
These notes correspond to chapter 2 of Jehle and Reny.

1 Uncertainty

Until now we have considered our consumer�s making decisions in a world with perfect certainty. However,
we can extend the consumer theory model to include situations where the outcome of a decision is uncertain.
When we discuss uncertainty, we mean that there is a probability distribution over possible outcomes that
could occur. The consumer knows both the di¤erent possible outcomes that could occur as well as the
probability distribution over those outcomes.1 As with our model of the consumer in a world of perfect
certainty, we can model the consumer�s preferences in a world of uncertainty.
First we must specify is what precisely the consumer has preferences over. In the world of certainty the

consumer had preferences over goods, or bundles of goods. When uncertainty is present, the consumer has
preferences over gambles.2 A gamble is simply a set of outcomes, A = fa1; a2; :::; ang with a probability
distribution over the set of outcomes. A simple gamble assigns a probability pi to each of the outcomes,
where pi � 0 and

Pn
i=1 pi = 1. A simple gamble is denoted GS .

Let�s say that A = f�5; 0; 5g with pi = 1
3 for i = 1; 2; 3. That would be a simple gamble. A compound

gamble would include a gamble as part of the simple gamble. Again, consider A = f�5; 0; 5g. A compound
gamble might be

�
1
3 � �5;

1
3 �
�
1
9 � �5;

4
9 � 0;

4
9 � 5

�
; 13 � 5

�
. Let G denote the entire space of gambles.

As with the standard consumer model, there are certain assumptions that we make as to how a consumer
relates one gamble to another. With the standard problem we assumed completeness, re�exivity, transitivity,
continuity, monotonicity, and convexity. With uncertainty we make similar assumptions.

Axiom 1 Completeness. For any two distinct gambles g and g0 in G, either g % g0 or g0 % g.
Axiom 2 Re�exivity. For every gamble g in G, g % g.
Axiom 3 Transitivity. For any three gambles g, g0, and g00 in G, if g % g0, and g0 % g00, then g % g00.
We now assume that the elements of A are ordered such that a1 % a2 % ::: % an. For any gamble g,

(� � a1; (1� �) � an) % g when � = 1 and g % (� � a1; (1� �) � an) when � = 0.
Axiom 4 Continuity. For any gamble g in G, there is some probability, � 2 [0; 1], such that g � (� � a1; (1� �) � an).

Axiom 5 Monotonicity. For all probabilities �; � 2 [0; 1],

(� � a1; (1� �) � an) % (� � a1; (1� �) � an)
if and only if � � �.

Consider the continuity and monotonicity axioms and the following A = f$1000; $10; deathg. If we
consider g = $10 with certainty then there must be a gamble over $1000 and death such that g �
(� � $1000; (1� �) � death) with � < 1. This is not as implausible as it seems, if � = :9999999999 then the
individual could very well be indi¤erent to the $10 with certainty and the gamble over $1000 and death.

Axiom 6 Substitution. If g =
�
p1 � g1; :::; pk � gk

�
and h =

�
p1 � h1; :::; pk � hk

�
are in G, and if hi � gi,

then h � g.

Finally, the consumer is concerned only with the �nal set of outcomes and probability distribution over
those outcomes, and is not concerned with whether the gamble is simple or compound.

Axiom 7 Reduction to simple gambles. For any gamble g 2 G, if (p1 � a1; :::; pn � an) is the simple gamble
induced by g, then (p1 � a1; :::; pn � an) � g.

Consider our compound gamble
�
1
3 � �5;

1
3 �
�
1
9 � �5;

4
9 � 0;

4
9 � 5

�
; 13 � 5

�
. Note that this gamble has

1
3 � �5;

1
27 � �5;

4
27 � 0;

4
27 � 5;

1
3 � 5, which would be equivalent to the simple gamble

�
10
27 � �5;

4
27 � 0;

13
27 � 5

�
.

This, the compound gamble can be reduced to a simple gamble. Again, these are axioms, and they may or
may not be true.

1 If the consumer is uncertain over either of those then we would be discussing the concepts of ambiguity or Knightian
uncertainty. We will not consider those concepts here.

2Note that other texts use the word "lotteries" in place of "gambles".
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1.1 Von Neumann-Morgenstern Utility

As with consumer theory under certainty, life becomes much easier if preferences can be represented by a
utility function. This will of course be the case, which is why we make some of these assumptions. Suppose
that u : G! R is a utility function representing % on G. For every i, u assigns a particular number u (ai)
to the degenerate gamble (1 � ai). Let u (ai) denote the utility of outcome ai.

De�nition 8 The utility function u : G! R has the expected utility property , if for every g 2 G,

u (g) =
nX
i=1

piu (ai)

where (p1 � a1; :::; pn � an) is the simple gamble induced by g.

If u has the expected utility property, then u (p1 � a1; :::; pn � an) =
nX
i=1

piu (ai). An individual is an

expected utility maximizer if the individual always chooses the gamble with the highest expected utility.

Theorem 9 Let preferences % over gambles in G satisfy axioms 1-7. There there exists a utility function
u : G! R representing % on G such that u has the expected utility property.

The text contains this proof �we will not go through it. The important thing is that preferences can be
represented by a utility function. When we have a utility function representing % on G we will refer to it
as the vN-M utility function. We will work through the example though.
Let A = f$10; $4;�$2g, with $10 � $4 � �$2. We need to �nd which simple gambles over $10 and �$2

are indi¤erent to each of the outcomes. Suppose we have:

$10 � (1 � $10; 0 � �$2)
$4 � (:6 � $10; :4 � �$2)

�$2 � (0 � $10; 1 � �$2)

which gives u ($10) � 1, u ($4) � :6, and u (�$2) � 0. We can now rank other gambles on A. Suppose we
have:

g1 = (:2 � $4; :8 � $10)
g2 = (:07 � �$2; :03 � 4; :9 � $10)

Then we have:

u (g1) = :2u ($4) + :8u ($10)

u (g2) = :07u (�$2) + :03u ($4) + :9u ($10)

We then have u (g1) = 0:92 and u (g2) = 0:918, so g1 � g2. Note that $4 � (:6 � $10; :4 � �$2) in our
example, but that :6u ($10) + :4u (�$2) = 5:2. So even though this gamble pays o¤ an average of $5:2, the
individual prefers $4 with certainty over the gamble. This is only for the example, and di¤erent individuals
may have di¤erent preferences.

1.1.1 Ordinal vs. cardinal rankings

In our standard consumer theory model we only cared about whether or not a utility function preserved
the order of preferences. Thus, if two utility functions, such as u (x) = x1x2 and v (x) = lnx1 + lnx2 kept
the order of preferences the same, regardless of the utility value the functions generate, they were viewed as
equivalent utility functions. This is not so when we move to expected utility functions. If we let A = fa; b; cg
with a � b � c and our assumptions about % are satis�ed, we must have an � 2 (0; 1) such that:

b � (� � a; (1� �) � c)
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The number � means something here �it is not really a free parameter. If we double � or cut it in half this
changes the decision-maker�s preferences. If we have u as a vN-M utility function which represents % and
satis�es the expected utility property then we have:

u (b) = �u (a) + (1� �)u (c)
u (b)� u (c) = �u (a)� �u (c)

u (b)� u (c) = �u (a)� �
�
u (b)� �u (a)

1� �

�
u (b)� u (c) =

(1� �)�u (a)� �u (b) + �2u (a)
1� �

u (b)� u (c) =
�u (a)� �2u (a)� �u (b) + �2u (a)

1� �
1� �
�

=
u (a)� u (b)
u (b)� u (c)

Note that the ratio of the di¤erences of the utilities are determined by � and vice versa. So we can only
make changes to our vN-M utility function which preserve this equality. So not all positive monotonic
transformations of expected utility functions are permissible. What we �nd is that only positive a¢ ne
transformations are permissible.

Theorem 10 Suppose that the vN-M utility function u (�) represents %. Then the vN-M utility function
v (�) represents those same preferences if and only if for some scalar � and some scalar � > 0:

v (g) = �+ �u (g)

for all gambles g.

While we do not have as much freedom in choosing expected utility functions as we do in choosing
standard utility functions, there is still no particular meaning to the particular value an expected utility
function generates. As we can see, there are many expected utility functions which will represent preferences,
and the numeric output of:

v (g) = 1 + u (g)

y (g) = 2 + u (g)

will di¤er, but u (g), v (g), and y (g) will all represent the same preferences over gambles.

1.2 Risk Aversion

We have already touched upon risk aversion when constructing an example for our expected utility function.
We have A = f$10; $4;�$2g and we stated that:

$4 � (:6 � $10; :4 � �$2)

This led to the agent considering $4 with certainty as indi¤erent to the gamble (:6 � $10; :4 � �$2) which has
an expected value of $5:2. Thus, the agent is willing to sacri�ce some expected payment in favor of receiving
a lesser payment with certainty. This is essentially the de�nition of a risk averse agent.
A point of caution is in order here. You need to remember to distinguish between the expected value of a

gamble and the expected utility of a gamble. The expected value of a gamble is simply the weighted average of
the outcomes of the gamble, where the weights are given by the probabilities with which the outcomes occur.
For (:6 � $10; :4 � �$2), the expected value is :6 � 10 + :4 � �$2 = $5:2. The expected utility is the weighted
average of the utility of the outcomes, so for (:6 � $10; :4 � �$2) we would have :6 � u (10) + :4 � u (�$2) = :6
(according to our example). These are two distinct concepts that sound alike, much like a convex function
and a convex set are two distinct concepts even though they both contain the term "convex". If we let
u (E (g)) be the utility of the expected value of the gamble and u (g) be the utility of the gamble, we can
de�ne risk aversion as follows:
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Figure 1: An individual with a Bernoulli utility function u (x) =
p
x.

De�nition 11 Let u (�) be an individual�s vN-M utility function for gambles over nonnegative levels of
wealth. Then for the simple gamble g = (p1 � w1; :::; pn � wn), the individual is said to be:

1. risk averse at g if u (E (g)) > u (g)

2. risk neutral at g if u (E (g)) = u (g)

3. risk loving at g if u (E (g)) < u (g)

If for every nondegenerate simple gamble, g, the individual is, for example, risk averse at g, then the
individual is said to be risk averse.

Each de�nition of risk attitude implies a particular restriction on our vN-M utility function. If the
individual is risk averse we have u (E (g)) > u (g). What this means is that the utility of the expected value
of the gamble g (or u (E (g))) is greater than the utility of the gamble itself (or u (g)). In this case, the
individual prefers the certain amount E (g) to the gamble g. Thus, if the individual is risk averse, that
individual�s vN-M utility function will be concave. If the decision-maker is strictly risk averse, then we have
a strictly concave vN-M utility function. If the individual is risk neutral then the individual has a linear
vN-M utility function and if risk loving the individual has a convex vN-M utility function.
Figure 1 shows the vN-M utility function u (x) =

p
x. The �gure shows that the utility of a certain

amount is greater than the utility of a gamble that gives that amount on average. The lottery in the picture
is a lottery over the outcomes $1 and $3 with probability 1

2 on each. Given that u (1) = 1, u (2) =
p
2, and

u (3) =
p
3, we can see that the gamble g =

�
1
2 � 1;

1
2 � 3

�
over the outcomes $1 and $3 has an expected value

of $2, yet the individual�s expected utility is only 1+
p
3

2 <
p
2. Strict concavity implies that the marginal

utility of money is decreasing, so that if an individual has $2, the utility gain from an additional dollar (to
$3) is less than the utility loss of an additional dollar (to $1).
Figure ?? shows the vN-M utility function u (x) =

p
x for the gamble g =

�
1
2 � 1;

1
2 � 3

�
over the outcomes

$1 and $3, although the certainty equivalent, CE, has been added to this �gure. The certainty equivalent
is the sure amount of money that yields the same utility as the expected value of the gamble. To �nd
this, we need to set u (x) = u (gamble). In the example, the expected utility of the gamble is given by
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CE

1
2u (1) +

1
2u (3), or

1+
p
3

2 . So
p
x = 1+

p
3

2 . We then have:

p
x = 1+

p
3

2

x =
�
1+
p
3

2

�2
x = 1+2

p
3+3

4

x = 4+2
p
3

4

x = 1 +
p
3
2

(1)

So we have that the certainty equivalent is CE = 1+
p
3
2 � 1: 866, and u

�
1 +

p
3
2

�
= 1+

p
3

2 . (Note that those

are TWO DIFFERENT NUMBERS). So the individual is indi¤erent between 1:866 with certainty and the
gamble g =

�
1
2 � 1;

1
2 � 3

�
. Be careful to distinguish between the terms expected value and expected utility

in this context, as it is easy to gloss over the particular terms. The expected value is simply the weighted
average (with the weights given by the speci�c lottery) of the actual outcomes, while the expected utility is
the weighted average (with the weights given by the speci�c lottery) of the UTILITY of those outcomes.

De�nition 12 The certainty equivalent of any simple gamble g over wealth levels is an amount of wealth,
CE, o¤ered with certainty, such that u (g) � u (CE). The risk premium is an amount of wealth, P , such
that u (g) � u (E (g)� P ).

In the example above, the risk premium is equal to E (g)�CE, or $2�$
�
1 +

p
3
2

�
= $

�
1�

p
3
2

�
� $0:134.

1.2.1 Measuring risk aversion

We oftentimes would like to know not only what a particular individual�s risk attitude is but also the degree
of that risk attitude. Given two risk averse individuals, how might we determine which is more risk averse
than the other? Since we know that a risk averse individual has a concave vN-M utility function, looking
at the second derivative of that utility function is a natural starting point. We know that u00 (w) < 0 if the
individual is risk averse (because the function is concave), but can the actual value obtained from looking
only at the second derivative allow us to compare two individual�s risk aversion levels? The answer is no,
because we saw earlier that vN-M utility functions are NOT unique. There is no di¤erence (for us) between
u (x) = lnx and v (x) = 7 lnx. However, u00 (x) = � 1

x2 while v
00 (x) = � 7

x2 . However, we can take the ratio
of the second derivative to the �rst derivative to �nd a measure of risk aversion.
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De�nition 13 The Arrow-Pratt measure of absolute risk aversion is:

Ra (w) � �
u00 (w)

u0 (w)
(2)

We can then see that Ra (w) > 0 if the individual is risk averse and Ra (w) < 0 if the individual is risk
loving. We can show that individuals with larger Arrow-Pratt measures are more risk averse than those
with smaller Arrow-Pratt measures of risk aversion. For instance, consider u (x) = lnx and v (x) =

p
x.

We have:
Ra (w) =

1
x if u (x)

Ra (w) =
1
2x if v (x)

(3)

Plotting u (x) and v (x) we have:
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where u (x) is in green and v (x) is in red (or where v (x) is always above u (x)). Now, for any amount of
w > 0 we have that Rua (w) > R

v
a (w). Thus, the individual with u (x) = lnx is more risk averse than the

individual with v (x) =
p
x because the CE for the individual with u (x) is higher than that for the individual

with v (x) (holding the gambles constant, obviously). The picture becomes more pronounced as we look at
larger w:
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As a last bit of discussion about risk aversion consider how an individual�s risk attitude would vary with
wealth. One might expect that the gamble g =

�
1
2 � $0;

1
2 � $500

�
is viewed di¤erently by a graduate student

than it is by a billionaire, simply because $500 is not all that much money to a billionaire. We can look at
how risk varies with wealth and classify risk attitudes accordingly. If risk aversion is decreasing as wealth
increases we have decreasing absolute risk aversion (DARA), while if it is constant we have constant absolute
risk aversion (CARA), and if it is increasing we have increasing absolute risk aversion (IARA). Under CARA
additional wealth does not alter an individual�s risk attitude while under IARA the wealthier the individual
is the less likely the individual will accept a small gamble.
Consider the following problem where we assume the individual has decreasing absolute risk aversion

(DARA). The individual has an amount w to put into a risky asset. The risky asset has N potential rates
of return ri (the outcomes) with probability pi for i = 1; :::; N . Let � be the amount of wealth to be put
into the risky asset, so that �nal wealth is:

(w � �) + (1 + ri)� = w + �ri (4)

What we would like to show is that the optimal amount invested into the risky asset is increasing in w, or
d��

dw > 0. To do so we need to �nd ��. The individual�s problem is to maximize the expected utility of
wealth. This problem is:

max
�

NX
i=1

piu (w + �ri) s.t. 0 � � � w (5)

First, we want to show the conditions under which the amount invested is zero, or �� = 0. Di¤erentiating
with respect to � we have:

NX
i=1

piu
0 (w + ��ri) ri � 0 (6)

Now this �rst derivative is less than or equal to zero because the constraint is binding at �� = 0 and so the
derivative is nonincreasing. We know that u0 (w) > 0, so that means that:

NX
i=1

piri � 0 (7)

Thus, the individual will choose not to invest in the risky asset if the expected rate of return is nonpositive.
Now, assume that �� > 0 so that the �rst order condition holds with equality:

NX
i=1

piu
0 (w + ��ri) ri = 0 (8)

The second order condition is:
NX
i=1

piu
0 (w + ��ri) r

2
i < 0 (9)

since we are assuming risk aversion. The question is how to proceed from here. If we had a functional form
for u (�) we would be able to calculate �� and �nd d��

dw . Without that, we need to �nd how �
� changes when

w increases for the general functional form. To do so we need some way to calculate d�� and dw. We can
�nd the total di¤erential of the �rst-order condition. The total di¤erential of a general function f (x; y) is:

df =
@f (x; y)

@x
dx+

@f (x; y)

@y
dy (10)

We have to �nd the total di¤erential for both sides of:

NX
i=1

piu
0 (w + ��ri) ri = 0 (11)
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For the right hand side we have df = 0. For the left hand side we have:

df =
NX
i=1

piu
00 (w + ��ri) ridw +

NX
i=1

piu
00 (w + ��ri) r

2
i d�

� (12)

Setting our df�s equal to each other:

0 =
NX
i=1

piu
00 (w + ��ri) ridw +

NX
i=1

piu
00 (w + ��ri) r

2
i d�

� (13)

NX
i=1

piu
00 (w + ��ri) r

2
i d�

� = �
NX
i=1

piu
00 (w + ��ri) ridw (14)

d��

dw
=

�
PN

i=1 piu
00 (w + ��ri) riPN

i=1 piu
00 (w + ��ri) r2i

(15)

We know that:
NX
i=1

piu
00 (w + ��ri) r

2
i < 0 (16)

because this is just the second order condition. Now we need to show that:

�
NX
i=1

piu
00 (w + ��ri) ri < 0 (17)

How to proceed from here? We know the pi > 0, so focus on �u00 (w + ��ri) ri. We also want to be able
to use Ra (w) since we know that the individual has DARA. If we take the following identity:

�u00 (w + ��ri) ri = �u00 (w + ��ri) ri (18)

and multiply the right hand side by a particular form of 1, u
0(w+��ri)
u0(w+��ri)

, we get:

�u00 (w + ��ri) ri = �u00 (w + ��ri) ri �
u0 (w + ��ri)

u0 (w + ��ri)
(19)

�u00 (w + ��ri) ri = Ra (w + �
�ri) riu

0 (w + ��ri) (20)

because Ra (w + �
�ri) =

�u00(w+��ri)
u0(w+��ri)

. Now, we have:

Ra (w) > Ra (w + �
�ri) if ri > 0 (21)

Ra (w) < Ra (w + �
�ri) if ri < 0 (22)

These are true because when ri > 0 we have w + ��ri > w and when ri < 0 we have w > w + ��ri and
because we are assuming DARA (so that Ra (x) < Ra (y) when x > y). Either way:

Ra (w) ri > Ra (w + �
�ri) ri (23)

Now, since we know this we have:

�u00 (w + ��ri) ri < Ra (w) riu0 (w + ��ri) (24)

Taking expectations we have:

�
NX
i=1

piu
00 (w + ��ri) ri <

NX
i=1

piRa (w) riu
0 (w + ��ri) (25)

�
NX
i=1

piu
00 (w + ��ri) ri < Ra (w)

NX
i=1

piriu
0 (w + ��ri) (26)
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Now, notice that on the right hand side we have the coe¢ cient of absolute risk aversion multiplied by the
�rst order condition. But we know that:

NX
i=1

piriu
0 (w + ��ri) = 0 (27)

�
NX
i=1

piu
00 (w + ��ri) ri < 0 (28)

Since that term is negative, we have:
d��

dw
> 0 (29)
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