
Chapter 4 outline, Econometrics

In this section we will discuss the multiple regression model. We use the
term multiple regression model to refer to a regression model where there is
more than one independent variable.

1 The model

We can write the model as:
Yi = �+ �1X1i + �2X2i + �3X3i + :::+ �kXki + "i, where
the �s represent the respective coe¢ cients on each of the independent vari-

ables (which are the Xs), � is still the intercept, and " is still the error term,
with "~N(0; �2")
The book will write the model as:
Yi = �1 + �2X2i + �3X3i + :::+ �kXki + "i, where
�1 is the intercept and we have k � 1 independent variables.
We have the same basic assumptions for this model as we had in chapter 3

for the two-variable model, except for one small change. The change is that no
two independent variables can have an exact linear relationship.

1.1 Exact linear relationship

What is an exact linear relationship? Suppose that X1 = a + bX2 for all
N observations of X1 and X2. This would be an exact linear relationship
between X1 and X2, and we cannot have that if we wish to estimate our model.
For example, suppose that X2 was the variable AGE and I wished to create a
variable called �2AGE10�, where 2AGE10 = 2�AGE+10 for every observation.
In that case, I could NOT run a regression model with both AGE and 2AGE10
as independent variables (actually, SAS might run this model but it may give
you an error message and �throw out�one of your variables �we�ll do an example
in class).
It is also possible that you can have an exact linear relationship between

multiple variables. We will see an example of this in chapter 5.
One example of a transformation that is NOT an exact linear relationship

is:
X2 = (X1)

2

In chapter 5 we will discuss why we want to include squared terms in detail
(usually because there are some nonlinearities in the relationship between X
and Y ). Students often wonder why we can include (X1)

2 in a model with X1
while we cannot include some term bX1 in a model with X1. Look at the tables
below:
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X1 X1 (X1)
2

6 6 36
2 2 4
4 4 16
-5 -5 25
10 10 100

b X1 bX1
2 6 12
2 2 4
2 4 8
2 -5 -10
2 10 20

Table 1 Table 2
We can use a model with (X1)

2 and X1 because we cannot �nd an equation
in the form of (X1)

2
= a + bX1, where a and b are constants, for EVERY

single observation of (X1)
2 and X1. We can �nd one for the �rst observation,

36 = a + b6, if we let a = �12 and b = 6. However, this equation won�t work
for the 2nd observation. We would have 4 = 2 � 6, which is not true. So now
we need an equation that will give us 36 = a+ b6 and 4 = a+ b2. We can also
�nd a linear transformation for the �rst 2 data points if we let a = 0 and b = 8.
However, try to �nd one for the 1st, 2nd, and 4th data points. You can�t, so
we don�t have an exact linear relationship. If we look at Table 2, we can see
that bX1 = a + bX1, where a = 0 and b = 2 for EVERY single observation.
Thus, there is an exact linear relationship between X1 and bX1, which means
we cannot use both of them in our regression model.

1.2 Formulas for estimating the �s

In chapter 1 we were able to obtain formulas to estimate � and �. Suppose we
have the following model:
Yi = �1 + �2X2i + �3X3i + "i
We can obtain our estimates for �1; �2 and �3 by minimizing the sum of

squared deviations, just like we did in chapter 1. What we would want to do
is:

Minimize
NP
i=1

(Yi � predicted value of Y )2, where our predicted value of is

given by the regression equation.
So we have:

Minimize
NP
i=1

(Yi � (�1 + �2X2i + �3X3i))2

We know that to minimize means to take the derivative (partial derivative
in this case) and set the derivative equal to zero. For this model we need 3
partial derivatives.

@
NP
i=1

(Yi�(�1+�2X2i+�3X3i))
2

@�1
= 0

@
NP
i=1

(Yi�(�1+�2X2i+�3X3i))
2

@�2
= 0

@
NP
i=1

(Yi�(�1+�2X2i+�3X3i))
2

@�3
= 0

We will NOT do this di¤erentiation. Once the di¤erentiation is done, we
will have 3 equations and 3 unknowns (�̂1; �̂2 and �̂3). We will NOT do the
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algebra to solve for the unknowns, but I will provide you with the formulas for
�̂1; �̂2 and �̂3.

�̂1 = �Y � �̂2 �X2 � �̂3 �X3

�̂2 =
(
P
(X2i� �X2)(Yi� �Y ))

�P
(X3i� �X3)

2
�
�(
P
(X3i� �X3)(Yi� �Y ))(

P
(X2i� �X2)(X3i� �X3))�P

(X2i� �X2)
2
��P

(X3i� �X3)
2
�
�(
P
(X2i� �X2)(X3i� �X3))

2

�̂3 =
(
P
(X3i� �X3)(Yi� �Y ))

�P
(X2i� �X2)

2
�
�(
P
(X2i� �X2)(Yi� �Y ))(

P
(X2i� �X2)(X3i� �X3))�P

(X2i� �X2)
2
��P

(X3i� �X3)
2
�
�(
P
(X2i� �X2)(X3i� �X3))

2

(I�m using
P
to mean

NP
i=1

to cut down on the clutter).

Clearly, these formulas are a mess. We can rewrite the equations for �̂2 and
�̂3 in a somewhat more manageable form as:
�̂2 =

Cov(X2;Y )V ar(X3)�Cov(X3;Y )Cov(X2;X3)
V ar(X2)V ar(X3)�(Cov(X2;X3))2

�̂3 =
Cov(X3;Y )V ar(X2)�Cov(X2;Y )Cov(X2;X3)

V ar(X2)V ar(X3)�(Cov(X2;X3))2

Still, these formulas are a bit useless. (Although if you look closely enough
you can see what the units of �̂3 are. The numerator has units of X3 � Y �
(X2)

2. The denominator has units of (X2)2(X3)2. Thus, our �̂3 has units

of X3�Y �(X2)
2

(X2)2(X3)2
= Y

X3
, which are the units of a slope coe¢ cient between X3 and

Y .) However, this is what the computer is calculating when it calculates the
coe¢ cients for a multiple regression model.

1.2.1 Interpreting these results

�̂1 still measures the intercept. Again, think about this as what Y would be
equal to if ALL of the Xs equalled zero.
�̂2 measures the e¤ect of X2 on Y , holding X3 constant. �̂3 measures the

e¤ect of X3 on Y , holding X2 constant. In the two variable model, we didn�t
hold anything else constant. However, now we are holding some other variable
constant. Suppose our model was:
Wagei = �1 + �2Tenurei + �3Agei + "i
�2 would tell us the e¤ect of tenure on wages, holding age constant. This

means how much higher (or lower) would your wage be if you had one more
year of tenure GIVEN that you are a certain age. Suppose you are 26 years
old and you have 4 years of tenure. The coe¢ cient on tenure (�2) would tell
you how much higher (or lower) your wage would be IF you were 26 years old
and had 5 years of tenure. Similarly, the coe¢ cient on age (�3) would tell you
how much higher (or lower) your wage would be IF you were 27 years old with
4 years of tenure. It becomes a little more di¢ cult to interpret the results once
we move beyond the 2-variable model (remember the 2-variable model is the
model with one independent variable). We can also have what appear to be
counterintuitive results if we forget how to interpret the coe¢ cients.
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2 Regression statistics

When we obtain our estimates for �̂1; �̂2 and �̂3, we do not know how reliable
the estimates are, so we need to perform some statistical tests. We can show
that:̂

�1��1
s�̂1

~tN�k,
�̂2��2
s�̂2

~tN�k, and
�̂3��3
s�̂3

~tN�k,

where �̂1; �̂2 and �̂3 are our coe¢ cient estimates; �1; �2 and �3 are our null
hypotheses; s�̂1 ; s�̂2 and s�̂3 are the standard errors of �̂1; �̂2 and �̂3; and k
is the number of independent variables, INCLUDING the constant (intercept)
term. In this model, Wagei = �1 + �2Tenurei + �3Agei + "i, we would have
k = 3. We then use the same format for hypothesis testing.

1. Set up the null and alternative hypotheses.

2. Construct your test statistic (remember to take the absolute value for a
two-tailed test)

3. Pick a signi�cance level

4. Look up the critical value in the table � remember how to count your
degrees of freedom (N � k)

5. Reject or fail to reject the null hypothesis

We can use some shortcuts to testing hypotheses. Remember that the table
for the t-distribution goes from 120 degrees of freedom to1 degrees of freedom.
When we have 1 degrees of freedom, we can use the critical values for the
normal distribution, which are 1.96 and 2.57 for the 5% signi�cance level and
the 1% signi�cance level respectively. If the absolute value of our test statistic
is greater than 1.96, we can say the estimate is signi�cant at the 5% level. If the
absolute value of our test statistic is greater than 2.57, we can say the estimate
is signi�cant at the 1% level. While the shortcut method is useful for large
data sets, we will need to know how to count degrees of freedom for small data
sets and for some of the statistical tests we do later in the course.

3 R2, corrected R2 (or �R2), and F-tests

We have seen how we measure goodness of �t of the model with R2 in chapter 3.
However, R2 did not give us any more information than the simple t-statistic in
the two-variable model. When we construct a multiple regression model, R2 is
a bit more useful. We can use R2 to test if the regression is signi�cant. With
the multiple regression model, we can have a signi�cant regression model with
insigni�cant individual coe¢ cients.
We have seen that R2 = RSS

TSS , which is the explained variation (regression
sum of squares) divided by the total variation (total sum of squares). Should
our goal be to maximize R2? While this seems like an appropriate goal, consider
the following.
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We draw a sample of the dependent variable, Y . The sample that we draw
has a speci�c numerical value for its total variation (or total sum of squares). So
let the total sum of squares of our sample of Y be TSSY . We know we can break
TSSY into the portion of the variation explained by the model and the portion
of the variation that is not explained by the model. Suppose TSSY = 100.
We run a regression with one independent variable, X1. We �nd that the RSS
of the model is equal to 20 with just the X1 variable. In this simple model,
R2 = :2. Now, suppose we want to add another independent variable to our
model, X2. Suppose that X2 has very little to do with Y . The question is, will
the new model Y = �1 + �2X1 + �3X2 + ", explain LESS than the old model,
Y = �1 + �2X1 + "? The answer is no. The new model will explain at least
20% of the variation in Y , due to the fact that X1 is included in the model.
If X2 has ZERO e¤ect on Y , then it will explain ZERO of the variation in Y ,
which means that we will still only be explaining 20% of the model. We can
never explain less of the variation in Y by adding more variables. So if our
goal was to maximize R2, then we would use what is called the �kitchen sink
approach�. The kitchen sink approach means we throw in every single variable
that we can �nd and this will maximize R2 because adding additional regressors
to the model can NEVER lower the amount of explained variation in the model.
Since R2 can never fall when we add additional regressors, we need a di¤erent

way to measure �goodness of �t�when we are using multiple regression models.
The statistic that we will use is called corrected R2 or �R2. We de�ne �R2 as:
�R2 = 1� V̂ ar(")

V̂ ar(Y )
, where V̂ ar(") is the estimated error variance and V̂ ar(Y ) is

the estimated variance of Y . Notice that this looks very similar to our de�nition
of R2. Recall that R2 = RSS

TSS = 1 �
ESS
TSS . We can show how R2 is related to

�R2.

We know V̂ ar(") =
P
("̂i)

2

N�k and V̂ ar(Y ) =
P
(Yi� �Y )

2

N�1 . So ESS =
P
("̂i)

2

N�k �

N � k and TSS =
P
(Yi� �Y )

2

N�1 �N � 1. If we plug these in, we get:

R2 = 1� V̂ ar(")

V̂ ar(Y )
N�k
N�1 . Now multiply both sides by

N�1
N�k to get:

N�1
N�kR

2 = N�1
N�k �

V̂ ar(")

V̂ ar(Y )
. Now, add 1 to both sides to get:

1 + N�1
N�kR

2 = N�1
N�k + 1�

V̂ ar(")

V̂ ar(Y )
. Realizing that 1� V̂ ar(")

V̂ ar(Y )
= �R2, we get:

1 + N�1
N�kR

2 = N�1
N�k +

�R2. Isolate �R2,
1 + N�1

N�kR
2 � N�1

N�k =
�R2. A little algebra gives us,

1 + (R2 � 1)N�1N�k =
�R2. This is equivalent to the equation in the book,

which is: 1 � (1 � R2)N�1N�k =
�R2. Both of these will be useful to show the 3

results below.

Looking at this equation gives us 3 results:

1. If k = 1, R2 = �R2 (this is easy to see)

2. If k > 1, R2 � �R2 (this is a little more di¢ cult to see)

3. �R2 can be negative (also a little more di¢ cult to see)
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Start with result number 3, and use 1 + (R2 � 1)N�1N�k =
�R2. We know that

R2 < 1, so (R2�1) < 0. This fact alone will not cause �R2 to be negative unless
N�1
N�k is �very large�. And when will

N�1
N�k be very large? When k is very large.

As an example, suppose N = 51 and k = 50. Also, suppose R2 = :9, which
looks like a good �t. What will �R2 be? 1 + (:9� 1) 501 = �4:0
As for result 2, use 1 � (1 � R2)N�1N�k =

�R2. The important fact to realize
is that we are subtracting a number greater than (1� R2) from 1. If we were
only subtracting (1�R2) from 1, then we would get R2. However, since we are
subtracting a number greater than (1 � R2) from 1, we get a number smaller
than R2.

3.1 F-tests

We would like to know if the R2 we receive is statistically signi�cant. We can
perform a statistical test to answer this question. Formally, we are testing:
H0 : �2 = �3 = �4 = ::: = �k = 0
HA : At least one � 6= 0
Note that we do not include the intercept in our null hypothesis, meaning

that we are testing to see if k � 1 coe¢ cients are equal to zero. What we
wish to test is that all the regression coe¢ cients are JOINTLY equal to zero.
This is di¤erent than looking at each parameter estimate and seeing if it is
(individually) di¤erent than zero, so we need a di¤erent statistical test than the
t-test.
The statistical test that we use is an F -test. We calculate our F -statistic

as:
RSS
k�1
ESS
N�k

~Fk�1;N�k

Alternatively, we could write:
R2

k�1
1�R2
N�k

~Fk�1;N�k

You should convince yourself that you will obtain the same F -statistic re-
gardless of which formula you use to calculate it.
Why do we use the F -distribution? We can show that our F -statistic is

the ratio of 2 independent �2 random variables to their respective degrees of
freedom.
To �nish the test you just need to look up the critical value in the table

in the back of the book. If your F -statistic is greater than the critical value
then you reject the null hypothesis. As for choosing a signi�cance level, realize
that there are only tables in the back of the book for the 1% and 5% levels, so
those are the only 2 signi�cance levels you can test at unless you want to �nd
tables for the other signi�cance levels. Once again, if the F -statistic that you
calculated was greater than the critical value, you reject the null hypothesis and
conclude that at least one � is signi�cant at the chosen signi�cance level.
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3.1.1 Final note on R2

We can only use R2 to compare models that have the exact same independent
variable. That is, suppose we had 2 models, where one model used Y as the
independent variable and the other model used lnY . Although it seems like we
are using the same variable (after all, lnY is just a transformation of Y ), the
models will have di¤erent total sums of squares and will NOT be comparable.

4 Multicollinearity

Multicollinearity MAY occur when we have 2 or more independent variables
that are highly correlated. Recall when we interpret regression coe¢ cients we
say that we hold everything else constant. However, if 2 independent variables
are highly correlated this may not be the case.

4.1 Perfect collinearity

Perfect collinearity occurs when there is an EXACT linear relationship between
one or more of the independent variables. When an exact linear relationship
occurs, we CANNOT obtain least squares estimates of the regression coe¢ cients.
The �real reason�we cannot obtain least squares estimates has to do with matrix
algebra. Since matrix algebra is not a prerequisite for this course, I will not
go into the details. Perfect collinearity rarely arises in data that is naturally
occurring, and is most often researcher induced. We will examine perfect
collinearity more closely when we work through chapter 5.

4.2 E¤ects of multicollinearity

A more realistic problem occurs when the variables are highly correlated, but
a perfect linear relationship does not exist. In this case we can obtain least
squares estimates for our regression coe¢ cients. However, it may be di¢ cult to
interpret the estimates because we are supposed to be holding all else constant.
Another �problem�that occurs is the variances (and standard errors) of the

��s become large when 2 independent variables are highly correlated. Consider
the following model:
Y = �1 + �2X2 + �3X3 + "
It can be shown that:
V ar(�̂2) =

(N�1)s2
V ar(X2)(1�(corr(X2;X3)

2))
and

V ar(�̂3) =
(N�1)s2

V ar(X3)(1�(corr(X2;X3)
2))

corr(X2;X3) is the sample correlation between X2 and X3. What happens
as the correlation gets close to 1 (perfect positive correlation) or -1 (perfect
negative correlation)? The term (1� (corr(X2; X3)2)) becomes very close to
zero, meaning that the variances of our estimated coe¢ cients go to in�nity.
If the variances go to in�nity, and the standard errors are the square root of
something that goes to in�nity, then the standard errors are also becoming very
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large. Why is this a problem for us? Recall that when we constructed our

t-statistic for the �̂�s we used:
��� �̂��s�̂ ���. The problem now is that our t-statistics

will be very small since we are dividing by a number, s�̂ , that is very large. If
we have small t-statistics this means that we will often fail to reject the null
hypothesis.

4.3 Indications of multicollinearity

Multicollinearity is a di¢ cult problem to detect (at least in a statistical manner).
The best method to detecting multicollinearity is to look at the t -statistics of the
individual regression coe¢ cients and the F -statistic for the R2. If the regression
is signi�cant but the individual coe¢ cients are not, then this suggests that there
is multicollinearity in the data. One of the remedies is to remove one of the
variables and see what happens to your R2, your t-statistics, and your estimated
coe¢ cients. If the R2 and the estimated coe¢ cients �do not change very much�
while the t-statistics increase, then this is suggestive that you have corrected for
your multicollinearity problem.
There are other methods that one might use to test for multicollinearity �

unfortunately, none of them are highly accepted.

5 A few more useful items

5.1 Standardized coe¢ cients

Suppose we run the following regression:
price = �1 + �2floorspace+ �3bedrooms+ "
We obtain estimates for �1; �2 and �3. It is easy to interpret the coe¢ cients

but it is di¢ cult to tell which coe¢ cient has the greatest impact on the price
because the coe¢ cients are in di¤erent units (the denominator of �2 is square
feet and the denominator of �3 is number of rooms). In order to determine
which variable has the biggest impact on the dependent variable we can use
standardized coe¢ cients. If we have the original model, Y = �1 + �2X2 +

�3X3+ :::+�kXk + ", we can create the following standardized model:
Y� �Y
sY

=

��2
X2� �X2

sX2
+ ��3

X3� �X3

sX3
+ ::: + ��k

Xk� �Xk

sXk
+ ". The coe¢ cients will now tell us

how much Y will increase when we have a 1 standard deviation increase in a
particular X. We can now tell which variables have the biggest impact on Y .

5.2 Elasticities

Recall that in other economics courses we developed this concept of elasticity.
We typically discussed the price elasticity of demand or income elasticity. The
price elasticity of demand told us how much quantity demanded changed when
we had a change in the price of the good. One �problem� with elasticities
is that they depend on where you are along the line. Recall that with price
elasticity of demand if we were near the top of the demand curve then we would
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likely have elastic demand (large percentage changes in the quantity demanded
relative to the percentage change in price) and if we were near the bottom of the
demand curve we would likely have inelastic demand (small percentage changes
in the quantity demanded relative to the percentage change in price). So we
need to pick a price and quantity about which to measure the elasticity. We

had the formula %�Qd

%�P =
Q1�Q0
Q0

P1�P0
P0

(actually if you used the Gwartney textbook in

Principles of Micro here at FSU you likely had the following formula:

Q1�Q0
(Q0+Q12 )
P1�P0
(P0+P12 )

.

The actual formula is not important, just thought I would jog your memory.)

Concentrating on,
Q1�Q0
Q0

P1�P0
P0

, let�s rearrange a few terms. Doing some algebra

gives us, Q1�Q0

P1�P0 �
P0
Q0
. Now, look at the regression equation for simple linear

demand, quantity = �1 + �2price + ". If we take the partial derivative of
this equation with respect to price, we get: @quantity

@price = �2. Now, what does a
derivative tell us? How much Y (in this case quantity) changes when we change
X (in this case price). Notice that this is similar to Q1�Q0

P1�P0 , where (Q1 �Q0)
is the change in Y (quantity) and (P1 � P0) is the change in X (price). So
the coe¢ cient is ONE part of the elasticity. However, elasticities are PER-
CENTAGE changes, and �2 does not measure a percentage change (at least not
in this model). Thus, we need to multiply our coe¢ cient by some P

Q to have
obtain the elasticity. Now the choice of which P and which Q is arbitrary, but
remember that the point that you wish to evaluate the elasticity at will in�u-
ence the elasticity. By convention we evaluate the elasticity about the means
of the variables. This is how �they�(authors of textbooks �well, the authors
of textbooks probably take the estimates from authors of research papers and
consulting work) determine that the price elasticity of demand for salt is -0.1,
for movies is -0.9, for fresh green peas is -2.8.
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