(0; 1), we know that we can say that "there
is a 95% chance that a random draw from this distribution will lie between -1.96
and 1.96". An alternative method of testing hypotheses involves creating a test
statistic and using the tables of the distributions in the back of the book. I will
go through both methods, although they are related.

5.1 Hypothesis testing with known variances

The types of hypothesis testing we do depend on the amount of information
that we know. Although it will be highly unlikely that we know the population
variance of a random variable from our economic data, I will go through the
steps of testing hypotheses when the variance is known to set up the structure
of hypothesis testing.

5.1.1 Using con�dence intervals

Here are the steps to test hypotheses about the population mean when the
variance of the random variable is known, using the con�dence interval approach.

1. Set up your hypothesis (null and alternative)

2. Choose a signi�cance level

3. Construct a con�dence interval

4. Determine whether the hypothesized value of the falls within the bounds
of the con�dence interval

The �rst step is to set up a hypothesis. Typically, we set up the hypothesis
that the true mean is equal to zero. However, we can test whatever hypothesis
we want. Suppose that we wish to test the hypothesis that �x = 4. We will
call this the null hypothesis, and we will denote it as Ho : �x = 4. We also
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need to set up an alternative hypothesis (what happens if the null is not true).
One alternative hypothesis that we can set up is that �x 6= 4. We denote this
as HA : �x 6= 4.
The second step is to determine the level of signi�cance that you want to test

the null hypothesis at. The level of signi�cance is equal to 1�(level of confidence).
Thus, if we want to set up a 95% con�dence level, we test at a level of signi�cance
of 5%. We like to test at low levels of signi�cance (high levels of con�dence)
for reasons I will discuss later.
The third step involves setting up the con�dence interval. What estimate

do we have for the population mean? We have �X, the sample mean. We know
that if X~N(�x; �

2
x), then �X~N(�x;

�2x
N ), at least for large N . This is what the

Central Limit Theorem tells us. Now, we want to construct a 95% con�dence
interval for �x. What do we know? We know that if Z~N(0; 1), then a 95%
con�dence interval is given by �1:96 < Z < 1:96. We know that �X is NOT
distributed as a standard normal, but we do know that we can transform it
into a standard normal by subtracting o¤ the mean and dividing through by
the standard deviation (which is just the square root of the variance). So,

if �X~N(�x;
�2x
N ), then

( �X��X)
p
N

�x
~N(0; 1). So a 95% con�dence interval for

( �X��X)
p
N

�x
would be �1:96 < ( �X��X)

p
N

�x
< 1:96. Now, we want to see what

the range for �x is, so we want to isolate �x inside the inequalities. By doing
a little algebra (use this link to see the algebra), we �nd:

�X � 1:96 �xp
N
< �x < �X + 1:96 �xp

N

Now, we know �x (the variance is known), we know �X (we estimated it from
our sample), and we know N (it is just the number of observations we used to
obtain �X). Suppose �x = 5, �X = 5:2, and N = 10; 000. Our 95% con�dence
interval would be: 5:102 < �x < 5:298.
As for step four, we had Ho : �x = 4. Since 4 does not fall between 5.102

and 5.298, we reject the null hypothesis and conclude that there is a 95% chance
that the true population mean does not equal 4.
We could follow the same steps for a 99% con�dence interval. Recall that if

X~N(0; 1), then there is a 99% chance that a random draw from the distribution
will lie between -2.57 and 2.57. Replacing the 1.96s with the 2.57s, we get our
99% con�dence interval to be: 5:0715 < �x < 5:3285. Notice that is we increase
our con�dence level the range of values increases. However, we can still say
that there is a 99% chance that the true population mean is not 4.
What if we only had N = 100. Our con�dence intervals would be:
95%: 4:22 < �x < 6:18
99%: 3:915 < �x < 6:485
Notice that when we have a lower number of observations that the con�dence

intervals widen. Since we haven�t gathered as much information, we are not as
certain about the statements we make. Notice that we FAIL TO REJECT the
null hypothesis at the 99% con�dence level now, although we can still reject at
the 95% con�dence level.
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5.1.2 Using the tables to test hypotheses

We can also use the tables in the back of the book to test hypotheses, which
is what we are going to do when we begin testing the signi�cance of regression
coe¢ cients. Here are the steps for random variables with known variances.

1. Set up your hypothesis

2. Construct your test statistic.

3. Find the associated level of signi�cance in the table for the normal distri-
bution

4. Accept or reject the null hypothesis

For step 1, we just set up the null and alternative hypotheses. We will again
have Ho : �x = 4 and HA : �x 6= 4.
For step 2, we need to construct our test statistic. The test statistic that

we want to construct is
��� ( �X��X)pN�x

��� (I�ll talk about the absolute value sign
momentarily). We know this test statistic is distributed as N(0; 1) and the
tables in the book are for standard normals. Plugging in the values for �X;�x;
and

p
N , we get (5:2��X)�10

5 (this assumes I use the example above with 100
observations). For �X we use the null hypothesis, and set �X = 4. Thus, our
test statistic is:

(5:2�4)�10
5 = 2: 4

For step 3, we �nd 2.4 in the normal table. The value associated with 2.4
is: 0.0082. This means that there is only 0.82% chance that a value lies in the
upper tail of the normal distribution. However, this value does NOT tell us
the exact level of signi�cance of our result �we saw earlier that we could NOT
reject the null hypothesis at the 99% con�dence level, and this result should not
change. What we have to account for is that we can have a similar value on the
negative side of the distribution, because we have the alternative hypothesis set
up as HA : �x 6= 4. So we need to allow �x to be lower than 4 as well as above
4. Thus, we multiply 0:0082 � 2 = 0:016 4 = 1:64%. This means that 4 will
fall in our con�dence intervals if we set up our level of con�dence at 98.36% �if
our con�dence interval is less than that, 4 will not fall into the range, so we can
reject the null hypothesis if we set our con�dence level less than 98.36%. The
quick and dirty method to using the test statistic is as follows: if you get out
a statistic that is greater (in absolute value) than 1.96, then we can reject the
null hypothesis at the 5% signi�cance level. If the value is greater (in absolute
value) than 2.57, then we can reject the null hypothesis at the 1% level.
We use the absolute value of the test statistic because when we set up our

alternative hypothesis we set it up as a two-tailed test, meaning that we want to
reject the null hypothesis if the critical value is either very far above OR below
the null hypothesis. We could have set up a one-tailed test, where the HA :
�x � 4. We would do this if we felt that there was a good reason to believe
that if the mean was not 4, then it would be greater than 4. We should only
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set up one-tailed tests if we have a very, very good reason to believe that the
true value will be either strictly above or strictly below the null hypothesis. In
the one-tailed case, if you get a test statistic that is greater than 1.65 than you
can reject the null hypothesis at the 5% level, and if it is greater than 2.33 than
you can reject the null hypothesis at the 1% level. Note that if you set up the
alternative hypothesis as HA : �x � 4, then if you get a test statistic that is
less than �1:65 you reject the null at the 5% level and if you get a test statistic
that is less than �2:33 you reject the null at the 1% level. Note that the signs
on the test statistic are IMPORTANT when conducting ONE-TAILED tests.

5.2 Hypothesis testing with unknown variances

Most of the time in economics we will not know the population variances. In
this case, when we construct a test statistic we replace the population variance
with the estimated variance. When we do this, we CANNOT use the nor-
mal distribution to test hypotheses; instead, we use the t-distribution to test
hypotheses.

5.2.1 Why the t-distribution?

Our test statistic is now: ( �X��x)
p
N

�̂x
. We can show that ( �X��x)

p
N

�̂x
~tN�1.

Recall that a statistic has the t-distribution if it is the ratio of a standard
normal and the square root of a �2 divided by its degrees of freedom. So, is
( �X��x)

p
N

�̂x
the ratio of a standard normal and the square root of a �2 divided

by its degrees of freedom? First, recall that:
( �X��x)

p
N

�x
~N(0; 1) (note that this is the population standard deviation in

the denominator)
Now, I will state the following without proof (the proof involves more detail

than we need to go into):
(N�1)�̂2x

�2x
~�2N�1

Now, if we take the ratio of the standard normal to the square root of the
�2 divided by its degrees of freedom, we get:

( �X��x)
p
N

�xr
(N�1)�̂2x

�2x
=(N�1)

This big mess is distributed tN�1. If we simplify the denominator, we get:
( �X��x)

p
N

�x
�̂x
�x

(because the N � 1�s cancel out and the square root cancels out
the squares).
But this is just:
( �X��x)

p
N

�x
� �̂x

�x
= ( �X��x)

p
N

�x
� �x�̂x =

( �X��x)
p
N

�̂x

Now that we have shown that (
�X��x)

p
N

�̂x
~tN�1, we can use the t-distribution

to �nd critical values.
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5.2.2 Hypothesis testing using the t-distribution

We could set up con�dence intervals using the t-distribution, but it is much
easier to just calculate the test statistic and use the table in the back of the
book to test our hypothesis. When conducting a hypothesis test using the
t-distribution, use the following steps.

1. Set up your hypothesis.

2. Construct your test statistic

3. Decide which level of signi�cance you will use.

4. Check the table in the back of the book to see if the absolute value of the
test statistic is greater than the critical value at your desired signi�cance
level and the degrees of freedom that you have.

5. If the absolute value of the test statistic is greater than the critical value,
reject the null hypothesis. If the test statistic is less than the critical value,
you fail to reject the null hypothesis at the chosen signi�cance level.

As an example suppose that we have the 64 observations, a sample mean of
520 and a sample standard deviation of 100. We want to test the null hypothesis
that the population mean of the random variable is equal to 500.

1. H0 : � = 500, HA : � 6= 500

2. ( �X��x)
p
N

�̂x
= (520�500)

p
64

100 = 1: 6

3. Suppose we want to use the 5% level.

4. We look at the t-distribution table in the book, and it says that the critical
value for the t-distribution at the 5% level with 63 degrees of freedom is
approximately 2. Note that there is no row for 63 degrees of freedom, so
I used the critical value for 60 degrees of freedom since 63 is closer to 60
than it is 120.

5. Since our test statistic is less than the critical value, we fail to reject the
null hypothesis.

5.3 A few more notes on hypothesis testing

5.3.1 Type I and Type II errors

There are 4 possibilities that can occur when we perform statistical tests of
hypotheses. We can fail to reject a true hypothesis, fail to reject a false hy-
pothesis, reject a true hypothesis, and reject a false hypothesis. Two of these
cases, failing to reject a true hypothesis and rejecting a false hypothesis, are
correct conclusions. However, we can make errors if we fail to reject a false
hypothesis or if we reject a true hypothesis. A Type I error occurs when we
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reject a true hypothesis and a Type II error occurs when we fail to reject a false
hypothesis. When we perform our statistical testing, the level of signi�cance
that we choose is our probability of making a Type I error. We can attempt to
minimize Type I errors if we choose low levels of signi�cance. However, as we
lower the level of signi�cance we increase the chances of making a Type II error
because we are widening our con�dence interval, thereby including more values
in the range of our con�dence interval.

5.3.2 P-values

A p-value is a probability value; it is an exact level of signi�cance for the test
statistic. If a p-value is 0.05, then this means that the estimate is signi�cant
at the 5% level. It is also signi�cant at the 6% level, the 7% level, ..., the 12%
level, ..., etc. It is NOT signi�cant at levels below 5%. P-values measure the
probability of Type I errors. When we run regressions using SAS, you may
see a p-value that looks something like <.0001, which means that the result is
�highly signi�cant�.

5.3.3 The power of a test

If we have a high p-value (like 0.80) this means that you should fail to reject
the null hypothesis. What could be the cause of failing to reject the null
hypothesis? It could be that the null hypothesis is true. It could also be that
the null hypothesis is false and the data set that you are using just happens
to be consistent with the null. How do we determine the likelihood that our
data set is consistent with the null, causing us to fail to reject it? We use the
power of a test. The power of a test is one minus the probability of making a
Type II error. The power of a test depends on both the size of the e¤ect being
studied and the size of the data set. Ceteris paribus, if the size of the data
set increases, then the power of the test increases. If you fail to reject a null
hypothesis when you perform statistical analysis with relatively low power, you
should not be concerned.
The following table summarized the relationship between Type I errors, Type

II errors, p-values, and the power of a test.

Decision H0 True H0 False
Fail to reject H0 Correct decision Type II error (1 �power)
Reject H0 Type I error (p-value) Correct decision

6 Descriptive statistics

In this section I will just list a few more descriptive statistics.
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6.1 Median

The median is a measure of central tendency (just like the mean) that is more
robust to outliers than the mean. For data sets with odd numbers, the median is
the middle observation when the observations are ranked from high to low. For
even numbers, the median is typically calculated as the average of the middle
two observations when the observations are ranked from high to low. As an
example of how the median is more robust to outliers than the mean, consider
the following. Suppose 31 households were asked what their annual income
was. 30 of those households said $40,000, while 1 household said $4 million.
The mean annual income is: ((30�40000)+(1�4000000))=31 = $167; 741:94
The median annual income is: $30,000.
Which of those numbers more accurately re�ects the sample?

6.2 Skewness

Skewness provides information on the symmetry of a distribution. The formula
for calculating skewness is:

S = 1
N

NP
i=1

(Xi� �X)
3

�̂3

Skewness will be positive when the tail on the right side is thicker than the
one on the left side, and negative when the tail on the left side is thicker than
the one on the right side.

6.3 Kurtosis

Kurtosis provides information on the thickness of the tails of a distribution.
For a normal distribution, kurtosis is equal to 3. When the tails are thicker
than the normal, the statistic will be greater than 3; when they are thinner the
statistic will be less than 3. The formula for kurtosis is:

S = 1
N

NP
i=1

(Xi� �X)
4

�̂4

6.4 Jarque-Bera statistic

To �test� if a data series is normally distributed, we could check to see if the
mean and median are equal, if the skewness is close to zero, and if the kurtosis
is close to 3. However, a more formal test of normality is given by the Jarque-
Bera test. The Jarque-Bera statistic is distributed as a chi-square with two
degrees of freedom. To calculate the statistic, use:

JB =
�
N
6

� hS2+(K�3)2
4

i
~�22 (note that S is the skewness, NOT the standard

deviation)
If the Jarque-Bera statistic is greater than the critical value of the chi-square,

reject the assumption of normality.
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