
Chapter 5 outline, Econometrics

1 The General Linear Model

When we talk about the LINEAR regression model, we are talking about a
model that is linear in the parameters (the parameters are �1; �2; �3;:::). There
are models which are linear in the parameters that can test NONLINEAR rela-
tionships between X and Y. Consider the following 3 models:

1. Y = �1 + �2X2 + �3(X2)
2 + "

2. Y = 1 + 2 ln(X2) + "

3. ln(Y ) = �1 + �2 ln(X2) + "

Model 1 is linear in the parameters (the ��s) but suggests a nonlinear (specif-
ically parabolic) relationship between X and Y. The equation that we might
normally think of is Y = aX2 + bX + c. Model 2 also suggests a nonlinear
relationship between X2 and Y . For those of you unfamiliar (or who may have
forgotten) with the log function, the graph of Y = ln(X) is:
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This is a nonlinear function of X. Model 3 can be shown to be a trans-
formation of: Y = !1(X2)

!2". This should look like some of the production
functions that you have seen in upper division microeconomic studies. If we
take logs of both sides we get model 3 above (by the way what would the plot
of ln(Y ) = ln(X) look like? You should get the 45 degree line, although the
plot will not exist for values of X � 0). Some other models are:

� Exponential model: ln(Y ) = �1 + �2X2 + �3X3 + "

� Reciprocal model: 1
Y = �1 + �2X2 + �3X3 + "

� Interaction model: Y = �1 + �2X2 + �3X3 + �4(X2X3) + "
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1.1 Interaction Model

For now we will focus on the interaction model. What is the interaction term
(�4(X2X3)) doing in this model? We know that in a simple linear model like
Y = �1 + �2X2 + �3X3 + " the coe¢ cients �2 and �3 tell us how much Y will
change when either X2 or X3 changes, holding the other constant. However,
suppose we thought that an increase of X2 was less important as X3 increased.
To make the example more concrete, consider the following model: wage =
�1 + �2age + �3tenure + ". We hypothesize that both age and tenure are
important in determining wages. However, suppose we also hypothesize that
an increase in one unit (year) of tenure will have a larger e¤ect for people who
are 30 years old than for people who are 50 years old. How could we introduce
this into the model? We could add an interaction term for school and tenure.
The model would then be: wage = �1+�2age+�3tenure+�4(tenure)(age)+".
The sign on �4 would tell us if our hypothesis is correct. If �4 is statistically
signi�cant and the sign on �4 is negative, then this means that a one unit
increase of tenure on wages is larger for young people than for older people. I
get the following results when I run this regression on the labordata sample that
we are using for the computer homeworks.

�2 0:12783
�3 0:78343
�4 �0:01091
What does this mean for interpreting the model? The model is: wage =

�1 + �2age + �3tenure + �4(tenure)(age) + ". What is the e¤ect of a one
unit increase in tenure? To �nd this e¤ect we can take the partial derivative
of wage with respect to tenure. This will give us: @wage

@tenure = �3 + �4age. So
what does this mean? Take a person who is 30 and compare to a person who
is 50. If the 30 year-old is given one more year of tenure, then the e¤ect on
wages is given by: �3 + �430. If the 50 year-old is given one more year of
tenure, then the e¤ect on wages is given by: �3 + �450. If �4 is positive this
means the 50 year-old will gain more than the 30 year-old; if �4 is negative
then the 30 year-old will gain more than the 50 year-old. Our model says
that �4 is negative. How much will a 30 year-old gain with one additional
year of tenure? �3 + �430 = :78343 + (�:01091) � 30 = 0:456 13, or about 46
cents. How much will a 50 year-old gain with one additional year of tenure?
�3 + �450 = :78343 + (�:01091) � 50 = 0:237 93, or about 24 cents.
Direct interpretation of the coe¢ cient on the interaction term can be dif-

�cult. In the example above, how would we interpret �:01091? We could
say that a 1 cent decrease in wage occurs when either tenure is increased by
one year (holding age constant) or age is increased by one year (holding tenure
constant). However, the point of the model is to explain what happens when
there is a one-unit increase in the variable (either age or tenure) so neglecting to
incorporate the e¤ect of �2 for age and �3 for tenure leads to a misinterpreta-
tion of the e¤ect either variable has. You could make a general statement such
as, �The coe¢ cient on the interaction term suggests that a one-unit increase in
either variable will be less important as the other variable increases�. When
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interpreting e¤ects of independent variables on the dependent variable I suggest
that when you look at interaction terms you write down the model, and then
write down how a one unit increase in a particular independent variable will
a¤ect the dependent variable. Working a simple example like the one above
is probably the best way to see how the interaction term a¤ects the dependent
variable.

1.2 Interpreting coe¢ cients for the other models

In class I passed out a handout that explains how you calculate a one-unit e¤ect
of X on Y as well as a 1% e¤ect of X on Y for the di¤erent model speci�cations.
Depending on the speci�cation of the model the coe¢ cients will have di¤erent
meanings (the numerical estimate of �2 in Y = �1 + �2X2 + " does NOT mean
the same thing as the numerical estimate of 2 in ln(Y ) = 1 + 2X2 + ").

2 Dummy Variables

Up until now we have focused strictly on using quantitative variables (age,
tenure, number of bedrooms, square feet of �oor space, etc.) as independent
variables. While we will continue to use ONLY quantitative variables for the
dependent variables (using qualitative variables as dependent variables involves
methods we may or may not cover in this class, but are covered in the book), we
would like to be able to incorporate qualitative variables as independent vari-
ables. A qualitative variable is a variable that has no direct analog numerically.
For example, it was suggested that gender and race be included as independent
variables in the answer to question 10 of the applied portion of the �rst test.
How do we incorporate these variables? Suppose our spreadsheet looks like:

wage age tenure school experience gender
12.42 41 5 13 22 male
6.50 24 0 16 2 male
15.00 37 12 17 14 female
9.87 56 35 9 41 female
etc.
We want our regression model to be:
wage = �1 + �2age+ �3tenure+ �4school + �5experience+ �6gender + "
There is a slight problem. When we calculate our regression coe¢ cients we

have some formulas. Consider the intercept, �1 = �Y � �2 �X2 � �3 �X3 � �4 �X4 �
�5 �X5 � �6 �X6. This formula will work �ne until we get to �X6. What is the
mean of a column that consists of the words male and female? It doesn�t exist.
So we need to transform our qualitative variable into a quantitative variable.
To do this we create what are known as dummy variables. A dummy variable
for gender (also called binary variable) is just a variable that takes on the value
1 if gender is male and 0 if gender is female (we could make our dummy variable
1 if gender is female and 0 if gender is male �it will not matter for purposes of
the overall �t of the model, but the numerical sign of the dummy variable will
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change in a very predictable fashion). Once this transformation is complete we
can then estimate our model.
So what will dummy variables do? Suppose we have a very simple model,

Y = �1+�2X2+", where X2 is a dummy variable. What is the E[Y ] if X2 = 1?
E[Y ] = �1+�2. What is E[Y ] if X2 = 0? E[Y ] = �1. Thus a dummy variable
acts as an intercept shifter. If the dummy variable takes on the value of 1, the
intercept will become �1 + �2. If the dummy variable takes on the value of 0,
the intercept is just �1. When we add more independent variables the dummy
variable performs the same function �it simply shifts the intercept depending
on whether the qualitative variable is classi�ed as a 1 or a 0.

2.1 Dummy variable trap

The dummy variable trap occurs when you add a dummy variable for EACH of
the values a qualitative variable can have. Suppose you wished to estimate a
model that included a dummy variable for male (=1 if the observation is male,
0 otherwise) as well as a dummy variable for female (=1 if the observations is
female, 0 otherwise). In this case you will have fallen into the dummy variable
trap (assuming that the data on gender contain only male and female values)
by causing PERFECT colinearity among your variables. Suppose your model
is: Y = �1 + �2X2 + �3X3 + ", where X2 is a dummy variable for male and X3
is a dummy variable for female. If we were to look at your spreadsheet of data
it would look like:

wage age tenure school exp gender male female constant
12.42 41 5 13 22 male 1 0 1
6.50 24 0 16 2 male 1 0 1
15.00 37 12 17 14 female 0 1 1
9.87 56 35 9 41 female 0 1 1
etc.
Notice that I have included the column for the constant term. The constant

term is just a column of ones (although it could be twos or threes). If we add
together the rows for male dummy and female dummy at each observation we
get a column of ones, which is exactly the same as the column of ones in the
constant column. This is perfect colinearity �the three variables (male dummy,
female dummy, and constant) form a PERFECT linear relationship. Even if
we change the constant term to a column of twos it is STILL a perfect linear
relationship because now constant=2*(male dummy + female dummy). So we
have a decision to make �do we drop the constant term, the male dummy, or the
female dummy? There are reasons (we will not go into the details, but mainly
it has to do with calculating R2) that we do not want to drop the constant term.
That narrows our choice down to the male dummy and the female dummy �how
will we decide? It doesn�t matter. Our results will be the �same�. Well, not
EXACTLY the same, but very close. See the section on interpreting dummy
variables that follows.
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2.2 Interpreting dummy variables

Again, suppose you are concerned with including either the male dummy vari-
able or the female dummy variable. Also suppose your two competing mod-
els will be: Model 1 �wage = �1 + �2tenure + �3male + " and Model 2 �
wage = 1+�2tenure+ 3female+ ". First, if it is true that all of your �gen-
der�observations are male and female, then your coe¢ cient on tenure (�2) will
remain unchanged. However, the intercepts (�1 and 1) and the coe¢ cients
on your dummy variables (�3 and 1) will change, but in a predictable fashion.
The estimate that you get for �3 will be the exact same as your estimate for 3,
except that it will have the OPPOSITE sign. The intercept in model 1 (�1)
will be equal to the intercept in model 2 plus the coe¢ cient on female in model
2 (1 + 3). The intercept in model 2 (1) will be equal to the intercept in
model 1 plus the coe¢ cient on male in model 1 (�1 + �3). So what do these
coe¢ cients mean?
Model 1, intercept (�1): In model 1 the intercept tells us how much a FE-

MALE worker with zero tenure will earn.
Model 1, coe¢ cient on male (�3): In model 1 this coe¢ cient tells us how

much more (or less) a MALE will make when compared to a female with the
same years of tenure. When compared to a female with zero years of tenure, a
male worker will earn the intercept PLUS the coe¢ cient on male.
Model 2, intercept (1): In model 2 the intercept tells us how much a MALE

worker with zero tenure will earn.
Model 2, coe¢ cient on female (�3): In model 2 this coe¢ cient tells us how

much more (or less) a FEMALE will make when compared to a male with the
same years of tenure. When compared to a male with zero years of tenure, a
female worker will earn the intercept PLUS the coe¢ cient on female.
The main point is that the coe¢ cient on the dummy variable tells us how

much more (or less) the people with the characteristic captured by the dummy
variable earn with respect to the group that has NOT been included as a dummy
variable.
Since we know that the models yield the same results, let�s look at the

estimated regression equations for MALE and FEMALE (based on our data
set):
MALE: wage = 11:86 + 0:29tenure
FEMALE: wage = 8:68 + 0:29tenure
Graphically, our regression lines look like:

5



52.502.55

12.5

11.25

10

8.75

7.5

Years

Dollars

Years

Dollars

where the top line is the regression line for MALE and the bottom line is the
regression line for FEMALE. Note that the Y-axis is in dollars and the X-axis
is in years (since tenure is measured in years).
Suppose we had three groups of people, OLD, MIDDLE-AGED, and YOUNG.

We could create three dummy variables (one for each group) although we would
only include TWO dummy variables in any regression model that we want to
estimate (to avoid perfect colinearity). Suppose we leave out the YOUNG.
Then the coe¢ cient on OLD will tell us how much more (or less) the OLD earn
when compared to the YOUNG. The coe¢ cient on MIDDLE-AGED will tell
us how much more (or less) the MIDDLE-AGED earn when compared to the
YOUNG. How would we �nd out how much more (or less) the OLD make when
compared to the MIDDLE-AGED? We could run a separate regression where
we leave out the OLD (then they would be the reference group), or we could
just subtract the MIDDLE-AGED coe¢ cient from the OLD. Either way works.

2.3 Other uses for dummy variables

There are a few other dummy variable models that we can use.

2.3.1 Dummy variables as interaction terms

We can also make dummy variables act as interaction terms. Suppose we have
the following model, wage = �1 + �2tenure + �3(male � tenure) + ". Now,
if male = 1, the equation becomes: wage = �1 + �2tenure + �3(tenure) + "
which is the same as wage = �1 + (�2 + �3)tenure + ". So we are allowing
the slope coe¢ cient to change. If male = 0, the equation becomes: wage =
�1 + �2tenure+ ". So the slope coe¢ cient for males is equal to �2 + �3 while
the slope coe¢ cient for females is equal to �2.
The estimated regression equations using our data are:
MALE: wage = 10:33 + 0:4tenure
FEMALE: wage = 10:33 + 0:15tenure
These results suggest that the wages of males rise faster than the wages of

females when tenure increases. Graphically, our regression lines are:

6



52.502.55

12

11

10

9

Years

Dollars

Years

Dollars

where the line with the steeper slope is the estimated regression line for
males. Once again the Y-axis is in dollars and the X-axis is in years.

2.3.2 Using dummy variables to allow the slope and intercept to
change

We can also use dummy variables to allow the slope and intercept to change.
Suppose we think that both the slope and intercept is di¤erent for males and
females. We can estimate the following equation: wage = �1 + �2tenure +
�3male+�4(male)(tenure)+". What will the regression model be ifmale = 1?
It will be: wage = �1 + �2tenure + �3 + �4(tenure) + ". This simpli�es
to: wage = (�1 + �3) + (�2 + �4)tenure + ". So the intercept for males
becomes �1+�3 and the slope becomes �2+�4. For females, we have: wage =
�1 + �3tenure.
The estimated regression equations are:
MALE: (9 + 2:60) + (0:25 + 0:77)tenure = 11:6 + 1: 02tenure
FEMALE: 9 + 0:25tenure
All coe¢ cients are statistically signi�cant, suggesting that both the slope

and intercept of wages (based on tenure) di¤er for males and females. If �3
was not statistically di¤erent than zero we could conclude that the intercept for
male and female wages is the same. If �4 was not statistically di¤erent than
zero we could conclude that the slope for male and female wages is the same.
The plots of the regression lines are:
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where the MALE regression line has the steeper slope and higher intercept.

2.3.3 Alternative version for allowing the slope and intercept to
change

There is another method for allowing the slope and intercept to change. We
could estimate two separate equations, one for males and one for females. We
would then estimate:
MALE: wage = �1 + �2tenure+ " (only for the males in the sample)
FEMALE: wage = 1 + 2tenure+ � (only for the females in the sample)
Why would we do this? When we estimated the equations for males and

females we (implicitly) assumed that the error variance was constant for males
and females. This may not be the case however. The error variance could be
di¤erent. In that case a more correct model speci�cation would be to run two
di¤erent models, allowing the error variance to di¤er between the two. We will
discuss tests of the error variance when we discuss heteroscedasticity.

3 Hypothesis testing of more than one variable

In this section we will discuss a few hypothesis tests that can be performed to
test for the signi�cance of more than one variable. So far we have discussed
the t-test for the signi�cance of one variable and the F-test for the signi�cance
of the regression. Most of what we will do in this section is modify the F-test.

3.1 Joint tests on several regression coe¢ cients

Suppose we wanted to include only independent variables that were signi�cant
at the 5% level in our regression model. One possibile method of eliminating
insigni�cant independent variables would be to remove any variables that had
a t-value less than 1.96 (or a p-value greater than .05) from the model. How-
ever, there is a chance that two variables are insigni�cant individually but are
JOINTLY signi�cant. To make sure that we are not dropping variables that are
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jointly signi�cant from our regression equation, we must perform a test of joint
signi�cance. We have already seen a test of this type. Recall that to check the
signi�cance of the regression for the model Y = �1+�2X2+�3X3+:::+�kXk+",
we tested:
H0 : �2 = �3 = ::: = �k = 0
HA : At least one � 6= 0
We then set up our test statistic as:
R2=(k�1)

(1�R2)=(n�k)~Fk�1;n�k
We will be using a VERY similar test to test for the joint signi�cance of

regressors. In fact, the test above for the sign�cance of the regression is a
special case of the test we will now develop.
Suppose we have the following model:
Y = �1 + �2X2 + �3X3 + :::+ �kXk + "
We will call this the UNRESTRICTED model. The reason we will call this

the unrestricted model is because we are not restricting any of our ��s to be
zero. We are estimating all of them. From this model we need to other write
down what the ESSUR (that is the error sum of squares, unrestricted) is or
what the R2UR (the unrestricted R

2) is.
Now, suppose we want to test that q ��s are JOINTLY insigni�cant. We

then need to run the RESTRICTED model:
Y = �1 + �2X2 + �3X3 + :::+ �k�qXk�q + "
Note that in the restricted model we are only estimating (k � q) coe¢ cients,

while in the unrestricted model we are estimating k coe¢ cients. From the
restricted model we need to know the ESSR (the error sum of squares for the
restricted model) or the R2R (the restricted R

2). We also need to know q, which
is the number of restrictions. The reason this is the number of restrictions
is because we have forced q coe¢ cients to equal zero in the restricted model
(by NOT including those independent variables and their coe¢ cients we have
imposed that each of those coe¢ cients equals zero). The test statistic is as
follows:

(ESSR�ESSUR)=q
ESSUR=(n�k) ~Fq;n�k

If our test statistic is greater than the critical value we reject the null �this
means that at least one of the coe¢ cients is signi�cantly di¤erent than zero.
What is the intuition behind this test? Focus on ESSR � ESSUR. First,

note that ESSR � ESSUR, and so ESSR � ESSUR � 0. Why? Recall
that when we add independent variables to our regression model that the RSS
(regression sum of squares or explained variation) will NEVER decrease. This
means that the error sum of squares from the restricted model must be at least
as big as the error sum of squares from the unrestricted model. Suppose that
the independent variables we add to the restricted model add NOTHING to the
regression sum of squares. Then, ESSR = ESSUR and ESSR � ESSUR = 0.
Intuitively, if neither of these variables adds anything to the regression sum of
squares then they should be meaningless in explaining our dependent variable.
This gets at the very point of the test. If ESSR �ESSUR is very low then we
will most likely be failng to reject the null hypothesis; if ESSR�ESSUR is large,
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than a larger portion of the variation in the dependent variable is explained by
the additional independent variables added in the unrestricted model, and we
should reject the null hypothesis.
We can also write this test as a test involving R2. The appropriate test

statistic is:
(R2

UR�R
2
R)=q

(1�R2
UR)=(n�k)

~Fq;n�k

How does (ESSR�ESSUR)=qESSUR=(n�k) =
(R2

UR�R
2
R)=q

(1�R2
UR)=(n�k)

? Start by multiplying (ESSR�ESSUR)=qESSUR=(n�k)

with
1

TSS
1

TSS

. We should get:
(ESSR�ESSUR)

TSS(q)
ESSUR

TSS(n�k)
.

Since ESSR
TSS = 1�R2R and ESSUR

TSS = 1�R2UR, we get:
(1�R2R)�(1�R2UR)

q

1�R2
UR

n�k

=
R2UR�R2R

q

1�R2
UR

n�k

. Note that this will be positive since R2UR �

R2R � 0.

3.1.1 A special case: the signi�cance of the regression test

As was mentioned earlier the test for the signi�cance of the regression is a special
case of the test of the joint sign�cance of coe¢ cients. Recall that we had our
F-statistic for the signi�cance of the regression,

R2=(k�1)
(1�R2)=(n�k)~Fk�1;n�k
The question is, how do we turn the F-statistic for the joint signi�cance of

coe¢ cients test (which is (R2
UR�R

2
R)=q

(1�R2
UR)=(n�k)

~Fq;n�k) into the test for the signi�cance

of the regression? First, realize that the R2 in the Fk�1;n�k test is just R2UR.
Then, think about what k � 1 is: it is the number of restrictions (q) in the
second test statistic because we are forcing k� 1 regression coe¢ cients to equal
zero. The only question is what happens to R2R (the R

2 from the restricted
model). What would the restricted model be in the test of the signi�cance of the
regression? It would by Y = �1. What would the R

2 of such a regression be?
It would be zero, because a constant cannot explain variation in the dependent
variable (the constant doesn�t change, so how can it explain variation?).

3.2 Tests of linear functions of regression coe¢ cients

Economists are fascinated with a concept called constant returns to scale. Con-
stant returns to scale means that if I have a production process and I double all
of my inputs I will double my output. If I triple all of my inputs I will triple
my output. If I cut all of my inputs in half I will get half the output I had.
Hopefully you get the idea.
The typical functional form used for production functions is known as the

Cobb-Douglas form. A production function is a Cobb-Douglas production
function if it takes the form Y = e�1 (K)

�2 (L)
�3 e". Note that Y is output,

K is capital, and L is labor. The error term is given by e", and �1, �2, and
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�3 are the unknown parameters that we need to estimate. The term e�1 is
just a constant scaling factor. (Some of you may have seen this in a slightly
di¤erent form, especially the e�1 � I have made the constant term e�1 for a
reason which should become clear shortly.) One problem that we have is that
we cannot estimate this model (using ordinary least squares) in the form that
it is in. However, if I take the natural log of both sides I get:
ln(Y ) = ln(e�1 (K)

�2 (L)
�3 e")

Now, I can use the rules of logarithms to break this into:
ln(Y ) = ln

�
e�1
�
+ ln

�
K�2

�
+ ln

�
L�3

�
+ ln (e")

I can further simplify this to:
ln(Y ) = �1 + �2 ln (K) + �3 ln (L) + "
We now have a linear model that we can estimate using the ordinary least

squares (OLS) technique. We can just put this into SAS and get coe¢ cients.
To get back to the point, how do we know that our production function has

constant returns to scale? Mathematically, this would occur if �2 + �3 = 1

in the production function (which is Y = e�1 (K)�2 (L)�3 e"). As an example,
suppose I double both my capital inputs and my labor inputs. To start with I
have:
Y1 = e

�1 (K)
�2 (L)

�3 e"

Note that I have added the subscript 1 to Y . Y1 is how much output I receive
BEFORE I�ve doubled my inputs. Now suppose that I double my inputs. My
new production function will look like:
Y2 = e

�1 (2K)
�2 (2L)

�3 e", where Y2 stands for the output I receive if I have
doubled my inputs. We have not proved anything yet, but if we can show that
Y2 = 2Y1, we will show that we have constant returns to scale. Now,
Y2 = e

�1 (2K)
�2 (2L)

�3 e" = e�1
�
2)�2(K

��2 �2)�3(L��3 e"
This is just using the properties of exponents. Rearranging terms we get:
Y2 = e

�1
�
2)�2(K

��2 �2)�3(L��3 e" = e�1 �2)�2(2)�3(K��2 (L)�3e"
Using the properties of exponents again, we get:
Y2 = e

�1
�
2)�2(2)�3(K

��2 (L)�3e" = �2)�2+�3e�1(K��2 (L)�3e"
Now, what do we know? We know that e�1(K)�2(L)�3e" = Y1. We can

substitute in to get:
Y2 = (2)

�2+�3Y1
When will Y2 = 2Y1? When �2 + �3 = 1. (This is also known as homoge-

neous of degree one for you mathematics people, and anyone who is interested
in going to grad school for economics should be aware that you will be expected
to know little things like this by the end of your �rst semester ( maybe �rst
year) of grad school.)
What test will our null hypothesis be in our regression analysis? It will be

�2 + �3 = 1. What will our alternative hypothesis be? HA : �2 + �3 6= 1.
What will our test statistic be? Our initial model is:
ln(Y ) = �1 + �2 ln(K) + �3 ln(L) + "
If we impose the restriction that �2+�3 = 1, we would then have �3 = 1��2.

Substituting this in to our model gives us:
ln(Y ) = �1 + �2 ln(K) + (1� �2) ln(L) + "
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The next few steps are collecting terms and simplifying:
ln(Y ) = �1 + �2 ln(K) + ln(L)� �2 ln(L) + "
ln(Y )� ln(L) = �1 + �2 ln(K)� �2 ln(L) + "
ln(Y )� ln(L) = �1 + �2(ln(K)� ln(L)) + "
Since we are working with logarithms we can make this:
ln
�
Y
L

�
= �1 + �2

�
ln
�
K
L

��
+ "

(YL is the output to labor ratio and
K
L is the capital to labor ratio.)

Now, estimate this model.
What type of test will we use? An F-test:
(R2

UR�R
2
R)=1

(R2
UR)=(n�k)

~F1;n�k

Although are null hypothesis involves 2 regression coe¢ cients we only have
ONE restriction. Why is this? We want �2 + �3 = 1. We can let either
�2 be anything as long as �3 = 1 � �2 (alternatively we could allow �3 to be
anything as long as �2 = 1 � �3). For our example, the R2UR comes from the
model ln(Y ) = �1 + �2 ln(K) + �3 ln(L) + " and the R

2
R comes from the model

ln
�
Y
L

�
= �1 + �2

�
ln
�
K
L

��
+ ".

3.3 Tests for the equality of coe¢ cients in di¤erent re-
gressions

NOTE:This test ONLY applies when the dependent variables of the two re-
gression models AND the independent regressors are the same. This means I
need to have two regressions, perhaps one for male wages and one for female
wages as was suggested above. I would then run:
Using only wages for males (M observations): wage = �1 + �2tenure +

�3school + "
Using only wages for females (N observations): wage = �1 + �2tenure +

�3school + "
Suppose for the male equation I had M observations and for the female

equation I had N observations. So in total there are M + N observations on
wages. My null hypothesis is:
H0 : �1 = �1; �2 = �2; �3 = �3
HA : At least one of those is not equal
NOTE: We are still assuming that the error variance is constant between

the two models.
This is again going to be an F-test. We have run 2 unrestricted models, so

we need a restricted model. The restricted model will be:
Using all wages (N +M observations): wage = 1+2tenure+3school+"
What test will we use?
(ESSR�ESSUR)=q
ESSUR=(N+M�2k)~Fq;N+M�2k, where:
ESSR is the error sum of squares from the restricted model
ESSUR is the error sum of squares from the male model PLUS the error

sum of squares from the female model
q is the number of restrictions imposed (in our example we have imposed 3

restrictions)
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N +M � 2k is the number of degrees of freedom in the unrestricted model
(we have N+M observations and we are estimating 6 coe¢ cients in our example
�3 ��s and 3 ��s)
If our F-statistic is greater than the critical value of the F-distribution then

we reject the null hypothesis, and we assume that we cannot �pool the data�.
Note that this is very similar to testing the individual signi�cance of the gender
dummy and the interaction of the gender dummy in the models above.

4 Piecewise linear regression

The piecewise linear regression is useful if you think there is a �structural break�
in the data. This is easiest to picture with time series data, although it can
happen with cross-sectional data. One example of cross-sectional data that we
could use is the example of obtaining di¤erent college degrees (Bachelor�s, Mas-
ter�s, PhD). Suppose we just want to limit ourselves to looking at people with
a Bachelor�s degree (say 16 years of schooling or more) versus people without a
Bachelor�s degree (less than 16 years of schooling). We would hypothesize that
receiving a Bachelor�s degree causes an increase in the rate at which your wages
increase (the slope is steeper for those with a Bachelor�s degree). We could
just use a dummy variable approach to test this, but it may be more useful to
use a continuous function (recall that with the dummy variable approach you
would get two di¤erent regression lines �one for those with a Bachelor�s degree
and one for those without). With the piecewise linear regression what you are
doing is �tting a CONTINUOUS (though non-di¤erentiable) function through
the data, although it is not necessarily a straight line. In fact, it will be pieces
of two di¤erent lines, connected at one point (the kink point in the function).
How do we estimate such a model? Suppose we have data on wages and years
of schooling. We create a dummy variable (COLLEGE) and set it equal to one
if the person has 16 or more years of schooling, zero otherwise. Our piecewise
regression equal would then be:
wage = �1 + �2school + �3((school � 16) � college) + "
Using our data set, the output I get is:
wage = �2:64 + 1:11school + :97((school � 16) � college)
What does this mean? Suppose I was someone with 17 years of school. My

predicted wage would be: �2:64 + 1:11 � 17 + :97((17� 16) � 1) = 17: 2
Suppose I was someone with 12 years of school. My predicted wage would

be:
�2:64 + 1:11 � 12 + :97((12� 16) � 0) = 10: 68
The main point of the piecewise regression is to keep the function continuous.

Continuity is a useful mathematical property, and easy to understand intuitively
(a function is continuous if I don�t have to lift my pencil o¤ the paper when I
am drawing it) but it is a di¢ cult concept to de�ne mathematically. However,
suppose we estimate:
wage = �1 + �2school + �3college+ �4(school � college) + "
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This will also allow the slope and intercept to change for someone who has
graduated from college. The results I get are:
wage = 1:22 + :77school � 13college+ :96(school � college)
Suppose I have someone with 17 years of school now. This person�s predicted

wage is:
1:22 + :77 � 17� 13 � 1 + :96(17 � 1) = 17: 63
The person with 12 years of school has a predicted wage of:
1:22 + :77 � 12� 13 � 0 + :96(12 � 0) = 10: 46
They are very similar to the wages estimated with the piecewise model. Now

look at someone with 15.99 years of school, 16 years of school, and 16.01 years
of school.

� Piecewise

1. 15.99: �2:64 + 1:11 � 15:99 + :97((15:99� 16) � 0) = 15: 109
2. 16.00: �2:64 + 1:11 � 16 + :97((16� 16) � 1) = 15: 12
3. 16.01: �2:64 + 1:11 � 16:01 + :97((16:01� 16) � 0) = 15: 131

� Dummy variable approach

1. 15.99: 1:22 + :77 � 15:99� 13 � 0 + :96(15:99 � 0) = 13: 532
2. 16.00: 1:22 + :77 � 16� 13 � 1 + :96(16 � 1) = 15: 9
3. 16.01: 1:22 + :77 � 16:01� 13 � 1 + :96(16:01 � 1) = 15: 917

Notice that with the piecewise approach we have a fairly smooth transition
�15.109, 15.12, 15.131. With the dummy variable approach we get a big jump
� 13.532, 15.9, 15.917. This is the basic idea of continuity � you shouldn�t
have big jumps. Now, which approach should be used given the problem we
have, concerning wages for college graduates? I would go with the dummy
variable (non-continuous) approach because there IS (or at least should be) a
big di¤erence between college graduate wages and non-college graduate wages.
Now, if we thought that there was some magical age that occurred that caused
the slope of wages to change then I would suggest using the piecewise approach
�there shouldn�t be a big jump in wages from the time you are 25.99 years old
to the time you turn 26.01 years old (holding all else constant of course).
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