Adv. Micro Theory, ECON 6202-090

Assignment 1, Fall 2010

Due: Monday, September 13^{th}

Directions: Answer each question as completely as possible. You may work in a group consisting of up to 3 members – for each group please turn in only 1 set of answers and make sure all group member names are on that set of answers. All group members will receive the same grade.

- 1. Find all first-order partial derivatives for each of the following:
 - **a** $f(x, y) = 2x x^2 y^2$ **b** $f(x, y, z) = \ln (x^2 + yz - z^2)$ **c** $f(x, y) = x^{\alpha}y^{1-\alpha}$, where $0 < \alpha < 1$
 - **d** $f(x,y) = \alpha \ln x + (1-\alpha) \ln y$, where $0 < \alpha < 1$
- 2. Suppose $f(x, y) = (xy)^2$ and $g(x, y) = (x^2y)^3$.
 - **a** What is the degree of homogeneity for f(x, y)? For g(x, y)?
 - **b** What is the degree of homogeneity for h(x) = f(x, y) * g(x, y)
- 3. Solve the following problems and state the optimized value of the objective function at the solution:

a min_{x1,x2} $x_1^2 + x_2^2$ subject to $x_1x_2 = 1$ **b** max_{x1,x2,x3} $x_1x_2^2x_3^3$ subject to $x_1 + x_2 + x_3 = 1$

- 4. Consider the set \mathbb{R}^2 . Now consider a subset X of \mathbb{R}^2 , where $X = \mathbb{R}^2_+$, which is the positive quadrant of the Cartesian plane including the x and y axes. Argue that the set X is closed and convex.
- 5. Answer each of the following as "yes" or "no" and justify your answer.
 - **a** Suppose f(x) is an increasing function of one variable. Is f(x) quasiconcave?
 - **b** Suppose f(x) is a decreasing function of one variable. Is f(x) quasiconcave?
 - **c** Suppose f(x) is a function of one variable and there is a real number b such that f(x) is decreasing on the interval $(-\infty, b]$ and increasing on $[b, \infty)$. Is f(x) quasiconcave?
 - **d** Suppose f(x) is a function of one variable and there is a real number b such that f(x) is increasing on the interval $(-\infty, b]$ and decreasing on $[b, \infty)$. Is f(x) quasiconcave?