1 Bayes-Nash equilibria

The problems that have been discussed up to this point in the course have dealt with situations where players
know the exact payoff function of the other player. The players may not know exactly what strategy the
other player has chosen (as in a simultaneous game) but they know precisely what each player’s payoff will
be if they take a particular action and the other player takes a particular action. We will discuss two types
of games in which there is uncertainty over what the other person’s precise payoff is. First we will look at
a normal form game with uncertainty. Then we will consider auctions, in which bidders know their own
value but only that the other bidder(s) value is drawn from some probability distribution. Thus, given a
particular action for both bidders, if the other bidder wins then you will not know precisely what his payoff
is because you do not know his precise value.

Finally we will discuss an oligopoly market with incomplete information. So far we have assumed that
all firms know all other firms’ costs. However, this is unrealistic, as firms do not necessarily know precisely
what the other firm’s cost is but may only have some idea as to whether it is high or low.

When solving games such as these where players can have different "types" it will be necessary to specify
an action for EACH type a player COULD be. Thus, although in an auction a player only draws one value,
it is necessary to specify what the player will do for any possible value draw. In the oligopoly model, it will
be necessary to specify one action for each cost type each player could have. Of course, when specifying a
strategy (the entire collection of actions) it will be necessary to make sure that the players’ strategies are
best responses to one another. This type of equilibrium is called a Bayes-Nash equilibrium.

2 Normal form game example

Consider the following game of incomplete information between Wyatt Earp and a stranger in town. With
probability 0.75, Earp believes the stranger is a gunslinger (i.e. a fast draw). With probability 0.25, Earp
believes the stranger is a cowpoke (i.e. a slow draw). Earp only knows the probability of each type before
taking an action, and does not observe the stranger’s type. This means that Earp believes he is in the
matrix on the left 75% of the time, and in the one on the right 25% of the time. The stranger knows his
own type, and also knows exactly who Wyatt Earp is. The payoffs to this simultaneous game of incomplete
information are as follows:

Stranger (gunslinger) Stranger (cowpoke)
Draw  Wait Draw Wait
Earp Draw 2,3 3,1 Earp Draw 5,2 4,1
Wait [ 1,4 8,2 Wait | 6,3 | 8,4

1. How many types does each player have?
2. Does any player (or any player type) have a dominant strategy?

3. Find all pure strategy Bayes-Nash equilibria to this game.

To answer the first question, there is only one Wyatt Earp and no uncertainty over who he is. Thus,
Wyatt Earp has 1 type. However, there is uncertainty over who the stranger is — the stranger could be a
(1) gunslinger or a (2) cowpoke. Thus, the stranger has two types, gunslinger and cowpoke.

In this game, notice that regardless of what Wyatt Earp does the gunslinger has a strictly dominant
strategy of choosing "Draw". Regardless of what strategy Wyatt Earp chooses (Draw or Wait), the gun-
slinger type will always choose Draw. So any equilibrium to this game should have the gunslinger type
choosing "Draw". Note that no other player has a strictly dominant strategy — for Wyatt Earp, choosing
"Wait" is almost better than every other strategy, except that when the gunslinger type chooses "Draw"
Earp would also choose "Draw".

Now, finding equilibria in this game. Suppose that Wyatt Earp chooses Draw. The gunslinger type’s
best response is to choose Draw (since the gunslinger has a strictly dominant strategy). Also, the cowpoke
type’s best response is to choose Draw, since 2 > 1. So we have just found the stranger’s best response
when Earp chooses Draw. Now we need to check: Is Earp’s strategy choice of Draw a best response to the
stranger’s strategy of choosing: Draw if gunslinger, Draw if cowpoke? To do this we need to determine the



expected value of Earp choosing Draw and the expected value of Earp choosing Wait. If Earp chooses Draw
he receives:

3 1

E [Draw|Draw if GS,Draw if CP] = 2x i +5 % 1
11
E [Draw|Draw if GS,Draw if CP] = vy

The 2 is from Earp’s payoff in the upper left corner of the gunslinger matrix, the % is the probability Earp

believes he is facing a gunslinger, the 5 is from the upper left corner of the cowpoke matrix, and the i is
the probability that Earp believes he is facing a cowpoke. So, if both types Draw, Earp expects to receive

a payoff of 14—1 from choosing Draw. Now, what if Earp choose to Wait?

1
E [Wait|Draw if GS,Draw if CP] = 1x Z + 6 % 1
E [Wait|Draw if GS, Draw if CP] = %

So, Earp’s strategy of choosing Draw is a best response to (Draw if gunslinger, Draw if cowpoke). Thus,
one Bayes Nash equilibrium is: Earp Draw, Stranger Draw if gunslinger, Stranger Draw if cowpoke.

Now suppose that Wyatt Earp chooses Wait. The gunslinger’s best response is still to choose Draw. But
the cowpoke’s best response if Earp chooses Wait is also to choose Wait. Now we need to determine if Earp
choosing Wait is a best response to the stranger’s strategy, which is Draw if gunslinger, Wait if cowpoke. If
Earp chooses Wait he receives:

3 1
E [Wait|Drow if GS,Waitif CP] = 1x 1 + 8 % 1

11

E [Wait|Draw if GS,Waitif CP] = 1

The 1 is from the lower left corner of the first matrix (Earp Wait, gunslinger Draw) while the 8 is from the
lower right corner of the second matrix (Earp Wait, cowpoke Wait). If Earp chooses to Draw, he receives:

3 1
E [Draw|Draw if GS,Waitif CP] = 2x 1 + 4 % 1
10
E [Draw|Draw if GS,Waitif CP] = vy
Since % > %, Earp will choose to Wait rather than Draw. Thus, a second Bayes Nash equilibrium is: Earp

Wait, Stranger Draw if gunslinger, Stranger Wait if cowpoke.

Finally, note that this is really a 2 player game between Earp and the Stranger. As such, we can
put the entire game into a single matrix if we can identify the Stranger’s strategies. The Stranger has 4
strategies here: (1) Draw if gunslinger, Draw if cowpoke, (2) Draw if gunslinger, Wait if cowpoke, (3) Wait
if gunslinger, Draw if cowpoke, and (4) Wait if gunslinger, Wait if cowpoke. Identifying strategies is the
easy part — determining the payoffs is slightly more difficult. The matrix, with the payoffs we have already
found and letters representing the other payoffs, is:

Earp
Draw Wait
Dif GS,Dif CP [a,if [b,]
Stranger D if GS, Wif CP | ¢, 12 [d,
Wif GS,Dif CP | e, f g,h
Wif GS, Wif CP | i,j k1
To find f we need:
o . 3 1
Egurp [Draw|Wait if GS, Draw if CP] = 3% 1 +5 % 1
Egurp [Draw|Wait if GS, Draw if CP] = 114



To find h we need:

Egarp [Wait|Wait if GS,Draw if CP] = 8% Z 46 % i
Egorp Wait|Wait if GS, Draw if CP] = %

To find j we need:
Egurp [Draw|Wait if GS,Waitif CP] = 3% g 44 i
Egurp [Draw|Wait if GS,Waitif CP] = %

To find [ we need:
Eparp Wait|Wait if GS,Wait if CP] = 8% % 48 i
Eparp Wait|Wait if GS, Wait if CP] = %

That finishes Earp’s payoffs. Now, to determine the Stranger’s payoffs, if Earp uses Draw and the Stranger
uses Draw if GS, Draw if CP, then a is:

Esiranger [Draw if GS, Draw if CP|Draw] = 3x % 1+ 2% i
Esiranger [Draw if GS, Draw if CP|Draw] = %

To find b we need:
Estranger |[Draw if GS, Draw if CP|Wait] = 4% % + 3% i
Estranger [Draw if GS, Draw if CP|Wait] = %

To find ¢ we need:
Esiranger [Draw if GS, Wait if CP|Draw] = 3% % 4+ 1% i
Estranger [Draw if GS, Wait if CP|Draw] = %

To find d we need:
Estranger [Draw if GS, Wait if CP|Wait] = 4% Z + 4 % %
Estranger [Draw if GS, Wait if CP|Wait] = %

To find e we need:
Estranger Wait if GS, Draw if CP|Draw] = 1x Z + 2% i
Esiranger (Wait if GS, Draw if CP|Draw] = g

To find g we need:
Estranger (Wait if GS, Draw if CP|Wait] = 2% Z + 3% 3
Esiranger (Wait if GS, Draw if CP|Wait] = 2



To find 7 we need:

Estranger (Wait if GS, Wait if CP|Draw] = 1% % 1% %
Esiranger (Wait if GS, Wait if CP|Draw] = %

To find k& we need:
Estranger [Wait if GS, Wait if CP|Wait] —= 2+ Z s %
Estranger Wait if GS, Wait if CP[Waif] = =)

The actual matrix, with payoffs, looks like:

Earp

Draw  Wait

. . IO T 15 9

DifGS, DifCP | 7 5.9

Stranger D if GS, W if CP | 10 10 LALA
WifGs, Difcp | 3,14 |9}
Wif GS, Wif CP | 1,23 | 1]

4

Note that the two cellb with both payoffs c1rcled correspond to the two equilibria we found earlier.

There is probably a mixed strategy Bayes Nash equilibrium, where Earp mixes over Draw and Wait while
the Stranger mixes over D if GS, D if CP and D if GS, W if CP.

3 Auctions

3.1 Auction formats

In this section I will describe the four basic auction formats that we will discuss. The description will include
the process by which bids are submitted and the assignment rule for the winner. For now, consider only
the cases where we have a single, indivisible unit for sale.

3.1.1 1%-price sealed bid auction
Process All bidders submit a bid on a piece of paper to the auctioneer.

Assignment rule The highest bidder is awarded the object. The price that the high bidder pays is equal
to his bid.

Examples Many procurement auctions are 15¢-price sealed bid. Procurement auctions are typically run
by the government to auction off a construction job (such as paving a stretch of highway).

3.1.2 Dutch Auction

Process There is a countdown clock that starts at the top of the value distribution and counts backwards.
Thus, the price comes down as seconds tick off the clock. When a bidder wishes to stop the auction he or
she yells, “stop”.

Assignment rule The bidder who called out stop wins the auction, and the bidder pays the last price
announced by the auctioneer.

Examples The Aalsmeer flower auction, in the Netherlands, is an example of this type of auction. Hmmm,
wonder where the phrase “Dutch” auction comes from ...

By the way, the Ebay dutch auctions are NOT Dutch auctions as we have described them. They are
multi-unit ascending k + 1 price auctions.



3.1.3 2"%-price sealed bid auction

Process Bidders submit their bids on a piece of paper to the auctioneer.

Assignment rule The highest bidder wins, but the price that the highest bidder pays is equal to the 274
highest bid. Hence the term 2"?-price auction.

Examples Ebay is kind of a warped 2"%-price auction. If you think about the very last seconds of an
Ebay auction (or if you consider that every person only submits one bid), think about what happens. You
are sending in a bid. If you have the highest bid you will win. You will pay an amount equal to the 27¢
highest bid plus some small increment. Thus if you submit a bid of $10 and the second highest bid is $4,
you pay $4 plus whatever the minimum is (I think it’s a quarter). So you would pay $4.25.

There are other reasons to think that Ebay is not actually a 2"%-price auction but those can be discussed
later.

3.1.4 Ascending clock auction

Process A clock starts at the bottom of the value distribution. As the clock ticks upward, the price of the
item rises with the clock. This is truly supposed to be a continuous process, but it is very difficult to count
continuously, so we will focus on one tick of the clock moving the price up one unit. The idea is that this
is the smallest amount that anyone could possibly bid — that is how the ticks on the clock move the price
up. All bidders are considered in the auction (either they are all standing or they all have their hands on a
button — some mechanism to show that they are in). When the price reaches a level at which the bidder no
longer wishes to purchase the object, the bidder drops out of the auction (sits down or releases the button).
Bidders cannot reenter the auction. Eventually only two bidders will remain. When the next to last bidder
drops out, the last bidder wins.

Assignment rule The winning bidder is the last bidder left in the auction. The bidder pays a price equal
to the last price on the clock.

Examples The typical example given is Japanese fish markets, though those may be an urban legend.
Thus, the English clock auction may only be a theoretical construct.

3.2 Bidding strategies

The previous section is meant to introduce you to the auction formats. In this section we will discuss the NE
bidding strategies. We will derive the bid functions for some simple cases. For those truly interesting in the
gory details, T suggest the book by Wolfstettar (1999) Topics in Microeconomics: Industrial Organization,
Auctions, and Incentives.

3.2.1 General Environment

Before discussing the bidding strategies we need to set up the general environment. This suggests that if
the environment (or pieces of it) change, the NE bidding strategies will change.

The general name for the environment is the Symmetric Independent Private Values environment (SIPV)
with Risk-neutral bidders. We will also assume that we are auctioning off a single, indivisible unit of the
good.

1. There needs to be a probability distribution for player values, denoted v;. We will assume that all
player values are drawn from the uniform distribution on the unit interval. This means that all values
are drawn from the interval [0, 1] with equal probability. More importantly, if you draw a value of
0.7, then the probability that someone else drew a value less than you is also 0.7. Since probabilities
must add up to 1, and since the other player’s value draw must either be greater than your value or
less than your value. We will not allow for the fact that someone else could draw the exact same value



(theoretically, ties cannot occur with positive probability in a continuous probability distribution).
This means that the probability that the other player has a value greater than yours is 1 — 0.7 = 0.3.

2. The setting is symmetric in the sense that all players know that the other player’s value(s) is drawn
from the same probability distribution.

3. The setting is independent in the sense that your value draw has NO impact on the value draw of the
other player(s).

4. The setting is private in the sense that only you know your value — thus, it is private information.

5. We add the fact that our bidders are risk-neutral,! as risk aversion will alter some results. Thus, our
utility function will be:

u(z) x if win the auction
B 0if don't win

The term z in the utility function can typically that of as v; — p, where v; is the player ¢’s value and p is
the price paid by player i. Note that a player’s expected utility in these auctions can be noted as:

u; = Pr(win) * (v; — p) + Pr (lose) * 0

where Pr (win) is the probability that bidder ¢ wins the auction and Pr (lose) is the probability that bidder
i loses the auction. If the bidder wins he receives his value minus the price paid, or (v; — p) and if he loses
he receives 0. Thus, for many auctions, the expected utility of a bidder is:

u; = Pr(win) x (v; — p)

Note that the difficulty in deriving the theoretical results lies in establishing the probability of winning,
Pr (win) and, in some cases, the price paid, p, particularly when the price paid depends on another bidder’s
bid.

3.2.2 Ascending clock auction — bidding strategy

Consider the following example. Assume v; = 10. The clock begins at 0 and ticks upward: 0, 1, 2, 3, ..., 9,
10, 11, 12, 13, ... The question is, when should you sit down (or drop out of the auction)? Consider three
possible cases:

1. The clock reaches 11:

In this case you should drop out. While you increase your chances of winning the item by staying in,
note that you will end up paying more than the item is worth to you. You can do better than this
by dropping out of the auction and receiving a surplus of zero. So, as soon as the price on the clock
exceeds your value you should drop out.

2. The clock is at some price less than 10:

In this case you should remain in the auction. If you drop out you will receive 0 surplus. However, if
you remain in the auction then you could win a positive surplus. If you drop out before your value is
reached you are essentially giving up the chance to earn a positive surplus. Since this positive surplus
is greater than the 0 surplus you would receive if you dropped out, you should stay in the auction.

3. The clock is at 10:

What happens when the price on the clock reaches your value? Well, if you win the auction you get 0
surplus and if you drop out you get 0 surplus, so regardless of what you do you get 0 surplus. We will
say that you stay in at 10, and drop out at 11. For one thing, it makes the NE bidding strategy simple

IRecall that a risk-neutral individual is indifferent between receiving $5 with certainty and a gamble that pays $5 on average
(like one that has a 50% chance at $0 and a 50% chance at $10). A risk averse individual would prefer the certain $5 over the
expected $5 and a risk loving individual would prefer the expected $5 over the certain $5.



— stay in until your value is reached, then drop out. Another way to motivate this is to consider that
peoples values are drawn from the range of numbers [0.01,1.01,2.01,3.01,...] instead of [0,1,2,3,...].
However, assume the prices increase as [0,1,2,3,...]. It is clear that if you have a value of 3.01 you
should be in at 3, while if you have a value of 3.01 you should be out at 4. This is the “add a small
amount to your value” approach that I mentioned in class.

So what is the NE strategy? Stay in until your value is reached and drop out as soon as it is passed by
the clock. Or, if we let b; (v;) represent player i’s bid as a function of his value, we have b; (v;) = v;.

3.2.3 2"%-price sealed bid auction — bidding strategy

In this auction you submit a bid and pay a price equal to that of the 2" highest bid. How should you bid?
One method of finding a NE (or a solution in general) is to propose that a strategy is a NE and then
verify it. Naturally, it is a good idea to propose the right strategy the first time. So, consider the strategy:
submit your value. Is this a good strategy?
What else could we do? We could submit a bid greater than the value or less than the value. Let’s
examine each of these.

Bid above your value Suppose we submit a bid above our value. What could this possibly change?
Well, if we were to win when submitting our value then absolutely nothing changes — we still pay the same
price since the price (if we win) is not tied to our bid. What happens if we submit a bid greater than our
value and this causes us to switch from losing the auction to winning the auction? Suppose our value is
12 and the other player’s value is 14. The other player submits 14 and we submit 12. We lose and earn
0 surplus. Now suppose we were to bid 15. We win, which is good, but we have to pay 15 for something
that is only worth 12 to us. So we earn a surplus of (—3). This is bad. We could have done better by
placing a bid of 10 (our value) and earning 0. So placing a bid equal to our value is better than placing a
bid above the value in this case.

Bid below your value Suppose we submit a bid below our value. What could this possibly change?
Well, if we were going to lose by submitting our value, then we still lose when submitting a bid below the
value. So this changes nothing (at least not for us — it would help the highest bidder if we were the 27¢
highest bid!) as we still receive 0 surplus. Suppose we lower our bid and still win — again nothing changes
because the 2" highest bidder has still submitted the same bid. It is possible though that we lower our bid
and lose — here’s where the problem occurs. Suppose our value is 12 and the other value is 11. We submit
a bid of 12, we win, and we get a surplus of (12 — 11) = 1. Now suppose we submit a bid of 8 — we go from
getting a surplus of 1 to getting a surplus of 0. It would be much better to submit a bid equal to your value
and get a surplus of 1.

To further illustrate the point consider the following table when there are two bidders. Suppose that
bidder 1 has a value of 12.

Bidder 1’s bid (v; = 12)
Other bidder’s bid b; =10 b =12 b =14

by < 10 12 — by 12 — by 12 — by
10 < by < 12 0 12—by 12— by
12 < by < 14 0 0 (12 — by)
by > 14 0 0 0

Note that (12 — b2) is NEGATIVE. We have now determined that submitting a bid equal to our value is
at least as good as submitting a bid greater than or lower than the value in some cases, and strictly better
in other cases. Therefore, submitting a bid equal to your value is a weakly dominant strategy. Thus,
the Bayes-Nash equilibrium for a 2"¢-price auction: Submit a bid equal to your value, so again we have
bi (’UZ) = V;.

You should note that the 2"%-price sealed bid auction and the ascending clock auction are strategically
equivalent. This means that all players have the same bidding strategies in either auction, even though the
mechanism that produces the winner of the auction is slightly different.



3.2.4 1°%-price sealed bid auction — bidding strategy

In this auction you pay an amount equal to your bid if you win. The first question is, should you submit a
bid equal to your value?

Bid equal to your value If you submit a bid equal to your value then you will expect to earn 0 surplus.
If you win, then you will have to pay an amount equal to your value and if you lose you receive nothing. It
stands to reason that you may be able to do better than this by submitting a bid below your value. The
question is how far below your value?

Bid equal to the lowest possible value If you submit a bid equal to the lowest possible value that
could be drawn then you will also receive 0 surplus. The reason is that you will never win because your bid
was so low. Taken together with the fact that you will bid below your value, this means your actual bid
should fall between the lowest possible value and your value draw.

Actual problem The actual problem facing someone bidding in a 1%¢-price sealed bid auction is to max-
imize their expected utility. We have seen that in general we have:

u; = Pr(win) % (v; — p)
In the case of the 1%¢-price sealed bid auction, we know that if the bidder wins he will end up paying a price
equal to his bid, so p = b;. Thus we have:

u; = Pr(win) * (v; — b;)

For the example we have discussed, with two bidders and values uniformly distributed on [0, 1], the Pr (win) =
b;. Thus, if you bid 0.7 then you have a 70% chance of winning the auction; if you bid 0.4 then you have a
40% chance of winning the auction.? The problem is now a simple maximization problem:

max u; = bi * (v; — b;)
dui
dbz = U; — 2[)1
0 = V; — 2bl
Qbi = U;
1
bi = 5’()1'

Thus, given the SIPV-RN environment with values distributed uniformly on [0,1] and 2 bidders we have
that player ¢’s bid function is b; (v;) = %vi. We can extend this result to the case of N bidders fairly easily.
Now you have to consider the fact that your bid has to be higher than N — 1 other bidders’ bids. This alters
the expected utility function to:

U; = (bi)Nil * ('Ui — bl)

The reason that the b; is raised to the N — 1%t power is because the bidder now has to have a higher bid
than N — 1 other bidders. While the problem is slightly more complicated than with 2 bidders it is still a

2Recall that we are assuming that the bid function is strictly monotone increasing, meaning that bidders with higher values
will submit strictly higher bids.



fairly easy problem to solve:

max u; = (b)) x (v — by)
du; _ _
= (V=D )N (0= )+ ()Y (1)
0 = (N=1) (1) (v = b)) + (b)) % (1)
0 = (N-1) (bl)N_Q * (vi = b;) — ( z)N_l
divide by (bz)Nf2
= (N—l)(vt—bi)—b,-
= (N=-Dv—(N-1)b —b
= (N-=1)v; — NU;
sz = (N — 1) Uy
N -1
bi = N V;
Thus, for the general case of N bidders, the bid function in a 1%!-price sealed bid auction is b; (v;) = %vi.

Note that when N = 2 we have that b; (v;) = %vi, which is what we found above. Thus you are shaving your
bid depending on how many other bidders there are. The more bidders, the less you shave your bid.

3.2.5 Dutch auction — bidding strategy

Recall that with a Dutch auction the bidder watches as the clock descends, and then calls out when he sees
a price that he wishes to pay. The problem facing the bidder is to maximize their expected utility. Their
expected utility can be written as:

u; = Pr(win) * (v; — b;) + Pr (lose) x 0

u; = Pr(win)* (v; —b;)

Notice that this is the same problem faced in the first price auction, if we make all the same assumptions
we did when deriving the bid function for the 1%*-price sealed bid auction. This shows that the 1%*-price and
the Dutch auctions are strategically equivalent. Thus, the bidding strategy in the Dutch auction is to yell
out stop when the clock reaches % of your value, where N is the number of total bidders in the auction

(including yourself).

3.3 Which format is “better”?

Now that we have seen the different formats, the question turns to which one is better. Better can mean
many things, but we will focus on two meanings of better. From the standpoint of a benevolent social
planner, better could mean more efficient. We will say that an auction is efficient if the item goes to the
person with the highest value. Of course, an individual seller does not necessarily care about social goals
such as efficiency, but about the revenue that the auction will generate for himself. The relevant question
for the individual seller is then which format generates more revenue. We will look at both of these notions
of “better”.

3.3.1 Efficiency

We will define the level of efficiency in an auction as XH, where V,, is the value of the winning bidder and

Vg is the value of the high bidder. Note that if the winner is the high bidder, then efficiency is 1 or 100%.
The question is, in all of our auction formats will the bidder with the highest value bid more than, less than,
or an amount equal to bidders with lower values? It is easy to see that in an ascending clock or 2"%-price
sealed bid auction that higher values lead to higher bids because bidders simply submit their values as bids.

In the Dutch and 1%!-price auctions, the bid function is b; = £=v;. The question is, who will submit the




highest bid? It should be fairly easy to see that higher values will submit higher bids. Technically, we can
say that the bid function is increasing in the value draw — as the value draw increases, the bid increases.
Thus, bidders with higher values will submit higher bids, and the bidder with the highest value will submit
the highest bid. These auctions will also be 100% efficient, assuming that all of our conditions hold and
bidders use the Nash equilibrium bidding strategies. Thus, theoretically there is no difference between the
efficiency of the 1%t-price sealed bid auction, the Dutch auction, the 2"¢-price sealed bid auction, or the
ascending clock auction

3.3.2 Revenue

As for revenue, we know that the 1%'-price and Dutch auctions are strategically equivalent and that the
ascending clock auction and the 2"%-price are strategically equivalent. Thus we know that the revenue from
the 1%%-price and Dutch will be equal and the revenue from the ascending clock auction and the 2"%-price
will be equal. The question is, does the 1%¢-price generate more revenue than the 2"%-price?
Let Vi be the highest value and V5 be the second highest value. Then the expected revenue of the
1%t-price auction is:
N -1

R 1°" — price) = ——E [V}
evenue ( price) ~ V1]

The expected revenue of the 2"%-price auction is:

Revenue (2”d — price) = E V3]

We will assume that there are the same number of bidders in each auction. We now need to know what
E V1] and E [V5] are in order to answer which of the auctions will generate more revenue. To do this we
use the concept of an order statistic — basically, an order statistic tells us what the expected value of the k'"
highest draw from a distribution will be given that we make N draws from the distribution. In our case, we
are using the uniform distribution over the range 0 to 1. We find that the £** highest value will be equal to:

N-—-k+1
N+1
Think about what this means. When there are 2 bidders, on average the highest value draw will be %, and
on average the 2"? highest value draw will be % When there are 3 bidders, on average the highest value

draw will be %, the 2"? highest value draw will be %, and the 3" highest value draw will be %. Using this
formula we have:

N
EVi]=——
Vil= 53
N -1
EVy| = ——
Vel = §7
Now if we plug these variables into our revenue for the 1% and 2"?-price auctions we get:
N -1 N N -1
Revenue (1‘“ —pm’ce) = I * (N n 1) = N1l
N -1
R 2nd o . —
evenue ( pmce) Nl

This means that the expected revenue from the 1%¢-price auction is equal to %—H and the expected revenue

from the 2"%-price auction is also equal to %—_ﬁ Thus, both auction formats are expected to generate the
same revenue.

While that may surprise you, we have a more powerful result called the revenue equivalence theorem.
Essentially, if the conditions of the theorem (laid out below) are met, then any mechanism designed will lead

to the same expected revenue.
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3.3.3 Revenue Equivalence Theorem

Assume our set-up — SIPV with N risk-neutral agents. Values are drawn from some distribution F' (v) that
is strictly increasing and atomless on [v,7]. Strictly increasing simply means that the probability of drawing
a value less than a number X must be less than the probability of drawing a value less than the number Y
if Y > X. Atomless is similar to continuous, and really means that the probability of drawing a particular
value is 0 (because we are focusing on drawing one particular value out of an infinite number of possible
values). Suppose there is one object for sale (this can be extending to the multiple object case as long as
no buyer wants more than 1 of k identical, indivisible objects for sale).
If the above conditions are met as well as the following two conditions:

1. The object always goes to the buyer with the highest value (in the multiple object case, the objects go
to the bidders with the &k highest values)

2. any buyer with value v = v expects 0 surplus

then any mechanism that satisfies the above assumptions yields the same expected revenue and results
in a buyer with value v; making the same expected payment across all mechanisms.

3.4 Breaking revenue equivalence and efficiency

If all formats are perfectly efficient and generate the same revenue in expectation, why do auctioneers prefer
one type or the other? In the sections below we will look at how to “break” the results from above.

3.4.1 Breaking revenue equivalence

Suppose that instead of risk-neutral agents we had risk-averse bidders. They still have the exact same
problem as before — they want to maximize their expected surplus. In the 2"%price and ascending clock
auctions, there was no “maximization” problem — bidders simply submitted their bids or dropped out when
the clock reached their value. Thus, the strategy should not change in these types of auctions if bidders are
risk averse since they can do no better following another strategy. Since the strategy does not change the
expected revenue from the 2"%-price auction is still the same.

Consider the 1%¢-price auction. Bidders wanted to maximize their expected utility, given by:

However, in the risk averse case with 2 bidders they want to maximize something like:
U; = bz * (’Ui — bz)

This maximization problem is slightly more difficult, but nonetheless tractable:

max u; = bi * (v; — bi)l/2

7

dui
db;

= (vib¢)1/2+bi<
0 = (vi—b)"2 1, (;) (vr — b))% (=1)
(

) =007 ()

0 = (’Ui—bi)lm—bi

bi (;) (0 —b) % = (v —b)"?

1
5 bz = U; bz
3
5 bl = U;
2
bi = g (7
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Recall that when we had 2 risk-neutral bidders in the 1t-price sealed bid auction each bidder used b; (v;) =
%’Ui. With 2 risk averse bidders, each bidder will bid % of his value. Thus, we can see that the bidder
is going to bid more in the risk averse case. Intuitively, if the bidder were to bid % of his value in the
risk averse case the marginal benefit from increasing the bid (the increase in the probability of winning)
would be greater than the marginal cost (the amount of surplus lost). So we increase the bid until the
marginal benefit of increasing the bid equals the marginal cost, just like we do with many other applications

in economics. Note that now in the 2 bidder case the expected revenue is:

2
Revenue (1°°* — price) = 3* E W]

2
where E [V1] = 3

2 2

R 1sst _ . — - -

evenue ( price) 3*3
4
Revenue (13“ — pm’ce) = 9

In the 2 bidder case for the 2"?-price sealed bid auction the expected revenue is F [V3], which with 2 bidders
and values distributed uniformly on [0, 1] would be % So with risk averse bidders the 1%¢-price and Dutch
auctions generate more expected revenue than the 2"%-price and ascending clock.

3.4.2 Breaking efficiency

Suppose we want to break efficiency. The true version of the ascending clock auction has the price moving
up continuously with the tick of the clock. However, we know that people do not have continuous values,
or, even if they do, there is some rational minimum amount by which their values must increase. In the US
the smallest value one can have for a good is a penny, so it is not a stretch to think that the smallest unit
in which values can be denominated is a penny. If this is a case, then a clock which moves at the rate of
1 penny per second (or 1 penny per hour or 1 penny per half-second — the rate is not important, but the
units that it counts are) will still be perfectly efficient in the sense that the highest valued bidder will get the
object. However, consider a clock that increases the price at a rate of 1 penny per second. Now consider
the following prices and the corresponding amount of time it will take to auction off objects of these values:

$10 — 16.67 minutes

$1 million — 3.17 years

$1 billion — 3170 years

It doesn’t really seem “efficient” to take 3170 years to auction off an item. In fact, it seems quite
inefficient. So what auctioneers will typically do is impose a minimum bid increment. This minimum
bid increment is the minimum amount by which the clock will increase (or the minimum amount by which
bidders must increase the bid if they wish to place a new bid). While this speeds up the process, the
introduction of the minimum increment can also destroy the efficiency results of auctions. For instance,
suppose 2 players have values of $14.08 and $14.92 respectively. If the clock ticks up at $1 per second, then
both bidders will drop out at $14. In this case, a tie is declared and we must use the tie-breaking mechanism.
The tie-breaking mechanism is usually a coin flip or some other equal probability game. Thus, on average,
the bidder with a value of $14.08 will get the item half of the time. As you can see, the minimum increment
introduces the possibility of inefficiency into the auction process.

4 Duopoly model

Now consider a simultaneous pricing game with a few changes. Two firms compete by simultaneously
choosing prices (a Bertrand game). If Firms 1 and 2 choose prices p; and po, respectively, the quantity that
consumers demand from each firm is:

a1 (p1,p2) = a—p1+bp2
g2 (p1,p2) = a—p2+bpy

12



Firm 2 has constant marginal cost ¢. With probability # Firm 1 has constant marginal cost ¢y while with
probability (1 — #) Firm 1 has constant marginal cost cz,. Assume that there are no fixed costs. Prices must
be nonnegative (p; > 0, po > 0) and firms wish to maximize profit. Important note: Even though it is a
Bertrand game, the demand functions are differentiable and continuous for both firms. This means that we
can just use calculus to solve.

The first thing to note is how many types each firm has and what those types are. Firm 2 has a known
cost of ¢, so Firm 2 has one type. However, Firm 1 can have a cost of ¢y, or ¢y, so Firm 1 has two types.
The number of types tells us how many maximization problems each firm solves as they need to solve one
per type. When setting up the problems be careful to note that the firm with the different types (Firm 1
in this case) will need to specify two (possibly different) actions for its strategy. Thus, we need to have two
different price variables for Firm 1 because it has two different costs. Let py represent Firm 1’s price if it
has cost ¢y and py, represent Firm 1’s price if it has cost ¢;. If Firm 1 has cost cpy it solves:

max Oy =pu * (a—py +bp2) —ca * (a — pu + bp2)
H

The key is to start from the basic maximization problem and then just proceed from there. Taking the
derivative with respect to py we have:

oIl
— = a-2pu+bpten
pPH
0 = a—2py+bps+cuy
2pg = a+bpy+cH
a+bps + cy
b= Ty

This gives us Firm 1’s best response function if it has cost cy. Now we do the same thing for Firm 1 if it
has cost cp.:

max I = pr*(a—pL+bps)—cp*(a—pL+bps)
oIl
L = a—2pp bpater
pL
2p;, = a-+bpy+ecg
a+bps +cp,
b= Ty

And now we have Firm 1’s best response function if its cost is ¢;. The last problem to solve is for Firm
2. Note that Firm 2’s problem is a little different. If Firm 1 has cost ¢y then Firm 2 solves the following
problem:

max Iy = pgy x (@ — pa + bpr) — c* (a — pa + bppr)
2
because Firm 1 will be using p; = py. However, if Firm 1 has cost ¢z, Firm 2 will solve:
max Iy = py x (@ — pa +bpr) — cx (a — pa + bpr)
2

because Firm 1 will be using p1 = pr. The question is how often does it solve the first problem and how
often it solves the second problem? Well, Firm 1 has cost ¢y with probability of 6, so Firm 2 solves the
first problem 6 percent of the time. Firm 1 has cost ¢y with probability 1 — 6, so Firm 2 solves the second
problem (1 — ) percent of the time. Putting these together we get:

max Iy = 6 (p2 * (a —p2 + bpr) —c* (a —p2+bpu)) + (1 — 0) * (p2 * (a —p2 + bpr) — c* (a —p2 + bpr))

P2

Yes, Firm 2 has a slightly more complicated problem but the derivative is not that difficult, it’s just long.
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We have:

% = Ox(a—2ps+bpy+c)+(1—0)*(a—2p2+bpr +¢)
0 = Ox(a—2pa+bpg+c)+(1—0)*(a—2ps+bpy+c)
0 = ab —2p0+bpyl+ cl+a—ab — 2py + 2pa0 + bpr, — bpr0 + ¢ — b
0 = bpgl+a—2py+bpr —bprd+c
202 = a+bpgf+(1—-0)bpr +c
a+bpgf+ (1 —0)bpr + ¢
b2 = 5

This is Firm 2’s best response function. Note that it is very similar to Firm 1’s best response function,
which is derived for the case where it knows Firm 2’s cost with certainty, only with Firm 2’s best response
function we need to take into consideration how often Firm 1 chooses py and how often it chooses pr,. Now,
there are 3 unknowns in this problem (pg, pr,p2), and we have 3 best response functions so we just need to
solve for each one. To make it easier let’s use the following parameters: 6 = %7 a =108, b = %, cy = 16,
cr =8, and ¢ = 12. Thus we have the following 3 equations:

108 + 3po + 16

P = 5
108 + gpo + 8
pp = —————
2
108+ $pus + (1—3) 3pL + 12
P2 = 5
Simplifying further we have:
124 + 3 po
b= Ty
116 + $po
b= Ty
120 + pu + P
p2 = 5

Now substituting py and py, into the equation for ps we have:

120 + 1 (@) +1 (%)

D2 D)
1 /124 + 1p, 1 /116 + 2py
2 = 120+ - | —/—2= o ===
D2 0+ 4( B >+ 4< 5
124+ 1 116 + £
opy = 1204 o 2Pz HOT 5P
8 8
1 1
16ps = 960+ 124 + 5]92 + 116 + 5]92
16ps = 1200 + po
15p, = 1200
p2 = 80
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Using that po = 80 we can easily find py and py:

1244 3ps
pPH = 5
124 4 3 80
b=
124440
be = 5
py = 82
and
116+ ipo
L = )
116 + 3 * 80
b= Ty
116+ 40
pL = 5
pr, = 78

Thus, our Bayes-Nash equilibrium for this game is: Firm 2 charges a price po = 80; Firm 1 charges a price
pr, = 78 if its cost is ¢p; and Firm 1 charges a price py = 82 if its cost is cy.
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