Chapter 6 outline, Econometrics
Heteroscedasticity and Serial Correlation

Recall that we made 5 assumptions in order to obtain the results of the
Gauss-Markov theorem, and 1 assumption so that we can perform statistical
testing easily. We will now see what happens when we violate two of those
assumptions, numbers 4 and 5. Assumption number 4 was that the error terms
have constant variance (are homoscedastic), or Var (g;) = o2. Assumption
number 5 was that the error terms were independent of one another (are not

serially correlated), or E [g;¢;] = E [g;] E'[¢;] = 0 for all i # j.

1 Heteroscedasticity

The term heteroscedasticity means that the variance of a variable is not con-
stant. We know that if the error term in our regression model is heteroscedastic
that the Gauss-Markov theorem does not hold and that we cannot be certain
if our estimators are the best linear unbiased estimators (BLUE). Although
there are formal tests for heteroscedasticity outlined below, there are a number
of informal tests for heteroscedasticity (and serial correlation as well). These
tests involve the “eyeball method”. When looking at a plot of your residuals
against the predicted value of the dependent variable they should be randomly
dispersed around the x-axis. If they are not then this implies you may have
a heteroscedasticity problem or a serial correlation problem. If the plot of the
residuals is “funnel-shaped” this means that the variance of your error terms
is heteroscedastic. By funnel-shaped I mean the residuals can either start out
very tightly packed around the x-axis and grow more dispersed as the predicted
value of the dependent variable increases OR the residuals may start out widely
dispersed around the x-axis and grow more tightly packed as the predicted value
of the dependent variable increases.

1.1 The problem

The problem that heteroscedasticity causes for our estimators is inefficiency.

This arises because the variance of the slope estimator (8) when the error term
is heteroscedastig becomes:

) D (xi-x)%0?
Var(p) = 75—~
(2]

When the error term is homoscedastic (constant variance) the variance of B



1.2 Corrections for heteroscedasticity

As I said earlier in the course, if the Gauss-Markov assumptions are not met we
will try to transform the regression model so that they are met. Two methods
for obtaining homoscedastic error terms follow below, based on the amount of
knowledge one has about the form of the heteroscedasticity.

1.2.1 Known variances

The simplest case to deal with involves “known error variances”. In prac-
tice this is rarely seen, but it provides a useful first attempt at correcting for
heteroscedasticity. We will apply a technique called weighted least squares.

Suppose that all of the Gauss-Markov assumptions are met, except for as-
sumption 4. This means we have a heteroscedastic error term, or Var(g;) = o?.
Notice that this looks very similar to the condition necessary for the Gauss-
Markov theorem to hold, save for one small difference. The variance of the error
term is now observation specific, as can be seen by the subscript 7. If the vari-
ance of the error term was not observation specific we would write Var(g;) = o2,
dropping the subscript ¢ and this would imply homoscedasticity. The question
is, how can we transform our regression model to obtain homoscedastic error
terms?

Recall that our regression model (in observation specific notation) is:

Y =By + By Xoi + .. + B Xii + &

We assume that ;"N (0, 0?)

Our goal now is to rewrite the model in a form such that we have an error
term that has constant variance. Suppose we estimate the following model:

UL: _ 51+52X2i:;---+5kxki + v, where v; = %
Now, what is the E [v;]?7 What is Var [v,]?

Elv]=E [7] = LE[5] =0

T4

The above follows because o; is a constant, and E [¢;] = 0.
2
Var[v;) = Var [—] =LVarle]=% =1

==
The above follows because o; is a constant, and Var [¢;] = o?

So v;"N(0,1), and since 1 is a number and does not vary our new error term
has constant variance. Thus, the assumptions of the Gauss-Markov theorem
are met and we now know that our estimators of the 3’s are the best linear
unbiased estimators.

Notice that this approach is very limiting since it assumes that you know

the true error variance.

1.2.2 Error variances vary directly with an independent variable

Suppose you do not know the true error variance but you do have reason to
believe that the error term varies directly with one of the independent variables.
In this particular case it is not very difficult to construct a new regression model
that meets the Gauss-Markov theorem assumptions.



Suppose we have the regression model Y; = 5+ 85 X0+ 83 X3i+...+ 8, Xki+
&q

Also suppose that &;"N(0,C(X2;)?), where C is some non-zero, positive
constant.

Now, transform the original regression model by dividing through by Xo;.
L _ Bi o BaXo B3 Xzit-- +/5ka 51
= X, + X +

Notlce what happens The term that Was the intercept is now a variable
and the term with Xo; in the original model is now the intercept. Rewriting,
we have:

)217 51+B +M+yz,whereylfx
We can show that v; "N (0, Cﬁ using the same process as we did in the section
of the known variances. Since our model now meets the assumptions of the

Gauss-Markov theorem we know that we have best linear unbiased estimators.

1.3 Tests for heteroscedasticity

We will now discuss two formal tests for heteroscedasticity. I will not go into
the intricate details of these tests, but I will try to provide some intuition be-
hind them. For those of you interested in the intricate details, see Breusch
and Pagan (1979), “A Simple Test for Heteroscedasticity and Random Coeffi-
cient Variation,” Econometrica, vol. 47, pp. 1287-1294 and White (1980), “A
Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity,” FEconometrica, vol. 48, pp. 817-838. I will warn you in
advance that these are fairly difficult articles to read, and they require knowl-
edge of matrix algebra (among other things).

1.3.1 Breusch-Pagan test

For the Breusch-Pagan test, begin with the usual regression form, ¥ = £, +
52X2 +e€.

Now, assume that the error variance, o<, is a function of some variables, or

= f(y+0Z). We will assume that the error variance is a linear function of
an intercept and one or more independent variables, the Z’s. The Z could be
the independent variable X5, or the Z could be some other variable or group of
variables. One problem with the Breusch-Pagan test is that we have to make
a guess as to what the Z variable(s) is based on our knowledge of the problem.
Another “problem” with the Breusch-Pagan test is that it relies on a normally
distributed error term.

2

Procedure The procedure for performing the Breusch-Pagan test works as
follows.

1. Run the regression Y = 8 + 85 Xo + ... + B, X + €

2. Obtain the residuals, which are the &;’s, from this regression



3. Calculate the estimated error variance, 62 = N

A2
4. Run the regression G = v+ 90Z; + v;, where v; is the error term and

I

is the intercept

5. Note the regression sum of squares (RSS) from (02)2 =v+dZ;+v;
Hypothesis testing The hypothesis test involves the use of one-half the re-
gression sum of squares from above.

1. Hy : Homoscedasticity vs. H4 : Heteroscedasticity

2. RTSSNXIQ), where p is the number of Z variables included in the regression

in step 4 above

3. Reject the null if the test statistic is greater than the critical value

The intuition behind this test is that the larger the regression sum of squares
from the regression in step 4 is, the more highly correlated Z is with the error
variance, and the less likely the null hypothesis will hold. You should note that
if you reject the null hypothesis that you are ONLY rejecting heteroscedasticity
for the particular Z variable(s) you have used in step 4. Heteroscedasticity
may still be present in your model, you just haven’t found the cause of it yet.
A suggestion for correcting for heteroscedasticity would be to include the Z
variable in the original regression (if it is not already included) or to use weighted
least squares, as described in the section above.

1.3.2 The White Test
The White test is very similar to the Breusch-Pagan test, only it does not depend
on the assumption of a normally distributed error term.
Procedure
1. Run the regression Y = 3, + B, X0 + ... + 8, X, + ¢
2. Obtain the residuals, which are the &;’s, from this regression

3. Run the regression (&;)2 = v+ §Z; + v;, where v; is the error term and ~y
is the intercept

4. Note the R? and the number of observations (N) from the regression
(E—AZZ)2 =7+ 0Z; +v;

As you can see this is very similar to the Breusch-Pagan test. However, with
22
the White test we do NOT use (ZQ) as the dependent variable in our second

€

regression, but (£;)%.



Hypothesis testing
1. Hp : Homoscedasticity vs. H4 : Heteroscedasticity

2. Nx R2~X[2,, where p is the number of Z variables included in the regression
in step 3 above

3. Reject the null if the test statistic is greater than the critical value

Once again, failing to reject the null hypothesis does NOT mean that there
is no heteroscedasticity in your regression model. It does mean that any het-
eroscedasticity that does occur is NOT likely to come from the Z variable(s).

Since both the White and Breusch-Pagan test are so similar, either can
usually be applied with the same amount of effort. Therefore, what is most
important is the choice of the Z variable(s). White suggests using combinations
of Z and Z? if Z is suspected to cause the heteroscedasticity or X, Z, and XZ
if X and Z are suspected to cause heteroscedasticity jointly.

2 Serial Correlation

Serial correlation occurs when the occurrence of a particular value of a random
variable has some effect on the next random variable drawn from the probability
distribution. In regression analysis, we are concerned that our error terms may
be serially correlated. This would violate assumption 5 of the Gauss-Markov
theorem. Recall that we assume that error terms are independent, meaning
one error term does not affect the other error terms.

Serial correlation poses a problem for us because it affects the efficiency of our
parameter results. This occurs because the standard errors of our estimators
are smaller than they should be, which leads us to rejecting the null hypothesis
more often than we should (recall that the test statistic for checking 8 = 0 is

55 and if s B is smaller than it really is then we will have a larger test statistic,
leading us to reject the null hypothesis more often).

The problem of serial correlation is shown by the following model. Suppose
we have our regression equation (I have used ¢ subscripts instead of is because
serial correlation often occurs with time series data):

Y, = By + By Xop + B3 X3¢ + ... + B, Xkt + &4

Now suppose €; = pey_1 + v, where 0 < |p| < 1, ;" N(0,02) with indepen-
dent errors and ¢, N(0,02). Also, assume that v, and ¢; are independent, for
all ¢.

The process described above, ¢, = pegs_1 + vy, is known as a first-order
autoregressive process. It is abbreviated as an AR(1). It is a first-order
autoregressive process because ¢; depends on “only” its lagged value (g;—1) and
a random error term with zero mean (v;).

There are three “useful” results we can show with AR(1) processes:

1. The effect of an error term in any given time period is felt in all future
periods, with a magnitude that diminishes over time.



2. Cov(es,e4_1) = pFo?, for all k >0

g

3. pF = Correlation(ss, e¢_1,)

Cov(eg,er—1) = E(er — E'ey]) (et—1 — E [et—1])] = E'[e1e4-1] since E [g¢] =
FE [é?tfl] =0

E [51‘,51‘,—1] =F [(pgt—l + I/t) €t—1] =F |:p (Et_l)Q + €t_1Vt:| =F [p (5t—1)2:|+
Ee-1v4]

Now, the last term, F [e;_1v¢], equals zero because ;1 and v; are indepen-
dent. This leaves us with:

Cov(eg,e-1) =E [p (Et,1)2} =pkE {(525,1)2}, since p is a constant
2

e

But we know F [(Et,l)ﬂ =0z, so:

Cov(et,e1-1) = po?

We can also show:

Cov(et,e1-2) = p?o?

Cov(gy,e4—3) = p3o?

We can show the first by plugging in for £; (we would then have an equation
with ;1 and &;_5). Then plug in for ;1 so that we only have an equation
with e;_5. For the second we would need to plug in for ;5 so that we would
only have an equation with ;_5.

Now, we can show that Corr(es, e4_1) = p*.

Recall that Corr(a,b) = %
2

For any €, and €;_y, the denominator will be ¢Z. This is because Var(e;) =
02 and Var(e;_y) = o2. If we multiply the two together and take the square

root, we get 1/(02)*> = 02.  Now, the numerator will be p¥o2 based on our

k _2
formula above for the covariance. This means the correlation will be 3= = p*.

What does this mean for us? It means that whatever happened “at time
t — k will have a p* effect on what happens at time ¢. Notice that this effect
is SMALLER than the effect that ¢t — & would have at time ¢ — 1 (the effect
would be pF~1) because as we raise p to higher powers the number becomes
SMALLER (because 0 < |p| < 1). This shows our first point and the others

have been shown throughout.

2.1 Corrections for serial correlation

Since the Gauss-Markov assumptions are not met we need to know how to trans-
form the regression model so that the assumptions are met. The basic process
is called generalized differencing, and is described below. All of the processes
below involve generalized differencing, and the purpose of the Cochrane-Orcutt
and Hildreth-Lu procedures is to show how to estimate p when it is unknown.



2.1.1 Generalized differencing

Once again we start by assuming that we know what p is, just like we assumed
that we knew the form of the heteroscedasticity in the section above. Here is
the model we will use:

Y, = ﬂ1 + /82X2t + BgXSt + &

This looks like every other model, only now: ¢; = pe;—1 + vy. What we
need to realize is that the model holds FOR ALL time periods. So we have the
“same” model for time ¢t — 2,t — 1,¢,t 4+ 1,t + 2 etc. Thus,

Yio1 =81 + B2Xou—1) + B3X30-1) + €11

where Et—1 = PEt—2 + V1.
Now, to perform generalized differencing, we multiply the equation with Y;_;
as the dependent variable by p. This gives us:

pYi—1 = pBy + pBaXa—1) + pBsX3(t—1) + pet-1

Now, subtract the equation with pY;_; as the dependent variable from the
equation with Y; as the dependent variable. This gives us:

Yi—pYi—1 = (B1—pB1)+(B2Xat—pBaXo—1))+(B3 X3t —pB3X3(—1))+(et—pei—1)

We now have a “new” model,

Y = B1(1 = p) + B X3, + B3 Xz + 1y

where:

o V=Y, —pYi1

o X3, = Xot — pXap—1)
o X3 = Xgt — pX3-1)
® [y =&t — PEt—1

Our “new” model will satisfy all of the Gauss-Markov assumptions. To see
this we need to look at the Cov(py, ;). If Cov(py, pty_1) = 0 then we will not
have serial correlation in the model. By definition, Cov(p,, p;_1) = El(p, —
Elpw))(py—1 — E[ps_1])].  We need one piece of information first, E[u,] = 0
for all ¢. This is because u, = € — per—1.  So Elu,) = Eler — pei—1] =
Elet] — Elpet—1] =0— p0 = 0. Now,

Cov (g, py—1) = El(py — Elpg]) (-1 — Elpy1])]

Reason: By definition

El(pe — Elp]) (-1 — Elpy_1])] = Elppne ]
Reason: The result shown above where E[u,] = 0.



Elpypy ] = E[(er — per—1)(et—1 — per—2)]

Reason: By substitution

El(er — pei—1)(gt—1 — pet—2)| = Elerer—1 — p(e1—1)* — perer—a + pPer_164-2]

Reason: Expansion of terms

Eleter—1 — pler-1)? — perer—a + pPer16i-2] = Elerer ] — Elp(er-1)?] —
Elpeies_o] + Elp*et_164_2]

Reason: Properties of the expectations operator

Eleter—1] — Elp(er—1)?] — Elperer—a] + Elp’er_161-2] =

Cov(ges_1) — pVar(ei_1) — pCov(eses_2) + p?Cov(es_164_2)

Reason: Definitions of variance and covariance when random variables have
a zero mean.

Cov(ees_1) — pVar(ei—1) — pCov(gies_o) + p>Cov(et_16¢_2) = po? — po? —
P02 + pPo?

Reason: Use the results derived in the section above.

po? — pa? — p3o? 4+ pPo? =0

Reason: Addition

So our new model has error terms that are NOT serially correlated, and we
can now obtain parameter estimates for the 3 coefficients that are efficient. You
should note that if the original model has T" observations that the “new” model
only has T'— 1 observations. This is because we lose the first observation from
the differencing process (since we have nothing to subtract from it). Also, we
have assumed that we know p. If we do not know p we must estimate it. Two
procedures for estimating p are listed after the small section on first differencing.

First differencing First differencing is a special case of generalized differenc-
ing. First differencing sets p = 1 and then performs the process of generalized
differencing. One important note is that a constant term is NOT included in
a model that is first differenced. To see this note that the constant term in
our generalized differencing model is 3;(1 — p). If p = 1, then the constant
term drops out of the equation. We can calculate the constant term from its
formula, 3; = Y — 3,X2 — 33X3. I mention first differencing for two reasons.
One is because it is a very common “quick and dirty method” for removing
serial correlation. The second is because the case of p = 1 is the source of
many debates in the economics and statistics literatures (it is usually discussed
as a “unit root”). The reason is because if |[p| < 1 then we have a well-defined
problem. If [p| > 1 then we have a very badly behaved problem. But if [p| =1
then we have a problem that is between well-defined and very badly behaved.

2.1.2 Cochrane-Orcutt procedure

One procedure that we can use to estimate p is the Cochrane-Orcutt proce-
dure. The Cochrane-Orcutt procedure involves an iterative method of esti-
mating p. The first thing we do is run the original regression model, ¥; =
B1 + By Xot + B3X3: + €. Notice that this equation has not been transformed
by the generalized differencing process. Once we have estimated the regression



model, we then take the residuals of that model (the &;’s) and estimate the
following model:

&t = per1+ Vs

Since the &;’s are now “data” we can obtain an estimate for p using the least
squares procedure. Once we obtain an estimate for p (I will call it p, for the
“first estimate of p”), we take this estimate of p and use it as the value of p in
our generalized differencing equation.

Now, run the generalized differenced equation. Obtain the residuals from
that regression. Run the regression of & = pe;_1 + v; using the residuals from
the generalized differencing equation. We will now get a new estimate of p, call
it py. Now take p, and use it as the estimate of p. Run a second generalized
differenced regression using p, as the value of p. Obtain the residuals from that
equation and reestimate p. You can continue this process until two successive
estimates of p “change very little”. Generally we call this the tolerance level.
If you set your tolerance level to 0.001 this means that your iterative procedure
will stop when two successive estimates of p are less than 0.001 apart. You then
use either estimate of p as your “true value” and run the generalized differenced
regression using that value.

There is one big problem using the Cochrane-Orcutt method. The value
of p obtained may NOT be the value of p that minimizes the sum of squares.
This could occur if your sum of squares function was very badly behaved. In
that case, you could actually iterate to a local rather than a global minimum.

2.1.3 Hildreth-Lu procedure

The Hildreth-Lu procedure involves a method of grid searching for the true
value of p. To perform a grid search the first thing you need to do is set up
your grid values. Since p has to be between —1 and 1, we know that we can
only choose values within that range. Suppose we thought that positive serial
correlation is likely. Then we might set up a grid as 0, .1, .2, .3, 4, .5, .6, .7,
.8, and .9. This means we will run 10 regressions, each one with a different
value of p, where the values of p are given by our grid choice. We then find
the value of p that minimizes the sum of squared errors (just use the regression
model with the lowest ESS). Suppose it is .3. We can now do another grid
search around .3. We could choose .26, .27, .28, .29, .3, .31, .32, .33, and .34
as our new grid. We could then estimate 9 more models using our new grid
as our values for p. Now choose the model with the lowest ESS from the new
models, and use that estimate of p as your true p. We can make the grid as
fine as we like. One problem with this method is that we may again find a local
rather than a global minimum. For instance, suppose the true value of p was
.62. If the model with .3 had a lower ESS than the one with .6 then we may
start expanding the grid around .3 rather than .6. Thus we may find that of
all the models we have run that .34 has the lowest ESS, but that is because we
started expanding the grid around .3 and not around .6.



2.2 Tests for serial correlation

So far we have discussed methods of correcting for serial correlation and esti-
mating p. Now we will discuss a statistical test for detecting serial correlation.

2.2.1 Durbin-Watson Test

The most popular test for serial correlation is the Durbin-Watson test. For-
mally, the null hypothesis is no serial correlation or Hy : p = 0. The Durbin-
Watson test statistic is provided by the following formula:

T
> (@ —eia)?
=2
DW = =
> (&)
t=1

Note that in the numerator we use only T'— 1 terms since we have no residual
to subtract the first residual from. Also, the Durbin-Watson statistic will fall
between 0 and 4. We can see this by making some approximations in the
formula. The approximation we can use is DW = 2(1 — p). Plugging in a
value of 1 (the highest value p can take) for p gives us 0. Plugging in a value
of —1 (the lowest value p can take) for p gives us 4. This also gives us some
insight as to what values of the Durbin-Watson statistic are going to lead to
positive serial correlation, no serial correlation, and negative serial correlation.
A Durbin-Watson test statistic that is close to 0 tells us that positive serial
correlation is present. A Durbin-Watson test statistic that is close to 4 tells us
that negative serial correlation is present. A Durbin-Watson test statistic close
to 2 tells us that there is no serial correlation.

The Durbin-Watson test is slightly different than the classical statistical tests
we have been using so far in the class. The normal, chi-square, t-distribution,
and F-distribution are all well-defined statistical distributions. The “Durbin-
Watson distribution” (for lack of a better term) involves approximating the
critical values. You can find the table in the back of the book for the Durbin-
Watson statistic. To use the table you need to note 2 things. You need to know
the number of regressors (excluding the constant term, so k — 1) as well as the
degrees of freedom. Also, there are critical values for upper and lower portions
of the test. Since the Durbin-Watson test is used to test for serial correlation
(and not specifically only positive or negative serial correlation) we need to have
critical values that will let us determine if positive or negative serial correlation
is present. So, how do we perform the Durbin-Watson test?

The null hypothesis is that there is no serial correlation (Hy : p = 0). The
alternative hypothesis is H4 : p # 0. We can use the following table to
determine if we reject the null hypothesis in favor of positive serial correlation
or negative serial correlation.
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Value of DW Result
4-dl<DW < 14 Reject null hypothesis; negative serial correlation
4-du < DW < 4-dl Result indeterminate
du < DW < 4 - du Fail to reject null hypothesis
dl < DW < du Result indeterminate
0 < DW < dl Reject null hypothesis; positive serial correlation
In the table dl stands for the lower value of the Durbin-Watson distribution
for the given number of regressors and the given degrees of freedom. The term
du stands for the upper value of the Durbin-Watson distribution for the given
number of regressors and the given degrees of freedom. Once we find these two
numbers from the Durbin-Watson distribution, plug them into the table and you
will have ranges which will allow you to accept or reject the null hypothesis.
Two caveats need to be made when using this particular test. One is that
the regression model MUST include a constant term. The other is that the
regression model CANNOT include lagged dependent variables as independent
variables (well, it can, you just won’t be very likely to find serial correlation
present even if it is present). This means that if your regression model is in
the form of V; = 8, + B5Yi—1 + B3X3: + € you are very unlikely to find serial
correlation present if you calculate the Durbin-Watson statistic.
DO NOT worry about memorizing the table for the exam!!! T will provide
the table for you if necessary.
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