
Chapter 7 outline, Econometrics
Instrumental variables and model estimation

1 Correlation between an independent variable
and the error

Recall that one of the assumptions that we make when proving the Gauss-
Markov theorem is that the independent variables are not correlated with the
error term. This is an implicit assumption we make when we assume that the
independent variables are nonstochastic. However, it is possible that the error
term and independent variable are correlated. When that occurs our estimator

for �̂ becomes biased. To see this, note that �̂ =
�

X
(Xi� �X)

2
+

X
(Xi� �X)"X

(Xi� �X)
2

=

� +

X
(Xi� �X)"X
(Xi� �X)

2
. If we take the expected value of �̂ , we get: E[�̂] = � +X

(Xi� �X)E["]X
(Xi� �X)

2
= � because the E["] = 0. However, this only holds IF (A VERY

BIG IF �VERY, VERY BIG IF) the independent variables are NOT correlated
with the error term. If the independent variables are correlated with the error
term, then we CANNOT take the expectations operator through the indepen-

dent variables (the X�s). We would need to �nd out the E
hX�

Xi � �X
�
"
i
,

which will be NOT be equal to zero if Xi and " are correlated. To see this note
that we would have:X

(E[Xi"] � E[ �X"]). If Xi and " are not independent then E[Xi"] 6=
E[Xi]E["], and this term does not equal zero. Thus we will have a biased
estimator of �̂.

2 Measurement error of variables

We will discuss three cases of measurement errors in variables. First we will
discuss what problems arise if only Y is measured with error, then if X is
measured with error, and then if both X and Y are measured with error.

2.1 Measuring Y with error

Consider the following model:
Y = �1 + �2X2 + "
We know that if all of our assumptions hold that �1 and �2 are best linear

unbiased estimators. What happens if Y is measured with error? Suppose we
observe the following Y � instead of the �true�Y , where Y � is given by:
Y � = Y + �
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Also suppose that Cov("; �) = 0.
Substituting into our initial model we get:
Y � = �1 + �2X2 + "+ �
When we estimate this model we do not account for the fact that Y is

mismeasured and we regress Y � on a constant and X2. Luckily for us, if
Cov("; �) = 0, then our estimate for �2 will still be unbiased and consistent,
and we can perform the same statistical tests that we have been performing
throughout the course. Thus, measuring Y with error does not pose a serious
problem for our estimation of the parameters.

2.2 Measuring the X�s with error

Consider the same model from above,
Y = �1 + �2X2 + "
Now suppose that we do not observe X2, but instead we observe a mismea-

sured X�
2 , where:

X�
2 = X2 + �

Can we still obtain our best linear unbiased estimates of the slope parameter
�2?
The regression model that we will run with the mismeasured X�

2 is:
Y = �1 + �2(X

�
2 � �) + "

This becomes:
Y = �1 + �2X

�
2 + ("� �2�), or

Y = �1 + �2X
�
2 + "

�, where "� = "� �2�
Recall that one of our assumptions needed for the Gauss-Markov theorem

is that X and " are uncorrelated. Recall that X and " will be uncorrelated if
Cov(X; ") = 0. Also recall that Cov(X; ") = E [(X � E [X]) ("� E ["])]. For
our example, we want Cov(X�

2 ; "
�) since this is the covariance we are concerned

with in the actual regression model we run. What is Cov(X�
2 ; "

�)? We will
make a few assumptions �rst.

1. Assume Cov(�; ") = 0

2. Assume �~N(0; �2�)

3. Assume Cov(�;X2) = 0

4. Assume (for simplicity) E [X2] = 0

5. Assume Cov [X2"] = 0 (this is the classical model assumption)

Then,
Cov(X�

2 ; "
�) = E [(X�

2 � E [X�
2 ]) ("

� � E ["�])]
By substitution
= E [(X2 + � � E [X2 + �]) ("� �2� � E ["� �2�])]
By the facts that E [X2 + �] = 0 and E ["� �2�] = 0
= E [(X2 + �) ("� �2�)]
By expanding the two terms,
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= E
�
X2"+ �"� �2vX2 � �2�2

�
By the properties of expectations operators
= E[X2"] + E[�"]� E[�2vX2]� E[�2�2]
You need to recall that if A and B are random variables with means of zero,

then Cov(A;B) = E[(A � E[A])(B � E[B])] = E[AB]. Using that result and
our assumptions,

� E[X2"] = Cov[X2"] = 0

� E[�"] = Cov[�"] = 0

� E[�2vX2] = �2E[vX2] = �2Cov[vX2] = 0

The results in the bullet points give us
Cov(X�

2 ; "
�) = E[X2"]+E[�"]�E[�2vX2]�E[�2�2] = 0+0�0�E[�2�2] =

�E[�2�2]
Recall the result that if A has zero mean, then V ar(A) = E[(A�E[A])2] =

E[A2]
We now have:
Cov(X�

2 ; "
�) = ��2E[�2] = ��2�2�

Thus, even WITH all the assumptions we made, X�
2 and "

� are STILL
correlated, and our least squares estimators of the slope coe¢ cient will be biased
and inconsistent.

2.3 Measuring Y and X with error

I will appeal to logic rather than rigorous mathematics in this section, and I
will not require any derivations to show that coe¢ cient estimates are biased in
this case. However, we have seen that if Y is measured with error we have
no serious consequences to our coe¢ cient estimates. We have also seen that
if X is measured with error than our estimated coe¢ cients will be biased and
inconsistent. Is there any logical reason to think that if we measure both X
and Y with error that our estimated coe¢ cients will return to being the best
linear unbiased estimators of the coe¢ cients? Probably not. As the old saying
goes, �Two wrongs don�t make a right�.

3 The Instrumental Variables (or IV) estimator

In this section I will only brie�y describe the concept of the IV estimator so
that you are familiar with it. As we will see, one of the problems with the IV
estimator is that while it exists in theory it is practically very di¢ cult to �nd a
good �instrument�.
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3.1 The estimation problem

We have already seen that the estimation problem that we have is that our slope
coe¢ cient will be biased and inconsistent if we have errors in measurement of
our independent variables because the regressor will be correlated with the error
term.

3.2 The solution

Assume that X is mismeasured. A solution to the estimation problem above is
to �nd a variable, Z, that meets two assumptions:

1. Z is highly correlated with X

2. Z is uncorrelated with any measurement error (either � or � mentioned
above) as well as uncorrelated with the regression error term (")

As you can probably tell this is not going to be easy. We need to �nd some
variable that is highly correlated with X and is also NOT correlated with any
of the errors in the model. If we can �nd this Z variable, then we can calculate
the slope coe¢ cient (in a simple two-variable regression) as:

� =

NX
i=1

(Yi� �Y )(Zi� �Z)

NX
i=1

(Xi� �X)2

This particular formula for the slope coe¢ cient will lead to consistent esti-
mates of the �true� slope coe¢ cient. One interesting thing to notice is that
ordinary least squares is a special case of this instrumental variables technique.
This is because if X is not measured with error and it is uncorrelated with the
regression error term, we can replace Z with X. We also know that X will be
perfectly correlated with X, which satis�es assumption 1.
There is one other small problem with instrumental variable estimation. If

ALL of the independent variables in a multiple regression model are measured
with error, then ALL of the independent variables need to be replaced with
instrumental variables.

4 Speci�cation Error

Thus far we have been assuming that the models we are estimating are the
�correct�or �true�models. ALL of the statistical testing we have done makes
this assumption, that the unrestricted model is the �true�model. However,
suppose we estimate an incorrect or untrue model �how does this a¤ect our
least-squares estimates? We will discuss two types of untrue models � those
models where irrelevant variables are included in the regression, and those mod-
els where relevant variables are omitted from the regression.
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4.1 Including irrelevant variables

Suppose the �true�regression model is given by:
Y = �1 + �2X2 + "
Suppose we estimate:
Y = ��1 + �

�
2X2 + �

�
3X3 + "

�

If you want to think of this in terms of the models we have run in class,
think of X3 as a dummy variable for whether the owner of a house has brown
eyes. This should not a¤ect the selling price of the house, and thus X3 should
NOT be included in our regression. But suppose we include it. Does it harm
any of the results?
We can show two results. First, we need to �nd the estimator for ��2. We

can show (by either solving the least-squares equations for ��2 or by recalling
that we solved those equations in chapter 4) that:

�̂
�
2 =

(
P
(X2i� �X2)(Yi� �Y ))

�P
(X3i� �X3)

2
�
�(
P
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2
��P

(X3i� �X3)
2
�
�(
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2

We can also show that:

�̂
�
2 = �2+

(
P
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2
�
�(
P
(X3i� �X3)("i))(

P
(X2i� �X2)(X3i� �X3)�P

(X2i� �X2)
2
��P

(X3i� �X3)
2
�
�(
P
(X2i� �X2)(X3i� �X3))

2

Now, taking the expected value of ��2, we get:

E[�̂
�
2] = E

�
�2 +

(
P
(X2i� �X2)("i))

�P
(X3i� �X3)

2
�
�(
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2

�
But, assuming the X�s are uncorrelated with ", we know that the expected

value of the second term in the brackets (the really long ugly term) is equal to
zero. So we are left with:
E[�̂

�
2] = E[�2] = �2

Thus, �̂
�
2 is an unbiased estimator of �2. This is good news. We can also

show that �̂
�
1 is unbiased and that the expected value of �̂

�
3 is zero.

What we do lose when an irrelevant variable is included is e¢ ciency, because
unless X2 and X3 are uncorrelated, V ar(�̂

�
2) is greater than V ar(�̂2). What

we could show is that the estimated variance of �̂
�
2 is an unbiased estimator of

the variance of �̂2, and all of our statistical tests will be valid.

4.2 Omitting a relevant variable

A larger problem occurs if we omit a relevant variable. Assume the true model
is:
Y = �1 + �2X2 + �3X3 + "
Suppose we run the following model:
Y = ��1 + �

�
2X2 + "

�

We can show that the least squares estimator for ��2 is:

�̂
�
2 =

(
P
(X2i� �X2)(Yi� �Y ))�P
(X2i� �X2)

2
�

We can then show:

�̂
�
2 =

�2
P
(X2i� �X2)

2
+�3(

P
(X2i� �X2)(X3i� �X3)+(

P
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2
�
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Since the X�s are �xed and E["] = 0, the last term has expected value of
zero and drops from the equation. We can then show:

E[�̂
�
2] = �2 + �3

(
P
(X2i� �X2)(X3i� �X3)�P
(X2i� �X2)

2
� = �2 + �3

Cov(X2;X3)
V ar(X2)

Unless Cov(X2; X3) = 0, our estimate for �2 will be biased if we fail to
include all the relevant independent variables. More importantly, this estimator
is inconsistent, meaning that if we draw more and more observations the bias
will not go away.
The important result of this equation is that the sign of the bias can be

determined if we know whether the Cov(X2; X3) is positive or negative and
whether �3 is positive or negative. Also, we can see that if the Cov(X2; X3)
is very small, and the coe¢ cient �3 is also very small, then the bias of our
estimate for �2 should be small (especially if V ar(X2) is large). This suggests
that our estimates will not be badly biased if the variables we fail to include are
not that important in determining the dependent variable and/or are not very
highly correlated with the other independent variables.

4.3 E¢ ciency vs. bias

The question now becomes which should we be more concerned about, e¢ ciency
or bias. If we include irrelevant variables we lose e¢ ciency, while if we omit
relevant variables we obtain biased and inconsistent estimates. On a theoretical
level, if the sample size is large this suggests we would favor including irrelevant
variables over possibly excluding relevant ones, since the loss of e¢ ciency will
decline the larger the sample size. However, this goes AGAINST every thing I
have been telling you to do when you build your models �it suggests you include
all possible variables and then exclude the ones that are irrelevant, whereas I
have been telling you NOT to use the �kitchen sink� approach. It is still a
better idea to have your models based on some theory or intuition rather than
to include every variable you can �nd, as this will make interpretation and
presentation of the results much clearer if you can appeal to intuition to explain
why the result is what it is.

5 Speci�cation tests

Most of the formal tests for speci�cation error involve techniques that we will not
discuss in this class. However, I will list two types of tests that are frequently
used:

1. Likelihood ratio test

2. Hausman speci�cation test

However, there are a few ways to do �non-statistical� or �eyeball� tests of
the data to see if measurement error occurs.
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5.1 Regression Diagnostics

The best way to ensure that the estimates you obtain from a regression model
are �good�estimates is to make sure that the data you have is very clean. When
all is said and done, good, clean data are better than any fancy econometric
techniques that an economagician can conjure up. This suggests that one of
the MOST important things you can do as an empirical economist is spend time
looking at your data. Now, no one will know if every data point is accurate, but
you can help yourself out if you can �nd data points that seem to come out of
nowhere. While it is true that some of these data points are accurate, at times
you may be able to spot mistakes. There is one example of a researcher who
estimated returns to education and obtained a very di¤erent estimate than most
of the other estimates around that time period. When he looked back over his
data he realized that the years to schooling column had been set to �99 if the
information was not provided. Including all of these �99�s as years of schooling
had an in�uential e¤ect on his results, and when he corrected the problem his
results more closely paralleled the other results of the time. Also, I have just
recently downloaded data from the National Income and Product Accounts to
look at something for one of my own projects (the data has since been removed
from my computer due to the fact it was carrying a virus, so be careful when
downloading data!). This data had similar numbers for missing observations,
and if I had blindly used the data I would have obtained �incorrect�estimates
had I run any regressions with the data. Below are two methods you can use
to diagnose some of the in�uential data points in your data set. Be aware
that some of them may be in�uential because they truly ARE in�uential, while
others may be in�uential because they have been mismeasured.

5.1.1 Regular residuals

Assume that we estimate the following model:
Y = �1 + �2X2 + �3X3 + �4X4 + "
Recall that the residual, "̂, is given by:
"̂ = Y � Ŷ
If we look at the residuals from a regression model, one method of deter-

mining where the �outliers�in the data might be is to look for large residuals.
If a particular observation of Y generates a large residual this means that the
coe¢ cients and the corresponding X�s do not do a good job of predicting Y .
This suggests that the regression line is far away from that data point. This
also suggests that the observation of Y (or one of its corresponding X�s) may
have been mismeasured. Again, it is di¢ cult to know if the variable has been
mismeasured unless you are very familiar with the data, and I do not suggest
removing all data points that have �large� residuals. You could however run
another model without the data point that has a large residual and see if your
estimates change �signi�cantly�. If they do then this suggests the data point is
in�uential �if they don�t then this suggests the data point is not that in�uential
even if it has a large residual.
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Other uses for residuals will be discussed in chapter 6.

5.2 Studentized residuals and DFBETAs

Looking at the actual residuals is not always helpful however. It could be the
case that one observation is so in�uential that it causes the regression line to
run very near it, even though the true regression line does not. Two methods
that may be useful in �nding in�uential data points are studentized residuals
and DFBETAs. Both of these methods require removing an observation and
reestimating the regression model. For studentized residuals, what one does
is look at the residual generated for the ith observation of the regression line
that is obtained when that observation is omitted. What this means is that we
run the regression WITHOUT that observation, and then obtain the residual
from the regression without that observation. We do this by calculating the
predicted value of Y , or Ŷ , using the regression coe¢ cients obtained without
the variable. We then divide by the standard error of the regression model to
obtain a standardized residual. Naturally this could be a very lengthy process
�luckily SAS has a very nice method for calculating studentized residuals. I
will post a homework that instructs you how to obtain studentized residuals in
SAS over spring break. When I obtained studentized residuals for the model
wage = �1 + �2tenure + �3age + �4school + ", I obtained about 380 that
were greater (in absolute value) than 1:96 (which is the 5% critical value for
9154 observations). This suggests that there are about 380 observations that
may be considered as outliers. Of course, we have very little way of knowing
what to do with those outliers, but we do know we should take a closer look at
them. We can also use our studentized residuals to check to see if our normality
assumption holds. If more than 5% of the observations lie outside the interval
(�1:96; 1:96), then our normality assumption may be questionable. In our case,
we have 380

9154 = :0041512, which is less than 5%. If we wanted to test at the 1%
level, we have about 200 studentized residuals greater (again in absolute value)
than 2.57. Since 200

9154 = :002184 8 is less than 1%, we can conclude that our
data is fairly normally distributed. There are other formal tests that one can
perform, but these work as informal tests.
We can also use DFBETAs to test for in�uential data points. A DFBETA

is a concept similar to a studentized residual, only now we are looking at stan-
dardized regression coe¢ cients. To �nd a DFBETA we take the regression
coe¢ cient for the model with all of the observations and subtract the regression
coe¢ cient obtained from the model with the observation omitted. We then
take the di¤erence and divide by the standard error of the regression coe¢ cient
obtained from the model with the observation omitted. One method of looking
at DFBETAs suggests �nding DFBETAs that are greater in absolute value than
1.96; another suggests that as the sample size grows the chance that a particular
observation is in�uential declines, so a better �critical value� to use would be
2p
N
, where N is the number of observations.
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