
Chapter 3 outline, Econometrics

Recall that in chapter 1 we began working with the least squares procedure.
We hypothesized a linear relationship between our X and Y variables, and
then we derived the estimators for a and b, our intercept and slope coe¢ cients.
We then did a detour into the world of statistics in chapter 2, which should
prove useful for the rest of the course. We want to return to the least squares
procedure now.

1 The two-variable regression model

Once again we hypothesize a linear relationship between X and Y . Formally,
we would write our regression model as:
Yi = �+�Xi+"i, where Yi is our observation on Y , Xi is our corresponding

observation on X, � is our intercept coe¢ cient, � is our slope coe¢ cient, and
"i is our random error term that has some probability distribution

1.1 The error term

We need the error term in the regression for a few reasons.

1. We will never include all of the relevant variables in our regression model;
as such, our model is misspeci�ed and contains some errors

2. There is error in measurement of the variables

1.2 Assumptions of the classical linear normal regression
model (CLNRM)

1. The relationship between X and Y is linear

2. The Xs are nonstochastic variables (meaning they have a �xed value)

3. E["] = 0

4. V ar["] = �2; the error term has constant variance

5. E["i"j ] = 0 for all i 6= j; this means the error terms are independent

6. The error term is normally distributed

Note that we can change most of these assumptions � it just means that
we have to alter our regression procedure slightly. We will alter assumption 3
below. If our error term is NOT normally distributed it complicates statistical
testing of the model �however, if we have the �rst 5 assumptions we still have
the classical linear regression model (notice that the word normal is dropped).
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1.2.1 Altering assumption 3

Suppose E["] = �
The question is, can we �nd a �di¤erent�regression equation that satis�es

E ["] = 0? Yes.
Our initial regression equation is:
Yi = �+ �Xi + "i, where "i~N(�; �2)
Assume all assumptions other than number 3 hold. How can we rewrite

this equation so that it satis�es assumption 3?

Suppose that we de�ne a new error variable, 
, as 
i = "i � �. It is easy to
verify (and you should do this) that �i~N(0; �2).
Now, subtract � from both sides of the regression equation. We have:
Yi � � = �+ �Xi + "i � �
But "i � � = 
i, so:
Yi � � = � + �Xi + 
i, which gives us an error term that has mean zero.

However, we still have the extra � hanging around. What do we do with it?
Yi = (�+ �) + �Xi + 
i
Now, let (�+ �) = �
Yi = � + �Xi + 
i �notice that this model is in the same form as Yi =

� + �Xi + "i, only now we have the expected value of our error term as zero.
What this means is that if our error term has E ["] 6= 0, all that happens is the
mean of the error term gets �consumed� (I can�t think of a better word right
now) by the intercept. The slope estimate will still be unbiased, but now the
intercept term will be biased.

1.2.2 The other assumptions

We will discuss how to handle problems with the other assumptions throughout
the course. There are a few details to be aware of however. If assumption 4 is
violated, it means that our model is heteroscedastic (heteroscedastic just means
the error variance is not constant). If we were to plot our error terms, we would
expect to see a funnel shaped plot. If assumption 5 is violated, it means that
we have serial correlation (this just means that when one error term occurs it
in�uences the outcome of the next error term) in our model. If we were to
plot our regression line and the error terms, positive serial correlation would be
shown as error terms below the regression line (usually) being followed by error
terms below the line and the opposite for error terms above the regression line.
If we had negative serial correlation, this would be shown as error terms below
the regression line (usually) being followed by error terms above the regression
line. We have also assumed that E[Xi"i] = XiE["i] = 0 because we assumed
the Xis are nonstochastic (nonrandom).
You should also note that by assuming "~N , we have assumed that Y ~N .

If we take the expected value of Y , we get:
E [Y ] = E [�+ �X + "] = �+ �X + E ["] = �+ �X
Also, the variance of Y is constant:
V ar [Y ] = V ar [�+ �X + "] = V ar ["] = �2
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Think about why the variance of Y is equal to �2. (What expectations
operator rule are we using?)

2 Best Linear Unbiased Estimation (BLUE)

When we run our regression models, we will estimate � and �. The estimates
we obtain for � and � are RANDOM VARIABLES. They have a probability
distribution, and the value we obtain from the regression procedure depends on
the sample of Xs and Y s that we draw. We will write the estimators of � and
� as �̂ and �̂.
Recall that we estimate �̂ and �̂ by using the least-squares procedure in

chapter 1. The next question is, how good are our least-squares estimators of �̂
and �̂? Well, we have a theorem called the Gauss-Markov theorem that states:

Theorem 1 Gauss-Markov Theorem: Given assumptions 1�5, the estimators
�̂ and �̂ are the most e¢ cient linear unbiased estimators of � and �.

Recall that if an estimator is the most e¢ cient estimator then that means
the estimator has the lowest variance of all unbiased estimators. As a result,
this is a powerful theorem.
So what do we do if assumptions 1�5 do not hold? We will attempt to

modify our regression equation so that they do hold. This is basically the main
point of the rest of the course (along with actually running some regressions and
interpreting results). We have a very powerful theorem. Sometimes we don�t
have all the assumptions the theorem requires. How do we change our model
so that we have these assumptions? That�s basically it. We have already seen
that one of the assumptions, number 3, is not that important, and we have
already derived a modi�ed version of the model that satis�es assumption 3.
In chapter 1 we saw what our estimators of the intercept and slope coe¢ -

cients are.
�̂ = �Y � �̂ �X

�̂ =

NP
i=1
[(Xi� �X)(Yi� �Y )]
NP
i=1

h
(Xi� �X)

2
i

We can show that both �̂ and �̂ are unbiased estimators. That is, E [�̂] = �

and E
h
�̂
i
= �. We can also show that V ar

�
�̂
�
=

�2"
NP
i=1

h
(Xi� �X)

2
i and V ar (�̂) =

�2"

NP
i=1
(X2

i )

N
NP
i=1

h
(Xi� �X)

2
i . So,

�̂~N

0@�; �2"
NP
i=1
(X2

i )

N
NP
i=1

h
(Xi� �X)

2
i
1A and �̂~N

0@�; �2"
NP
i=1

h
(Xi� �X)

2
i
1A

We still have one more thing to estimate. Our variances for �̂ and �̂ both
contain �2", which is the error variance. When we wrote down our regression
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equation we assumed the error variance was constant, but we did not make an
assumption about the numerical value of the error variance. So we need to
estimate the error variance. We can estimate the error variance as follows:

�̂2 =

NP
i=1
("̂2i )

N�2 =

NP
i=1
(Yi��̂��̂Xi)

2

N�2
Note that "̂i is called the residual of the regression. It is equal to Yi � Ŷi,

where Ŷi is the predicted value of Yi. Also note that we divide by N � 2. We
do this because this gives us an unbiased estimator. An intuitive way to think
about this is that we N observations or N degrees of freedom. However, we
need to estimate two pieces of information (�̂ and �̂) so we lose 2 degrees of
freedom. We can now obtain estimates of the variance of �̂ and �̂ by inserting
the estimated error variance, �̂2", in for the true error variance, �

2
".

3 Hypothesis testing and con�dence intervals

Our goal now is to use our knowledge of hypothesis testing and con�dence
intervals to determine how �good�our estimates of � and � are. The steps for
testing hypotheses about � and � are identical to the steps for testing hypotheses
with unknown variances in chapter 2. Start by setting up your hypothesis.
Construct your test statistic. Choose a signi�cance level. Check the table in
the back of the book. Fail to reject or reject the null hypothesis.
When setting up our hypotheses about regression coe¢ cients we will typi-

cally set up the null hypothesis as, H0 : � = 0 and the alternative hypothesis as
HA : � 6= 0. There is a reason for this particular choice of the null hypothesis.
Our regression equation is: Y = � + �X + ". If we cannot reject the null
hypothesis of � = 0, then we may as well say that Y does not depend on X
because by NOT rejecting the null hypothesis we are saying that the estimate
for � is NOT statistically di¤erent than zero.

Next, we construct our test statistic. Our test statistic will be:
��� �̂���̂�̂

��� (we
will perform two-tailed tests), where �̂ is the estimated value of �, � is the null
hypothesis value (usually zero), and �̂�̂ is the standard error of �̂ (this is just the

square root of the estimated variance of �̂). This test statistic will be distributed
tN�2. Why will it be tN�2? Intuitively, we can say that we are estimating two
parameters, � and �, and thus we lose 2 degrees of freedom. However, we know
that a statistic has the t distribution if it is equal to a standard normal divided
by the square root of a chi-square divided by its degrees of freedom. We can
show that:

�̂��
�"vuut NP

i=1
(Xi� �X)2

~N (0; 1), and (N�2)�̂2"
�2"

~�2N�2

Then,
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�̂��
�"vuut NP

i=1
(Xi� �X)2s
(N�2)�̂2"

�2"
N�2

~tN�2

It�s actually fairly simple algebra. I�ll rewrite this as:

�̂��
�"vuut NP

i=1
(Xi� �X)2

�

r
(N�2)�̂2"

�2"

N�2 =
(�̂��)

s
NP
i=1
(Xi� �X)

2

�"
� �̂"

�"

Now,

(�̂��)

s
NP
i=1
(Xi� �X)

2

�"
� �̂"

�"
=
(�̂��)

s
NP
i=1
(Xi� �X)

2

�"
� �"�̂" =

(�̂��)

s
NP
i=1
(Xi� �X)

2

�̂"

This looks very similar to our t-statistic, except for two things. The �rst

is easy to spot: our t-statistic does not have

s
NP
i=1

�
Xi � �X

�2
in the numerator.

The second is a little more subtle. Notice that the estimated standard deviation
(or the standard error) in the denominator of the formula that I just derived
is �̂", the estimate of the standard deviation of the error term. However, in
the t-statistic the estimated standard deviation (or the standard error) in the
denominator is �̂�̂ , which is the standard error of �̂. However, note that:s

NP
i=1
(Xi� �X)

2

�̂"
= 1

�̂�̂
, since �̂2

�̂
=

�̂2"
NP
i=1
(Xi� �X)

2
, so we can now substitute in 1

�̂�̂

to get our t-statistic.
We can perform tests of hypotheses on � in the same manner, only we use:��� �̂���̂�̂

��� ~tN�2
Now, our third step in testing hypotheses is to choose a level of signi�cance,

usually 5% or 1%.
Our fourth step is to �nd the critical value in the table that corresponds to

our chosen level of sign�cance and the number of degrees of freedom of our test
statistic (N � 2 in the examples above).
The �fth step is to fail to reject the null hypothesis if our test statistic is less

than the critical value from the table or reject the null hypothesis if our test
statistic is greater than the critical value from the table. Typically we would
like to be able to reject the null hypothesis that we formulate because we want
our slope coe¢ cient to be statistically di¤erent than zero.
As an example, suppose we estimate �̂ as �1:9. Also suppose the standard

error (this is just the term used for the estimated standard deviation) of �̂ is
0:82. Finally, we need to know the number of observations. Let N = 209. We
want to test:
H0 : � = 0
Ha : � 6= 0
The test statistic is:

��� �̂��s�̂ ��� ~tN�2
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Substituting in our values for �̂, �, and s�̂ , we get:
���1:9�0

:82

�� = ���1:9:82

�� = 2:
317 1
Suppose we want to test at the 1% level.
Now, look at the t-table for the critical value. Look down the .01 column

and look across the row for 1 degrees of freedom. The critical value that you
should see is 2.576. This should look very familiar, as the critical value for
the 1% level of the normal distribution is 2.57. Recall that when the degrees
of freedom for the t-distribution get large the t-distribution approximates the
normal.
Since our test statistic is less than the critical value, we fail to reject the null

hypothesis at the 1% level. However, if we wanted to test at the 5% level, the
critical value for the 5% level is 1.96. Since our test statistic is greater than
the critical value at the 5% level, we reject the null hypothesis at the 5% level.
If we wanted to we could also look at the 2% level of signi�cance (since it is
given in the table). The critical value (2.326) is slightly greater than the test
statistic, so we fail to reject at the 2% level.

4 Interpretation of the �̂ and �̂1

The book doesn�t really go into detail about how to interpret �̂ and �̂, so I�ve
decided to add these notes. I did not discuss hypothesis testing for �̂, but
the process is the same as it is for �̂. There is one thing you should look
at before you attempt to interpret your results, and that is the signi�cance
of the coe¢ cient (�̂ or �̂). If the coe¢ cient is NOT signi�cant, don�t waste
your time trying to explain what it means. If it is not signi�cant, it is not
signi�cant. However, you may want to explain WHY you think the coe¢ cient is
not signi�cant. There could be any number of reasons why the coe¢ cient is not
signi�cant. Two possibilities are the variable that the coe¢ cient corresponds
to is not as important as you thought, or you just happen to have a �bad�data
set where the expected relationship between X and Y doesn�t hold.
As for interpretation of the results, think about what �̂ and �̂ are: �̂ is

the slope and �̂ is the intercept. So what does �̂ mean? It means that if X
increases by one unit, then Y will increase (or decrease if �̂ is negative) by �̂
units. If �̂ = �1:9, as it does in the example above, then this means that a one
unit increase in X will cause a 1.9 unit decrease in Y .
For �̂, think about what the intercept tells you in an equation of a line. It

tells you what Y will equal if X = 0. There are two notes about the statistical
signi�cance of the intercept that you should be aware of. Even if the intercept
is NOT statistically signi�cant, we need to have the intercept in the regression
equation, otherwise we will be forcing our regression line through the origin,
which may not be very accurate. It is more important to have the freedom that
the intercept provides than it is too worry about its signi�cance. The second
note about the intercept is that even if it IS statistically signi�cant, it may not

1These are notes I�ve added that the book doesn�t have.
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mean much to us if we do not have a lot of Xs that are close to zero. We will
see this in the example with the housing data set in class.

5 Analysis of variance and goodness of �t

We can measure how well the regression line �ts by looking at the residuals that
are generated. Recall that the residuals tell how much the actual Y di¤ers from
the predicted Y . If the residuals are small, then the regression line is a good
�t. If the residuals are large, then the regression line is not as good of a �t.
Here�s the problem with just looking at the residuals:
Suppose you have residuals that are in the hundreds of dollars. Is this

residual small or large? If your dependent variable is measured in millions
of dollars they might be small, but if the dependent variable is measured in
thousands of dollars then they might be large. So just looking at the residuals
will not tell you much because their �largeness�or �smallness�will depend on
the units that the dependent variable is measured in.
In order to �nd a scale-free measure of goodness of �t, we divide the variation

in Y into two parts, the explained variation and the unexplained variation. The

variation in Y is given by:
NP
i=1

(Yi � �Y )2. This is known as the total sum of

squares, or TSS. What we will do now is add zero to the term in brackets. This

gives us:
NP
i=1

(Yi � Ŷi + Ŷi � �Y )2. Now, we FOIL (recall foiling from algebra).

NP
i=1

(Yi� Ŷi+ Ŷi� �Y )2 =
NP
i=1

(Yi� Ŷi)2+
NP
i=1

(Ŷi� �Y )2�
NP
i=1

2(Yi� Ŷi)(Ŷi� �Y )

We can show that the last term on the RHS is equal to 0. That is:
NP
i=1

2(Yi � Ŷi)(Ŷi � �Y ) = 0, which means:

NP
i=1

(Yi � �Y )2 =
NP
i=1

(Yi � Ŷi)2 +
NP
i=1

(Ŷi � �Y )2

We already know that
NP
i=1

(Yi � �Y )2 is the total variation (or total sum of

squares) in Y . The �rst term on the RHS,
NP
i=1

(Yi�Ŷi)2, is known as the residual

variation in Y . It is also called the �error sum of squares�or ESS. Notice what
NP
i=1

(Yi � Ŷi)2 is; it is just the sum of the squared residuals, since Yi � Ŷi = "̂i.

This is the portion of the variation in Y that is UNEXPLAINED by the model.

The second term on the RHS,
NP
i=1

(Ŷi� �Y )2, is known as the explained variation

in Y . It is also called the �regression sum of squares�or RSS. Take a closer
look at the term. It shows how much Ŷi deviates from the mean of Y . This
is the portion of the variation in Y that is EXPLAINED by the model. Note
that if ALL of the variation in Y was explained by the model, then we would
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have
NP
i=1

(Yi � �Y )2 =
NP
i=1

(Ŷi � �Y )2, or perfect prediction.

****IMPORTANT NOTE**** You may see the acronyms ESS and RSS in
other sources used in a di¤erent way. As I have de�ned it, ESS is the error sum
of squares. But notice that the error sum of squares is also called the Residual
variation. Also, as I have de�ned RSS it is the regression sum of squares. But
notice that the regression sum of squares is also called the Explained variation.
Notice that I�ve capitalized and bold-faced the R and E. Other sources de�ne
RSS as the residual sum of squares and ESS as the explained sum of squares.
Notice that this is the exact opposite of how I have de�ned them. The point
is, if you look at another source and they are talking about the RSS, make
sure that they have de�ned RSS as the regression sum of squares and NOT the
residual sum of squares.
Now, we have an equation that breaks the variation in Y into explained and

unexplained portion. What we need to do to get rid of the units of measurement
(remember that is our goal) is to normalize the variation. We do this by dividing
through by the TSS. So we have our equation as:

NP
i=1

(Yi� �Y )2 =
NP
i=1

(Yi� Ŷi)2+
NP
i=1

(Ŷi� �Y )2, or if we write it in acronym form,
TSS = ESS +RSS
Now, divide through by TSS to get:
1 = ESS

TSS +
RSS
TSS

De�ne R2 as RSS
TSS (alternatively we could say that R

2 = 1� ESS
TSS )

R2 tells us how much of the variation in Y is explained by the regression
model that we have estimated. It is unit-free and it will lie between 0 and 1.
An R2 = 1 tells us that ALL of the variation in Y is explained. An R2 = 0
tells us that NONE of the variation in Y is explained. Generally, if R2 is large
(close to 1) we say that the model does well in explaining the variation in the
dependent variable. If R2 is small (close to 0) we say that the model does not
do well in explaining the variation in the dependent variable. These are just
general rules of thumb however. If the model uses time-series data, it is likely
that the model will have a high R2. Why? Because with time-series data most
of the variables trend upward over time, so one variable typically �explains�
a lot of the variation in the other just because they both increase over time.
So R2 may not be the best measure to use to check how well the model does
when using time-series data. One other problem with R2 is that the regression
equation itself may not be signi�cant. See the next section.

5.1 Testing the regression equation

We can perform a statistical test to see if the estimated relationship between X
and Y is statistically signi�cant. This test is not particularly useful when we
have only one independent variable because we can use the t-test to determine
the signi�cance of the coe¢ cient that corresponds to our independent variable.
However, when we add more independent variables we may have some variables
that are not signi�cant, some that are marginally signi�cant, and some that are
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highly signi�cant. In this case, we would need to look at the test statistic for
the regression equation. This statistic will have the F -distribution, and I will
introduce it in chapter 4. The important point to note is that if your R2 is high
but your regression equation is not signi�cant, then you shouldn�t put much
faith in the value that you obtained for R2. However, if you have a low R2 but
it is statistically signi�cant, then this suggests that the independent variable(s)
that you have included in your regression equation help explain the variation in
the dependent variable, but that other independent variables may help more.

5.2 Correlation and Causation

A �nal note concerns the notions of correlation and causation. We know from
principles of economics that association (correlation) does not imply causation.
Two variables may be correlated but one neither one may explain much of the
variation in the other if there is a third variable that actually causes both of
the other variables. R2 seems to be a measure of correlation, but it really is a
measure of causation. When we write down our regression equation, we have
implicitly assumed that the independent variables cause the dependent variables.
You should note that if we were to let Y be the INDEPENDENT variable and X
be the DEPENDENT variable (usually it is the other way around), you would
get di¤erent estimates for the slope and intercept.
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