
1 Describing Mixed Strategy Nash Equilibria

Consider the following two games.
The �rst game is one you might be familiar with: Rock, Paper, Scissors. In case you are not, in this

game there are 2 players who simultaneously determine which object to form with their �ngers. Each player
has 3 strategies � form a Rock, form Paper, or form Scissors. If both players form the same object then
they tie and receive 0. If one player forms a Rock and the other forms Scissors then Rock wins and receives
a payo¤ of 1 while Scissors loses and receives a payo¤ of �1. If one player forms Scissors and the other
forms Paper then Scissors wins and receives a payo¤ of 1 while Paper loses and receives a payo¤ of �1. If
one player forms Paper and the other forms Rock then Paper wins and receives a payo¤ of 1 and Rock loses
and receives a payo¤ of �1. Essentially, Rock smashes Scissors, Scissors cut Paper, and Paper covers Rock.
The normal form version of the game is:

Player 2
Rock Paper Scissors

Rock 0; 0 �1; 1 1;�1
Player 1 Paper 1;�1 0; 0 �1; 1

Scissors �1; 1 1;�1 0; 0
Now consider a slightly simpler game, Matching Pennies. In this game there are two players who move

simultaneously. Each player places a penny on the table. If the pennies match (both heads or both tails)
then Player 1 receives a payo¤ of 1 and Player 2 receives a payo¤ of (�1). If the pennies do not match (one
heads and one tails), then Player 1 receives a payo¤ of (�1) and player 2 receives a payo¤ of 1. The matrix
representation of the game is here:

Player 2
Heads Tails

Player 1 Heads 1;�1 �1; 1
Tails �1; 1 1;�1

Note that neither player has a dominant strategy nor a dominated strategy in either Rock, Paper, Scissors
or Matching Pennies. We can then look at the best response correspondences for the players by enclosing
the payo¤s in a square. For Rock, Paper, Scissors we have:

Player 2
Rock Paper Scissors

Rock 0; 0 �1;1 1;�1
Player 1 Paper 1;�1 0; 0 �1;1

Scissors �1;1 1;�1 0; 0
For Matching Pennies we have:

Player 2
Heads Tails

Player 1 Heads 1;�1 �1;1
Tails �1;1 1;�1

There is now a problem. Nash�s theory says that an equilibrium exists if there are a �nite number of
players and if each of those players has a �nite number of strategies. There are 2 players (fairly �nite) and
each player has 3 strategies or 2 strategies (also fairly �nite). But there are no outcome cells that have both
payo¤s enclosed. Is Nash wrong?

1.1 Playing strategies with probabilities

Thus far in the course we have considered only strategies which are played 100% of the time. A strategy
that is played 100% of the time (like Confess in the Prisoner�s Dilemma) is known as a pure strategy. All the
strategy choices listed in the strategic form of the game are pure strategies. However, players may choose to
select a strategy randomly from among their set of strategies �this is how some of the "professional" Rock,
Paper, Scissors players make their strategy choices.1 Intuitively this should make sense �one could never
rationally ALWAYS choose Rock and have this choice be part of a Nash equilibrium to the game.2 If one

1The "professional" players being professional poker players who play Rochambeau (Rock, Paper, Scissors) in addition to
playing poker.

2Simpson�s Episode:
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ALWAYS chose Rock, then opposing players would ALWAYS choose Paper and would win every single time.
But this cannot be a Nash equilibrium to the game, because if opposing players ALWAYS choose Paper, then
the player who chooses Rock would like to switch to Scissors. Then the opposing players would like to switch
to Rock, then the player would like to switch to Paper, now the opposing players are choosing Scissors, and
now the original player chooses Rock. Thus, there is no equilibrium if we consider only strategies which
must have a 100% weight on them �basically, someone always wants to switch strategies, which violates are
notion of equilibrium meaning "at rest".
The question is how do we �nd the probabilities so that no player wishes to switch strategies? There is a

theorem �I will spare you all the gory details of this theorem �that essentially states that a set of strategies
is a mixed strategy Nash equilibrium if and only if the players are indi¤erent among their pure strategies.
Think about what this means in the Rock, Paper, Scissors game. It means that Player 2 would have the
same expected value if Rock were chosen or if Scissors were chosen or if Paper were chosen. This is only
true for strategies that a player would play as a best response, so that a strictly dominated strategy would
NOT have to meet this requirement (it would be impossible for a strictly dominated strategy to meet this
requirement and still satisfy the laws of probability).

1.2 A digression on probability and expected value (or expected utility)

Before beginning the discussion on how to �nd a mixed strategy Nash equilibrium (MSNE) there needs to
be a short refresher on Kolmogorov�s axioms of probability and expected value.

1.2.1 Axioms of Probability

These are Kolmogorov�s three axioms:

1. The probability that an event will occur is greater than or equal to 0. No negative probabilities,
although some probabilities can be 0.

2. The probability that some event will occur is 1. Basically, something happens.

3. The sum of the probabilities of the events is 1. Taken together with the �rst two axioms, this means
that there can be no events with a probability greater than 1. Basically, something cannot occur with
110% probability.

That is it for the axioms of probability. They are fairly simple and intuitive but necessary when
determining MSNE.

1.2.2 Expected value (or expected utility)

First, note that there is (generally) a di¤erence between the terms expected value and expected utility.3 For
expected value simply �nd the weighted average of the events. As an example, consider a game which a fair
coin (one that lands on heads 50% of the time and tails the other 50% of the time) pays an individual $2 if
it lands on Heads and (�$3) if it lands on Tails. The expected value is then the weighted average (product
of the probability an event occurs and its value) or 12 � $2 +

1
2 � (�$3) =

�
�$ 12

�
. Thus an individual would,

on average, lose 50 cents each time this game was played. Not a very attractive proposition, but this is why
Vegas makes money.
As for expected utility, this is the weighted average of the UTILITY values of the outcomes. It is

generally assumed that individuals have utility functions denoted by U (�). This utility function will take
either bundles of goods or amounts of money or ... anything really and translate it into a "utility value". If
we let U (�) = x� 1 then U (2) = 1 and U (�3) = �4, so that the expected utility is 12 � 1+

1
2 � (�4) =

�
� 3
2

�
.

The di¤erence between the two terms is subtle, as the calculation is basically the same. For our
purposes we can assume that the payo¤s in the strategic form version of the game represent utility values.
Alternatively, we can assume, at least for now, that the individuals are all risk-neutral and have a utility
function such that U (x) = x.

3Unless the economic agent happens to be risk-neutral.
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2 Finding MSNE

The following describes the process to �nd MSNE. For the games we have seen it relies heavily on algebra.
It also relies on that theorem about players being indi¤erent among their pure strategies. I promise one
thing �it will get messy.

2.1 Matching Pennies MSNE

Consider the Matching Pennies game since it has less strategies. I will add one more row and column.4

Let p1H denote the probability that Player 1 assigns to playing Heads and p1T denote the probability that
Player 1 assigns to playing Tails. Let q2H denote the probability that Player 2 assigns to playing Heads and
q2T denote the probability that Player 2 assigns to playing Tails.

Player 2
q2H q2T
Heads Tails

Player 1 p1H Heads 1;�1 �1; 1
p2T Tails �1; 1 1;�1

Now, we need Player 1 to be indi¤erent among his pure strategies. All this means is that the expected
utility for Player 1 of playing Heads has to equal the expected utility for Player 1 of playing Tails. Rather
than continually writing out "expected utility for Player 1 of playing Heads" I will use some shorthand. Let
E1 [Heads] mean "expected utility for Player 1 of playing Heads" and let E1 [Tails] mean "expected utility
for Player 1 of playing Tails". So what is needed is:

E1 [Heads] = E1 [Tails]

So far so good. Now we need to �nd E1 [Heads] and E1 [Tails]. If Player 1 always chooses Heads (this is
what it means to play a pure strategy), then he will receive 1 with probability q2H and �1 with probability
q2T . Thus, we have:

E1 [Heads] = 1 � q2H + (�1) � q2T
If Player 1 always chooses Tails then he will receive �1 with probability q2H and 1 with probability q2T .
Thus:

E1 [Tails] = (�1) � q2H + 1 � q2T
Now set E1 [Heads] = E1 [Tails] and simplify to �nd:

1 � q2H + (�1) � q2T = (�1) � q2H + 1 � q2T
q2H � q2T = �q2H + q2T

2q2H = 2q2T

q2H = q2T

So we �nd that q2H = q2T but cannot simplify any farther without adding one more equation. We have 2
unknowns but 1 equation so we are not going to be able to solve for both unknowns with only 1 equation.
But there is a second equation that is given to us by the probability axioms. This equation is:

q2H + q2T = 1

because we know that probabilities sum to 1. So now we have:

q2H = q2T

q2H + q2T = 1

and we can solve for q2H and q2T . By substitution we �nd that:

q2H + q2H = 1

2q2H = 1

q2H =
1

2
4This is just for illustrative purposes and is not typically done.
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and then we know that q2T = 1
2 as well. Thus, we have found the probabilities that Player 2 would use

to make Player 1 indi¤erent among his pure strategies. Basically, Player 2 �ips the coin to make Player 1
indi¤erent. You can note that with q2H = q2T =

1
2 that if Player 1 chooses to play Heads all the time his

expected utility is 0, and if Player 1 chooses to play Tails all the time his expected utility is also 0. Actually,
if Player 1 were to choose to play Heads 75% of the time and Tails 25% of the time his expected utility is
STILL 0. Now, we are only half done. We still need to solve for p1H and p1T . We can do this by setting
the expected utility for Player 2 of playing Heads equal to the expected utility for Player 2 of playing Tails
or:

E2 [Heads] = E2 [Tails]

Now we have to �nd E2 [Heads] and E2 [Tails]. If Player 2 always chooses Heads then he will receive �1
with probability p1H and 1 with probability p1T . Or:

E2 [Heads] = (�1) � p1H + 1 � p1T

If Player 2 always chooses Tails then he will receive 1 with probability p1H and �1 with probability p1T .
Or:

E2 [Tails] = 1 � p1H + (�1) � p1T
Putting the two together we �nd:

E2 [Heads] = E2 [Tails]

(�1) � p1H + 1 � p1T = 1 � p1H + (�1) � p1T
�p1H + p1T = p1H � p1T

2p1T = 2p1H

p1T = p1H

Again, we need a second equation, p1H+p1T = 1. Hopefully this looks familiar, as we will �nd p1T = p1H =
1
2 . So if Player 1 chooses to play a 50/50 mix of Heads and Tails Player 2 will be indi¤erent among his pure
strategies. We have now found our �rst MSNE. To write this equilibrium out it would be:
MSNE: Player 1 chooses to play Heads 50% of the time and Tails 50% of the time. Player 2 chooses to

play Heads 50% of the time and Tails 50% of the time.

2.2 Rock, Paper, Scissors MSNE

This is another problem of algebra, only now each player has 3 strategies. Let p1rock be the probability that
Player 1 plays Rock, p1paper be the probability that Player 1 plays Paper, and p1scissors be the probability
that Player 1 plays Scissors. Let p2rock, p2paper, and p2scissors be the respective probabilities for Player 2.
Player 1�s goal is to make Player 2 indi¤erent among his pure strategies. We know that if Player 1 uses his
mixed strategy and Player 2 ALWAYS chooses Rock, then Player 2 will receive 0 with probability p1rock, �1
with probability p1paper, and 1 with probability p1scissors. If Player 2 ALWAYS chooses Paper, then Player
2 will receive 1 with probability p1rock, 0 with probability p1paper, and �1 with probability p1scissors. If
Player 2 ALWAYS chooses Scissors, then Player 2 will receive �1 with probability p1rock, 1 with probability
p1paper, and 0 with probability p1scissors. We can say that the expected value for Player 2 of playing each
of these strategies is then:

E2 [Rock] = 0 � p1rock + (�1) � p1paper + 1 � p1scissors
E2 [Paper] = 1 � p1rock + 0 � p1paper + (�1) � p1scissors

E2 [Scissors] = (�1) � p1rock + 1 � p1paper + 0 � p1scissors

We now have 3 unknowns �p1rock, p1paper, and p1scissors. It must be that Player 2 has:

E2 [Rock] = E2 [Paper]

E2 [Paper] = E2 [Scissors]
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By transitivity, this gives that E2 [Rock] = E2 [Scissors]. However, there are only 2 equations and 3
unknowns. The third equation is that probabilities must sum to 1, so that our 3 equations are now:

0 � p1rock + (�1) � p1paper + 1 � p1scissors = 1 � p1rock + 0 � p1paper + (�1) � p1scissors
1 � p1rock + 0 � p1paper + (�1) � p1scissors = (�1) � p1rock + 1 � p1paper + 0 � p1scissors.

p1rock + p1paper + p1scissors = 1

We can now solve the 3 equations for p1rock, p1paper, and p1scissors. Rewrite p1scissors = 1�p1rock�p1paper
and substitute into the �rst two equations. We get:

(�1) � p1paper + 1 � (1� p1rock � p1paper) = 1 � p1rock + (�1) � (1� p1rock � p1paper)
1 � p1rock + (�1) � (1� p1rock � p1paper) = (�1) � p1rock + 1 � p1paper

Now it is just a simple matter of solving the system.

�p1paper + 1� p1rock � p1paper = p1rock � 1 + p1rock + p1paper
p1rock � 1 + p1rock + p1paper = �p1rock + p1paper

Simplifying:

�3 � p1paper + 2 = 3 � p1rock
3 � p1rock � 1 = 0

We have p1rock = 1
3 from the last equation. Substituting that into the �rst equation we get:

�3 � p1paper + 2 = 3 �
1

3

Solving for p1paper gives p1paper = 1
3 . Now, using p1scissors = 1�p1rock�p1paper we �nd that p1scissors =

1
3 .

So if Player 1 plays Rock 1
3 of the time, Paper

1
3 of the time, and Scissors

1
3 of the time this will make Player

2 indi¤erent over his pure strategies. The expected value for Player 2 of playing Rock is 0, of playing Paper
is 0, and of playing Scissors is 0. We can also check some mixed strategies for Player 2. If Player 2 plays
Rock 50% of the time and Paper 50% of the time his expected value of playing that strategy is 0. If Player
2 plays Rock 50% of the time, Paper 25% of the time, and Scissors 25% of the time his expected value is 0.
This is what is required when �nding a MSNE.
Now, we have only found the probabilities for Player 1. We know that all strategies (pure or mixed) by

Player 2 provide the same expected value when Player 1 chooses Rock, Paper, and Scissors 13 of the time each.
Can Player 2 then just choose any strategy? No, because not any strategy will make Player 1 indi¤erent
over his strategies. We then have to �nd p2rock, p2paper, and p2scissors using the same methodology that we
just used to �nd p1rock, p1paper, and p2scissors. Luckily, in the Rock, Paper, Scissors game the two players
have symmetric payo¤s and strategies, so that the probabilities for Player 2 that make Player 1 indi¤erent
between his strategies are p2rock = 1

3 , p2paper =
1
3 and p2scissors =

1
3 . The mixed strategy Nash equilibrium

for this game (and the only Nash equilibrium of this game) is that Player 1 chooses Rock, Paper, and Scissors
each with 1

3 probability, and Player 2 chooses Rock, Paper, and Scissors each with
1
3 probability. Note that

the expected value for both players of playing this game is 0.
Now, suppose that Player 2 uses a di¤erent strategy, like p2rock = 1

3 , p2paper =
1
2 and p2scissors =

1
6 .

Should Player 1 respond with the exact same strategy? NO. If Player 1 uses the exact same strategy as
Player 2 then his expected value of using that strategy is also 0. Player 1 can do BETTER than 0 if he uses
a strategy like �Always choose Scissors�. If Player 1 uses this strategy against p2rock = 1

3 , p2paper =
1
2 and

p2scissors =
1
6 then Player 1 will have an expected value of

1
6 because he will earn (�1) with

1
3 probability

(when Player 2 picks Rock), 1 with 1
2 probability (when Player 2 picks Paper) and 0 with

1
6 probability

(when Player 2 chooses Scissors). Of course, if Player 1 always chooses Scissors then Player 2 would always
choose Rock. But then Player 1 would always choose Paper. And the cycle would go on. The only time
it stops is when p1rock = 1

3 , p1paper =
1
3 and p1scissors =

1
3 and p2rock =

1
3 , p2paper =

1
3 and p2scissors =

1
3 .
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2.3 Coordination game MSNE

Finally, we return to the coordination game to �nd its MSNE. Here is the game again:
Player 2
Boxing Opera

Player 1 Boxing 2; 1 0; 0
Opera 0; 0 1; 2

There were two PSNE �Player 1 choose Boxing, Player 2 choose Boxing; and Player 1 choose Opera,
Player 2 choose Opera. There is also a MSNE to this game. Let p1boxing and p1opera be the probabilities
with which Player 1 chooses Boxing and Opera respectively. Let p2boxing and p2opera be the probabilities
with which Player 2 chooses Boxing and Opera respectively. Player 1 must make Player 2 indi¤erent over
his 2 pure strategies, so:

E2 [Boxing] = E2 [Opera]

Or:
1 � p1boxing + 0 � p1opera = 0 � p1boxing + 2 � p1opera

We also have that p1boxing + p1opera = 1. Using these two equations we �nd that:

p1boxing = 2 (1� p1boxing)

Or:
p1boxing =

2

3

This means that p1opera = 1
3 . Now we need to �nd Player 2�s mixed strategy. Note that while this game

looks symmetric it is not. We need:

E1 [Boxing] = E1 [Opera]

Or:
2 � p2boxing + 0 � p2opera = 0 � p2boxing + 1 � p2opera:

Using p2boxing + p2opera = 1 we have:

2p2boxing = 1� p2boxing:

Or:
p2boxing =

1

3
:

This means that p2opera = 2
3 . Thus, the MSNE for the Boxing-Opera game is that Player 1 chooses Boxing

with 2
3 probability and Opera with

1
3 probability and Player 2 chooses Boxing with

1
3 probability and Opera

with 2
3 probability. Note that the expected value of either player from playing this set of strategies is 2

3 ,
which is lower (for both players) then following either one of the two pure strategy Nash equilibria. But
with these mixed strategies neither player can do any better by changing his strategy.

2.3.1 It�s your opponents payo¤s that matter

In the Boxing-Opera game it looks fairly reasonable �each player chooses the venue that he prefers with a
higher probability than the other venue. But what if the game looked like:

Player 2
Boxing Opera

Player 1 Boxing 100; 1 0; 0
Opera 0; 0 1; 2

In this game, Player 1 REALLY likes going to the Boxing match with Player 2. Would the probabilities
that Player 1 used for his mixed strategy in the earlier version (where the 100 was a 2) change?
No.
Player 1�s probabilities depend on Player 2�s payo¤s. They have nothing whatsoever to do with his own

payo¤s. In fact, we could turn the 100 into a 1
2 and Player 1�s probabilities would not change. But Player
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2�s probabilities would change because Player 1�s payo¤s had changed. In this new game (with the 100
payo¤), Player 2�s Nash equilibrium mixed strategy would be p2boxing = 1

101 and p2opera =
100
101 . Because

Player 1 has a larger payo¤ of going to the Boxing match this actually reduces the amount of times the 2
players end up at the boxing match.

3 MSNE when a player has strictly dominated strategies

In order to �nd a MSNE both players must choose probabilities that will make the other player indi¤erent
over playing any of their other strategies that they would play with positive probability. Now we discuss
the last part of that statement, the part about "that they would play with positive probability". Consider
a modi�ed version of the Prisoner�s Dilemma:

Player 2
A B

Player 1 A 5; 5 16; 3
B 3; 16 11; 11

For both players, strategy B is strictly dominated by strategy A. It is impossible to make either player
indi¤erent between A and B unless the laws of probability are violated.5 In games where players have
a strictly dominated strategy those strictly dominated strategies need to be eliminated before �nding the
MSNE. So with this Prisoner�s Dilemma there would be no MSNE because strategy B would be eliminated
for both players and ... well, there won�t be any strategies over which a player could mix because only
strategy A remains.
Consider the following game:

P2
D E F

A 3; 2 4; 1 0; 4
P1 B 1; 3 3; 1 4; 5

C 5; 5 3; 1 1; 4
First note that there are PSNE at: (1) P1 choose C, P2 choose D and (2) P1 choose B, P2 choose F.

But you should also note that strategy E (which always plays P2 a payo¤ of 1) is strictly dominated by
both strategy D and strategy F. So P2 would NEVER choose E and this strategy can be removed from the
matrix. Once this strategy is removed then strategy A is strictly dominated by strategy C and so A can
also be removed leaving:

Player 2
D F

Player 1 B 1; 3 4; 5
C 5; 5 1; 4

Now there are no strategies which are strictly dominated so the process of �nding the MSNE can begin.
And since this is a 2x2 game it is not that di¢ cult. Let P2D be the probability that P2 chooses D and
P2F = 1� P2D be the probability that P2 chooses F . Setting P1�s expected values equal to each other we
have:

E1 [B] = E1 [C]

1 � P2D + 4 � (1� P2D) = 5 � P2D + 1 � (1� P2D)
P2D + 4� 4P2D = 5P2D + 1� P2D

3� 3P2D = 4P2D

3 = 7P2D
3

7
= P2D

So P2 would choose strategy D with probability 3
7 and strategy F with probability 4

7 . Now to �nd P1�s
probabilities let P1B be the probability that P1 chooses B and P1C = 1 � P1B be the probability that P1

5Technically, if Player 2 chooses A with probability 5
3
and B with probability � 2

3
then Player 1 will be indi¤erent between

A and B (and his expected value will be � 7
3
). But hopefully it is obvious that these probabilities, while they sum to 1, violate

the rules that probabilities must be greater than or equal to zero and less than or equal to 1.
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chooses C. Setting P2�s expected values equal to each other we have:

E2 [D] = E2 [F ]

3 � P1B + 5 � (1� P1B) = 5 � P1B + 4 � (1� P1B)
3P1B + 5� 5P1B = 5P1B + 4� 4P1B

1 = 3P1B
1

3
= P1B

So P1 would choose strategy B with probability 1
3 and strategy C with probability

2
3 .

Now let�s look at the actual expected values of the strategies of both players given the probabilities used
by the other player. Start with P1�s expected values �rst, realizing that (1) we are looking at all three
strategies (A, B, and C) and (2) that P2 is choosing strategy E with a probability of 0.

E1 [A] =
3

7
� 3 + 0 � 4 + 4

7
� 0 = 9

7

E1 [B] =
3

7
� 1 + 0 � 3 + 4

7
� 4 = 19

7

E1 [C] =
3

7
� 5 + 0 � 3 + 4

7
� 1 = 19

7

Now, P1 receives the same expected value from choosing B or C, which is good. They receive a lower
expected value from choosing strategy A (which we did not use in our calculation because it was strictly
dominated), which is also good because A should give a lower value because it was strictly dominated. The
reason I did the check was to show you that, given the mixed strategy probabilities used by P2, P1 would
not switch to strategy A.
Now consider P2�s expected values:

E2 [D] = 0 � 2 + 1
3
� 3 + 2

3
� 5 = 13

3

E2 [E] = 0 � 1 + 1
3
� 1 + 2

3
� 1 = 3

3

E2 [F ] = 0 � 4 + 1
3
� 5 + 2

3
� 4 = 13

3

Again, P2 receives the same expected value if he uses D or F (which we used in our calculation) but a lower
expected value if he were to switch to E. P2 receives a lower expected value from E because it was strictly
dominated. Again, the purpose of this is to show you that P2 would not switch to strategy E.

4 Randomize

One last note on mixed strategies. If you only play a game that requires mixed strategies once in your life
then it can never be shown that you did not correctly calculate the mixed strategy (there is only observation
after all). However, consider playing Rock, Paper, Scissors repeatedly. It would be easy to devise a
statistical test that determines whether or not your play is consistent with the probabilities of the MSNE.
However, the key to using a MSNE is to RANDOMIZE. If you played 99 games of Rock, Paper, Scissors
and you followed the strategy of �Choose Rock in the �rst game�, �Choose Paper in the second game�, and
�Choose Scissors in the third game�, then repeat (Rock in 4th, 7th, 10th etc. games, Paper in 5th, 8th, 11th

etc. games, Scissors in 6th, 9th, 12th etc. games) it would not be very di¢ cult to beat you every time because
the pattern is predictable. Even though you would be playing the strategies in the correct proportions you
would not end up earning 0 on average if you were playing someone with any shred of intelligence. The
person would beat you practically every time, and certainly every time after the 10th round or so. Sometimes
when ESPN shows the World Series of Poker they will cut away to the game of Rochambeau (which is the
fancy way of saying Rock, Paper, Scissors). Some people when playing the game will use a randomizing
device to determine their strategy for the game (one person in particular uses the �rst character of a dollar
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bill to determine what to do �I am still not quite certain what the mechanics of the process are). The key
is to have the randomizing device yield the probabilities of 13 for each strategy. Thus, throwing a single die
and assigning the rolls of 1 and 2 to choosing Rock, 3 and 4 to choosing Paper, and 5 and 6 to choosing
Scissors would be one method of randomizing with 1

3 probability for each strategy.

5 Digression on plotting best response "functions"

Note that I am using the term "function" loosely here. Some of these best response "functions" will not
pass a vertical line test, and so they are not really "functions". But the term "best response function" is
taken, in this context, to mean a plot of the player�s best responses. There is an alternative method of
thinking about this particular game which gets back to the "more rigorous" theorem on the existence of
Nash equilibria in these simple games. We can consider that instead of each player having a strategy space
of fHeads; Tailsg the player now has a strategy space of assigning a probability from 0 to 1 to Heads (call
it pH), with the realization that the probability assigned to Tails will be 1� pH . We can depict this space
for both players in a graph of the unit square (a square that has a side length equal to one). The basic
graph will look like:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P1H

P2H

Note that EVERY possible outcome is in this graph. The origin represents both players choosing a pure
strategy of Tails. The point (1; 1) corresponds to both players choosing a pure strategy of Heads. The
point (1; 0) corresponds to Player 1 choosing a pure strategy of Heads and Player 2 choosing a pure strategy
of Tails. The point (0; 1) corresponds to Player 1 choosing a pure strategy of Tails and Player 2 choosing a
pure strategy of Heads. At every point along the axes at least one player is using a pure strategy, and at
every point inside the square both players are using some mixed strategy. This is basically a matrix, only
with a lot of strategies.
What we want to do is to �gure out what the best responses are for each player and graph them. For

this we will use no math beyond simple addition (and multiplication, but that�s really just a shortcut for
addition) and some intuition. I suppose the intuition part might make it harder.
Suppose that Player 2 used a pure strategy of Tails, meaning Player 2 is choosing the point 0 on the

y-axis. What strategy would maximize Player 1�s expected utility? Choosing Tails of course because Player
1 would always "win" and receive 1.
Suppose that Player 2 uses a mixed strategy of 25% Heads and 75% Tails, meaning that Player 2 is

choosing a "strategy" of 0:25 on the y-axis. What strategy would maximize Player 1�s utility? It may seem
odd, but that strategy is Player 1 ALWAYS choosing Tails. If Player 1 always chooses Tails, then 75% of
the time Player 1 will receive 1 and 25% of the time Player 1 will receive �1, so Player 1�s expected utility
is: 1 � :75 + (�1) � :25 = :75� :25 = :5. There is no other strategy that will yield a higher expected utility
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for Player 1 than choosing Tails 100% of the time. In fact, this is true for ANY mixed strategy choice by
Player 2 up to Player 2 choosing 50% Heads and 50% Tails. Thus, if Player 2 is weighted more heavily
towards Tails, Player 1 should always choose Tails, even if Player 2 is only slightly weighted towards Tails.
By slightly weighted towards Tails I mean that Player 2 is using a strategy like 49.8% Heads and 50.2%
Tails. Even with this strategy choice by Player 2 we would still see Player 1 choosing Tails 100% of the
time. So we have �gured out part of Player 1�s best response correspondence. We know if Player 2 chooses
anything weighted towards Tails Player 1 will choose Tails. We can graph this:
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By similar intuition, if Player 2 is weighted more towards Heads, even slightly, then Player 1 should always
choose Heads. We can graph this:
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The last question to ask is what strategy would maximize Player 1�s expected utility if Player 2 uses a
strategy of 50% Heads and 50% Tails. The answer is ... ANY STRATEGY, pure or mixed. We found that
if Player 2 uses a 50/50 split that Player 1 is indi¤erent among all his strategies, so it does not matter which
strategy Player 1 uses. We can graph this as well:
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Now we have Player 1�s best response correspondence. Now we need to �nd Player 2�s best responses. If
Player 1 were to choose a strategy more heavily weighted towards Tails, Player 2 would always choose Heads
(recall that Player 2 "wins" when the coins do not match). This part of Player 2�s best response can be
graphed:
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If Player 1 chooses a strategy more heavily weighted towards Heads, then Player 2 would always choose
Tails. This part of Player 2�s best response can be graphed:
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If Player 1 chooses 50% Heads and 50% Tails, then Player 2 is indi¤erent among all of his strategies so we
have:
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This game shows the best responses for both players. Notice that they intersect when both players choose to
play Heads 50% of the time and Tails 50% of the time. This intersection point is the Nash equilibrium to the
game. When there are only 2 strategies (or a continuum of strategies, as we will see later in quantity choice
games) for each player we can draw graphs of best responses. It is possible to draw a graph for the Prisoner�s
Dilemma game �you should �nd that the only intersection point is where both players are choosing Confess
with 100% probability (there should just be a straight line along the confess with probability 100% axis for
both players and they should intersect at one of the corners of the square).
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