
These notes correspond to chapter 3 of Jehle and Reny.

1 Introduction to producer theory

We now turn from consumer behavior to producer behavior. We will examine producer behavior in isolation
for now, leaving the study of partial and general equilibrium for later in the course. We begin with a
discussion of the producer�s objectives and develop some assumptions underlying producer behavior. We
will then discuss the producer�s problem and study the speci�c case of cost and supply for a production
technology that produces a single output.
Generally speaking we will consider our producers to be �rms, although it should be noted that the

theory developed applies equally to all types of producers, whether they are called �rms, production units,
families, etc. There may be additional assumptions/restrictions that one desires to make when discussing
�rms that are not controlled by agents that no not have identical preferences. The theory developed here
applies directly to a �rm composed of a single individual or agents with identical preferences. Whether
these assumptions are applicable for other models of �rms, such as partnerships, corporations with owners
and managers, etc., is a decision each researcher needs to make on his or her own.
The �rm is an interesting economic �agent�. There are many potential questions one can ask about the

�rm. Such questions could be:

1. Who owns the �rm? Does the identity of the owner change the �rm�s objectives?

2. Who manages the �rm? If the owner and the manager are di¤erent agents, how does this a¤ect the
�rm�s behavior?

3. How is the �rm organized? Do di¤erent organizational forms of the �rm promote or inhibit e¢ ciency?

4. What can the �rm do?

These are interesting and important questions that an individual could turn into a long and fruitful
academic career, and by no means is this an exhaustive list. Our primary focus will be on the 4th item,
What can the �rm do? In particular, we will begin by assuming that the �rm can transform inputs into
outputs. The �rm�s goal is to make pro�ts � speci�cally, the �rm�s goal is to maximize pro�ts. It is
possible that the �rm has other goals �many �rms set pro�t targets or sales targets (in $) or sales targets
(in quantity of items sold) or wish to maximize sales. We will focus on pro�t maximization as (1) it provides
a close approximation to the goals of many �rms; (2) it is consistent with utility maximization if the �rm
is controlled by a single individual or agents with identical preferences; and (3) it allows us to use the tools
developed in the study of consumer theory to solve the �rm�s problem.
Now, if you were to start a business one thing you would want to know is exactly how your �rm would

transform inputs into outputs (and ultimately pro�ts). In the theory constructed, the how is assumed to
be simply a black-box of production. We do not know how, just that there is some technology that exists
that allows the �rm to transform inputs into outputs. Thus, our view of the theory is fairly accurately
represented by the Underpants Gnomes in South Park.1 The Underpants Gnomes have a business plan:

� Phase 1: Collect underpants

� Phase 2: (Gnome shrugs shoulders, suggesting he does not know)

� Phase 3: Pro�t

Well, they skip the stage where they turn the inputs into outputs, but for the most part this is dead
on. Our �rms transform inputs (underpants, phase 1) into outputs to make pro�ts (phase 3), and the exact
process is unknown (phase 2). We will be slightly (but not much) more formal than shrugging our shoulders
when discussing the production process, but will simply specify it as a �production function�, and will list
certain properties of that function. Again, should you attempt to enter the business world, most lending

1Episode 217, titled Gnomes, originally aired on 12/16/1998.
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agents will want a little more than a shrug of the shoulders or that you have some unspeci�ed production
function. However, for general theoretic purposes the generic �production function�will su¢ ce.
While the Underpants Gnomes portrayal of the theory is a little simplistic, it is important to note that

the theory does not discuss the how of production. It is also important to note that given some minimum
assumptions about �rms, which in essence is what we will discuss, the economy will be able to obtain a
competitive equilibrium outcome (we will discuss this later in the course). Thus, there is beauty in the
simplicity of the theory in that it allows for equilibrium to be achieved with minimal assumptions.

2 Production

When we talk of production we generally mean the production process. Every �rm has some production
process that it uses, and this production process limits how much it can produce given a set of inputs. In
general, �rms have a production possibility set, Y � Rm, and each vector y 2 Rm represents a particular
production plan. When we are discussing the case of multiple outputs it will be convenient to denote any
yi < 0 as an input and yi > 0 as an output. In the case of a single output (which is the bulk of our
discussion), we will denote inputs as xi for i = 1; ::; n and the output as y, with xi � 0 and y � 0. In the
single output case we will use a production function to represent the production process, such that y = f (x)
where f (x) : Rn+ ! R+.
Throughout our discussion of production we will assume that f (x) is continuous, strictly increasing, and

strictly quasiconcave on Rn+ and f (0) = 0. Continuity simply means that small changes in input result in
small changes in output. By assuming f (x) is strictly increasing we are assuming that adding more of ALL
inputs will increase output. The quasiconcavity assumption literally means that any convex combination of
two input vectors will produce at least as much as either of the original vectors.
As with consumer theory we will (at times) assume that the production function is di¤erentiable. When

it is di¤erentiable we de�ne @f(x)@xi
as the marginal product of input i. Given our assumptions it will generally

be the case that @f(x)
@xi

> 0. For any output level y there will be certain input combinations that exactly
produce y. The collection of these input vectors is called the isoquant, which the book denotes Q (y).
In consumer theory we had the marginal rate of substitution which was the rate at which the consumer

traded o¤ one good for the other to remain on the same indi¤erence curve. In producer theory we have the
marginal rate of technical substitution (MRTS), which is the rate at which the �rm can trade o¤ inputs to
remain at the same output level. By de�nition we have:

MRTSij (x) =
@f (x) =@xi
@f (x) =@xj

(1)

Example: Consider the production function:

f (x1; x2) = Ax
�
1x

�
2 (2)

We then have that the marginal product of x1 and x2 are:

@f (x1; x2)

@x1
= A�x��11 x�2 (3)

@f (x1; x2)

@x2
= A�x�1x

��1
2 (4)

The MRTS is then:

MRTS12 =

@f(x1;x2)
@x1

@f(x1;x2)
@x2

(5)

MRTS12 =
A�x��11 x�2

A�x�1x
��1
2

(6)

MRTS12 =
�x2
�x1

(7)
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2.1 Elasticity of substitution

The elasticity of substitution between inputs i and j is denoted �ij . Holding all other inputs and the level
of output constant, we de�ne the elasticity of substitution as the percentage change in input proportions,
xj
xi
, associated with a 1 percent change in the MRTS between them. Mathematically, the elasticity of

substitution is de�ned as:

�ij =
d ln (xj=xi)

d ln (fi (x) =fj (x))
=
d (xj=xi)

xj=xi

fi (x) =fj (x)

d (fi (x) =fj (x))
(8)

where fi and fj are the marginal products of inputs i and j. As long as the production function is
quasiconcave, �ij � 0. As �ij ! 0 it becomes more di¢ cult to substitute inputs; as �ij ! 1 it becomes
easier to substitute inputs. We can look at the CES production function (which we also saw in consumer
theory) and examine how it captures many of our production functions as the parameter � changes. Recall
that the CES function is:

y = (x�1 + x
�
2)
1=� (9)

for � < 1 but not � = 0. We have already shown (in a homework) that the elasticity of substitution for this
function is:

� =
1

1� � (10)

However, let us take a look at the following results. We want to see what the CES production function
becomes as (1) � = 1, (2) � ! 0, and (3) � ! �1. The quick answers are (1) linear production function
(perfect substitutes), (2) Cobb-Douglas production function, and (3) Leontief production function (perfect
complements, or min (x)). Now think about what � is in each of these cases. In (1) � =1, (2) � = 1, and
(3) � = 0. Again, it is important to note what you are assuming when you impose certain restrictions on
your model.
For the case when � = 1, we have:

y = (x�1 + x
�
2)
1=� (11)

y = (x1 + x2)
1 (12)

y = x1 + x2 (13)

For the case where � ! 0 we have 1
� ! 1, so this is not as simple as (1). We can however take ln (y)

to get ey = ln (y) = ln[x�1+x
�
2]

� . Now, di¤erentiating the numerator and denominator separately with respect
to � (using L�Hopital�s rule) we get:

d ln [x�1 + x
�
2]

d�
=

(x�1 lnx1 + x
�
2 lnx2)

x�1 + x
�
2

(14)

d�

d�
= 1 (15)

Now we want to �nd the limit as �! 0:

lim
�!0

(x�1 ln x1+x
�
2 ln x2)

x�1+x
�
2

1
= lnx1 + lnx2 (16)

lnx1 + lnx2 = ln (x1x2) (17)

eln(x1x2) = x1x2 (18)

That recovers our original speci�cation and shows that as � ! 0, the CES production function becomes a
Cobb-Douglas production function.
For the case where � ! �1 it becomes more complicated. The key is determining what it means for

u (x1; x2) = min fx1; x2g. It means that u (x1; x2) = x1 if x1 � x2. So does lim�!�1 [�1x
�
1 + �2x

�
2]
1=�

= x1
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if x1 � x2? Letting � < 0 we have:

x�1 � x�1 + x
�
2 (19)

x1 � (x�1 + x
�
2)
1=� (20)

x1 � u (x1; x2) (21)

Note that the inequality �ips because � < 0. Then we also have (because x1 � x2 and � < 0):

x�1 + x
�
2 � x�1 + x

�
1 (22)

x�1 + x
�
2 � 2x�1 (23)

(x�1 + x
�
2)
1=� � 21=�x1 (24)

u (x) � 21=�x1 (25)

Now, we have:

lim
�!�1

x1 = x1 (26)

lim
�!�1

21=�x1 = x1 (27)

But we have x1 � u (x) � 21=�x1, so by the squeezing theorem we have:

lim
�!�1

u (x) = x1 (28)

when x1 � x2.

2.2 Returns to scale

Oftentimes managers would like to know how output responds to the di¤erent levels of inputs used. In the
short run we assume that at least one input is �xed and so we cannot vary that input. We refer to how
output varies in the short run as "returns to variable proportions". In the long run the �rm can vary
all inputs and we can classify production functions by their returns to scale. When discussing returns to
scale we want to vary all inputs by the same proportion and then see how output responds. We classify
production functions according to their global returns to scale by using the following de�nition:

De�nition 1 A production function f (x) has the property of (globally):

1. Constant returns to scale if f (tx) = tf (x) for all t > 0 and all x

2. Increasing returns to scale if f (tx) > tf (x) for all t > 1 and all x

3. Decreasing returns to scale if f (tx) < tf (x) for all t > 1 and all x.

Consider what the above de�nition means. If a production function has constant returns to scale then
doubling all inputs will lead to exactly doubling output. If a production function has increasing returns to
scale then doubling all inputs will lead to more than doubling of the output. If a production function has
decreasing returns to scale then doubling all inputs will lead to less than a doubling of output.
Consider the CES production function. Suppose that we want to determine whether it has increasing,

decreasing, or constant returns to scale. We have:

f (x) = (x�1 + x
�
2)
1=� (29)

f (tx) = ((tx1)
�
+ (tx2)

�
)
1=� (30)

f (tx) = (t�x�1 + t
�x�2)

1=� (31)

f (tx) = (t� (x�1 + x
�
2))

1=� (32)

f (tx) = t (x�1 + x
�
2)
1=� (33)

f (tx) = tf (x) (34)
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Regardless of the value of � we have that the CES production function has constant returns to scale. However,
recall that there are only certain values of � that are permissible, so this only applies for those parameter
values of �.
While knowing the global returns to scale is important, we might also want to be able to determine a

local measure of returns to scale (particularly if the production function cannot be classi�ed according to the
global returns to scale). To determine local returns to scale we use the elasticity of scale, which is de�ned
as:

De�nition 2 The elasticity of scale at the point x is de�ned as:

� (x) � lim
t!1

d ln [f (tx)]

d ln (t)
=

Pn
i=1 fi (x)xi
f (x)

(35)

Returns to scale are classi�ed as locally constant, increasing, or decreasing as � (x) is equal to, greater than,
or less than one.

We can use the example in the book so that:

y = k
�
1 + x��1 x��2

��1
(36)

where � > 0, � > 0, and 0 � y � k. If we calculate:

� (x) =

Pn
i=1 fi (x)xi
f (x)

(37)

we have:

f1 (x) = (�1) k
�
1 + x��1 x��2

��2
(��)

�
x���11 x��2

�
(38)

f1 (x) = �k
�
1 + x��1 x��2

��2 �
x���11 x��2

�
(39)

Now, multiplying by x1 and dividing by f (x) we have:

f1 (x)x1
f (x)

=
�k
�
1 + x��1 x��2

��2 �
x���11 x��2

�
x1

k
�
1 + x��1 x��2

��1 (40)

f1 (x)x1
f (x)

= �
�
1 + x��1 x��2

��1 �
x��1 x��2

�
(41)

For x2 we have a similar result where:

f2 (x)x2
f (x)

= �
�
1 + x��1 x��2

��1 �
x��1 x��2

�
(42)

So that the sum of those terms is:Pn
i=1 fi (x)xi
f (x)

= �
�
1 + x��1 x��2

��1 �
x��1 x��2

�
+ �

�
1 + x��1 x��2

��1 �
x��1 x��2

�
(43)Pn

i=1 fi (x)xi
f (x)

= (�+ �)
�
1 + x��1 x��2

��1 �
x��1 x��2

�
(44)

That is somewhat messy and unintuitive, so we can use y = k
�
1 + x��1 x��2

��1
and k

y �1 = x
��
1 x��2 to �nd:

� (y) = (�+ �)

�
1 +

k

y
� 1
��1�

k

y
� 1
�

(45)

� (y) = (�+ �)
�y
k

��k
y
� 1
�

(46)

� (y) = (�+ �)
�
1� y

k

�
(47)
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If we look at how returns vary as output varies, when y = 0 we have � (y) = (�+ �) > 0. As y ! k we
have � (y)! 0. If �+ � > 1, then we have that the production function exhibits constant returns to scale

for y = k
h
1� 1

�+�

i
. We can �nd that by setting � (y) = 1 and solving for y. If y < k

h
1� 1

�+�

i
then

there are increasing returns (so at low levels of output) and we can show this by showing that � (y) > 1 if

y < k
h
1� 1

�+�

i
. If y > k

h
1� 1

�+�

i
then there are decreasing returns to scale (at high levels of output).

While it is easy to get lost in the math, it is important to remember what you are trying to use the math
to show �in this case we are showing that this particular production has returns to scale which vary with
output.

3 Cost

The �rm�s cost function is similar to the consumer�s expenditure function. The cost function tells the �rm
exactly what the minimum level of expenditure is needed to achieve a target level of output, just like the
consumer�s expenditure function told the consumer exactly what minimum level of expenditure was needed
to achieve a target level of utility. So, the �rm�s cost minimization problem is of the same type as the
consumer�s expenditure minimization problem, only we use di¤erent names.
The basic problem the �rm has is to choose its input levels to minimize cost. We assume that the �rm

operates in a perfectly competitive market (or price-taker market) for inputs, that is the �rm�s choice of
input level does not a¤ect the price of the input. We let wi be the price of input i, and assume wi > 0
for all i = 1; :::; n. The �rm�s production possibilities are determined by the production function f (x) and
assume that the target level of output is denoted by y > 0.

De�nition 3 The cost function for the �rm facing �xed input prices w >> 0 and required output y 2 f
�
Rn+
�

is de�ned as the minimum value function:

c (w; y) � min
x2Rn+

wx s.t. f (x) � y (48)

If x (w; y) solves the cost minimization problem, then:

c (w; y) = w � x (w; y) (49)

We can structure this as a constrained maximization problem and use Lagrange�s method. We then
have:

min
x2Rn+

L (x; �) = wx+ � (y � f (x)) (50)

Assuming that the �rm uses a positive amount of all inputs (so that xi > 0 for all inputs i = 1; :::; n), we
then have an interior solution. The �rst-order conditions to the problem hold with equality so that:

@L
@xi

= wi � ��
@f (x�)

@xi
= 0 for i = 1; :::; n (51)

wi = ��
@f (x�)

@xi
(52)

If we take the ratio of the �rst-order conditions for two inputs i and j we have:

wi
wj

=
@f (x�) =@xi
@f (x�) =@xj

(53)

Recall that the marginal rate of technical substitution is equal to the ratio of the marginal products for
those two inputs, so that at the optimal (interior) solution to the cost minimization problem we have that
the MRTSij = wi

wj
. This is the same type of result we had in the consumer�s problem, and simply means

that the slope of the isoquant must equal the ratio of the input prices at the optimal interior solution.
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We can see from the �gure that, at an interior solution, the isoquant must be tangent to the slope of
the price ratio (technically this is the isocost curve, meaning "same cost") when cost is minimized. In the
picture the cost of the red line is too low, the cost of the green line is too high, and the cost of the black line
is tangent to the isoquant.
The solution to the cost minimization problem is a vector of inputs, x (w; y). If w >> 0 and f (x) is

strictly quasiconcave then x (w; y) will be unique. This solution is called the conditional input demand
because it is conditional on the level of output being chosen, and that level of output may or may not be
pro�t-maximizing. Given x (w; y) we can �nd the cost function as:

c (w; y) = w � x (w; y) (54)

Let�s work an example with f (x) = x1=31 x
1=3
2 . We have:

min
x1�0;x2�0

L (x1; x2; �) = w1x1 + w2x2 + �
�
y � x1=31 x

1=3
2

�
(55)

We know that both x1 > 0 and x2 > 0 as long as y > 0 because if either x1 = 0 or x2 = 0 then f (x) = 0.
We can �nd the �rst-order conditions and set them equal to zero:

@L
@x1

= w1 � ��
1

3
(x�1)

�2=3
(x�2)

1=3
= 0 (56)

@L
@x2

= w2 � ��
1

3
(x�1)

1=3
(x�2)

�2=3
= 0 (57)

@L
@�

= y � x1=31 x
1=3
2 = 0 (58)

Now, we have:

w1 = ��
1

3
(x�1)

�2=3
(x�2)

1=3 (59)

w2 = ��
1

3
(x�1)

1=3
(x�2)

�2=3 (60)

and taking the ratio we have:

w1
w2

=
�� 13 (x

�
1)
�2=3

(x�2)
1=3

�� 13 (x
�
1)
1=3
(x�2)

�2=3 (61)

w1
w2

=
x�2
x�1

(62)

x�1
w1
w2

= x�2 (63)
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Substituting into the constraint we have:

y = x
1=3
1 x

1=3
2 (64)

y = (x�1)
1=3

�
x�1
w1
w2

�1=3
(65)

y = (x�1)
2=3

�
w1
w2

�1=3
(66)

y3 = (x�1)
2 w1
w2

(67)

y3
w2
w1

= (x�1)
2 (68)r

y3
w2
w1

= x�1 (69)

We can then �nd x�2 as:

x�1
w1
w2

= x�2 (70)r
y3
w2
w1

w1
w2

= x�2 (71)r
y3
w1
w2

= x�2 (72)

Note that these conditional input demand functions correspond to intuition � if the price of the input
increases, then its own quantity used falls, while the quantity used of the other input increases. We can
then �nd the cost function c (w; y):

c (w; y) = w1x1 + w2x2 (73)

c (w; y) = w1

r
y3
w2
w1

+ w2

r
y3
w1
w2

(74)

c (w; y) =
p
y3w2w1 +

p
y3w2w1 (75)

c (w; y) = 2
p
y3w2w1 (76)

Now that we have gone through an example we can list some properties of a cost function and of the
conditional input demand functions.

Theorem 4 (Properties of the cost function) If f is continuous and strictly increasing, then c (w; y) is:

1. Zero when y = 0

2. Continuous on its domain

3. For all w >> 0, strictly increasing and unbounded above in y

4. Increasing in w

5. Homogeneous of degree one in w

6. Concave in w

7. If f is strictly quasiconcave, then we have Shephard�s lemma: c (w; y) is di¤erentiable in w at
�
w0; y0

�
whenever w0 >> 0, and

@c
�
w0; y0

�
@wi

= xi
�
x0; y0

�
, for i = 1; :::; n (77)
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Consider our cost function from the example:

c (w; y) = 2
p
y3w2w1 (78)

We can see that if y = 0, c (w; 0) = 0. This means that if output is equal to 0, then cost is equal to 0. We
can also see that the function is continuous. For strictly increasing in y, we see that:

@c (w; y)

@y
= 2

p
w2w1

3

2
y1=2 (79)

@c (w; y)

@y
= 3

p
w2w1y (80)

which is strictly greater than 0 as long as w2, w1, and y are strictly greater than 0. So that if output
increases, cost increases. We can �nd the derivative with respect to each wi:

@c (w; y)

@wi
= 2

q
y3wj

1

2
w
�1=2
i (81)

@c (w; y)

@wi
=

s
y3wj
wi

> 0 (82)

So that if any input price increases, then cost increases as well. For homogeneous of degree one in w we
have:

c (w; y) = 2
p
y3w2w1 (83)

c (tw; y) = 2
p
y3tw2tw1 (84)

c (tw; y) = 2
p
y3t2w2w1 (85)

c (tw; y) = 2t
p
y3w2w1 (86)

c (tw; y) = tc (w; y) (87)

So that if input prices increase by a certain percentage then cost increases by the same percentage. For
concave in w, we �nd the second derivative with respect to w. We have:

@c (w; y)

@wi
=

s
y3wj
wi

(88)

@2c (w; y)

@w2i
= �1

2

q
y3wjw

�3=2
i (89)

@2c (w; y)

@w2i
= �1

2

s
y3wj
w3i

< 0 for all i = 1; :::; n (90)

For Shephard�s lemma we simply take the �rst partial derivative with respect to each input price to �nd the
conditional input demands:

@c (w; y)

@wi
= xi (w; y) (91)

xi (w; y) =

s
y3wj
wi

(92)

Now we have some properties of conditional input demands.

Theorem 5 Suppose that the production function is continuous, strictly increasing, and strictly quasicon-
cave, with f (0) = 0 and that the associated cost function is twice continuously di¤erentiable. Then

1. x (w; y) is homogeneous of degree zero in w
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2. The substitution matrix, de�ned and denoted:

�� (w; y) =

0BB@
@x1(w;y)
@w1

::: @x1(w;y)
@wn

...
. . .

...
@xn(w;y)
@w1

@xn(w;y)
@wn

1CCA (93)

is symmetric and negative semide�nite. In particular the negative semide�nite property implies that
@xi(w;y)
@wi

� 0 for all i.

Using our cost function c (w; y) = 2
p
y3w1w2 we know that the conditional input demand is:

xi (w; y) =

s
y3wj
wi

(94)

For homogeneous of degree zero in w we have:

xi (w; y) =

s
y3wj
wi

(95)

xi (tw; y) =

s
y3twj
twi

(96)

xi (tw; y) =

s
y3wj
wi

(97)

xi (tw; y) = xi (w; y) (98)

So that if we increase all input prices by the same percentage we do not change the conditional factor
demands. We can see that:

xi (w; y) =

s
y3wj
wi

(99)

@xi (w; y)

@wi
= �1

2

s
y3wj
w3i

< 0 (100)

because this is just property 6 of the cost function and @xi(w;y)
@wi

= @2c(w;y)
@w2i

3.1 Short run costs

Recall that the short run is a time period in which at least one input level is �xed. We can de�ne the short
run cost function as:

De�nition 6 Let the production function be f (z), where z � (x; x). Suppose that x is a subvector of
variable inputs and x is a subvector of �xed inputs. Let w and w be the associated input prices for the
variable and �xed inputs respectively. The short run, or restricted, total cost function is de�ned as:

sc (w;w; y;x) � min
x

w � x+ w � x s.t. f (x; x) � y (101)

If x (w;w; y; x) solves this minimization problem, then

sc (w;w; y;x) = w � x (w;w; y; x) + w � x (102)

The optimized cost of the variable inputs, w �x (w;w; y; x), is called total variable cost. The cost of the �xed
inputs, w � x, is called total �xed cost.
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Cost

Quantity

SC #1

SC #2

SC #3

y1 y2

Figure 1: The long run cost curve is the lower envelope of the short run cost curves.

Note that the di¤erence between long run cost and short run cost is that some inputs are �xed and so
are NOT choice variables. What we can show is that the short run cost function is at least as high as the
long run cost function, or:

sc (w;w; y;x) = c (w;w; y) (103)

Also, for every level of output we know that the long run and short run cost functions will be equal at some
level of �xed inputs. Using this information we can show that the long run cost curve is the lower envelope
of the short run cost curves. In Figure 1 we have three short run cost curves. The red portion of each of
those curves traces out the long run cost curve. Essentially what is being done is that before incurring any
�xed cost a producer would like to determine which "plant size" to use for his particular scale of operations
(output level). Up to y1 the �rm would use sc1. Between y1 and y2 the �rm would use sc2. After output
level y2 the �rm would use sc3. If we had all the possible short run cost curves then we would have a
smoother long run cost curve.
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4 Competitive Firm

We now consider a �rm that operates in perfectly competitive output and input markets. The perfectly
competitive assumption means that the �rm exerts no impact on the price of either output or inputs, thus
taking the price as given (leading to the alternative designation of "price taker"). Typically we assume that
the �rms are small relative to the size of the market.

4.1 Pro�t maximization

De�ne pro�t as the di¤erence between total revenue and total cost. The competitive price of the output
good is p. Revenues are then R (y) = py. Suppose that the �rm wishes to sell output level y0. Let x0 be
a feasible vector of inputs that can produce y0. Then the �rm�s cost will be w � x0. The �rm must decide
both the level of output as well as the level of inputs to use.
Suppose the �rm wishes to maximize pro�ts. The �rm then solves the following problem:

max
(x;y)�0

py � w � x s.t. f (x) � y (104)

where f (x) is a production function that is continuous, strictly increasing, and strictly quasiconcave. But
we know that f (x) = y, so we can simply substitute in for the output level y and solve:

max
x2Rn+

pf (x)� w � x (105)

If we assume an interior solution, then the �rst-order conditions at the optimal level of inputs are:

p
@f (x�)

@xi
= wi for i = 1; :::; n (106)

The term on the left is the marginal revenue product (MRP), which is the rate at which revenue increases
with an additional unit of input i. At the optimum we have that MRP is equal to the wage rate, or, if we
take the ratio of the �rst-order conditions for two inputs, that:

@f (x�) =@xi
@f (x�) =@xj

=
wi
wj

for all i; j (107)

or that we have the familiar condition that the MRTS is equal to the ratio of the wages.
We could also structure the �rm�s problem by using the �rm�s cost function. We would have:

max
y�0

py � c (w; y) (108)

If production actually occurs, so that y� > 0, then the �rst-order condition holds with equality and we have:

p� dc (w; y
�)

dy
= 0 (109)

This is the familiar result from principles of microeconomics that in perfectly competitive markets price
equals marginal cost.
We can now discuss the �rm�s pro�t function and output supply function.

De�nition 7 The �rm�s pro�t depends only on input and output prices and is de�ned as the maximum-value
function:

� (p; w) � max
(x;y)�0

py � w � x s.t. f (x) � y (110)

The pro�t function is useful only if a maximum pro�t actually exists. For example, if a �rm has a
production function with increasing returns to scale, we can show that there is no maximum value for
pro�ts. To do this assume that x0 and y0 = f (x0) do maximize pro�ts at p and w. Then we have:

f (tx0) > tf (x0) for all t > 1 (111)

12



because of increasing returns. Now:

f (tx0) > tf (x0) (112)

pf (tx0) > ptf (x0) (113)

pf (tx0)� wx0 > ptf (x0)� wx0 (114)

pf (tx0)� wx0 > pf (x0)� wx (115)

Thus, the �rm could always increase pro�t by increasing the proportion of inputs it uses if it has increasing
returns to scale production. When the pro�t function exists it has the following properties.

Theorem 8 (Properties of the pro�t function) If f is continuous, strictly increasing, strictly quasiconcave,
and has f (0) = 0, then for p � 0 and w � 0, the pro�t function � (p; w), when well-de�ned, is continuous
and

1. Increasing in p

2. Decreasing in w

3. Homogeneous of degree one in (p; w)

4. Convex in (p; w)

5. Di¤erentiable in (p; w) >> 0. Moreover, we have:

@� (p; w)

@p
= y (p; w) (116)

�@� (p; w)
@wi

= xi (p; w) for i = 1; :::; n (117)

As an example, let�s consider the following problem:

max
y�0

py � 2
p
y3w2w1 (118)

We have:

p� 2pw2w1
3

2

p
y = 0 (119)

3
p
w2w1y = p (120)

w2w1y =
p2

9
(121)

y =
p2

9w2w1
(122)

Substituting this in for y we have:

� (p; w) = p
p2

9w2w1
� 2

s�
p2

9w2w1

�3
w2w1 (123)

� (p; w) =
p3

9w2w1
� 2

s
p6

729w32w
3
1

w2w1 (124)

� (p; w) =
p3

9w2w1
� 2 p3

27w2w1
(125)

� (p; w) =

�
1

9w2w1
� 2

27w2w1

�
p3 (126)

� (p; w) =

�
1

27w2w1

�
p3 (127)

13



Given our pro�t function we can test each of the properties. It is certainly increasing in p as:

@� (p; w)

@p
=

1

9w2w1
p2 > 0 (128)

so that pro�t is increasing if price increases. It is decreasing in w as:

@� (p; w)

@wi
=

p3

27wj
(�1)w�2i (129)

@� (p; w)

@wi
= � p3

27wjw2i
< 0 (130)

This simply means that pro�t is decreasing in input prices. It is homogeneous of degree one in (p; w) so
that:

� (p; w) =

�
1

27w2w1

�
p3 (131)

� (tp; tw) =

�
1

27tw2tw1

�
(tp)

3 (132)

� (tp; tw) =
t3p3

27t2w2w1
(133)

� (tp; tw) =
tp

27w2w1
(134)

� (tp; tw) = t� (p; w) (135)

So that if output price and input prices are increased in the same proportion then pro�t increases by that
proportion. We won�t take the total derivative to show that the pro�t function is convex, but we can show
that:

@� (p; w)

@p
= y (p; w) (136)

� (p; w) =

�
1

27w2w1

�
p3 (137)

@� (p; w)

@p
=

3p2

27w2w1
(138)

@� (p; w)

@p
=

p2

9w2w1
(139)

which is just y (p; w). And then:

�@� (p; w)
@wi

= xi (p; w) (140)

� (p; w) =

�
1

27w2w1

�
p3 (141)

�@� (p; w)
@wi

= � (�1) p3

27wjw2i
(142)

�@� (p; w)
@wi

=
p3

27wjw2i
(143)

Using our result from above we had that:

xi (w; y) =

s
y3wj
wi

(144)
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Substituting in for y we have:

xi (w; y (p; w)) =

vuut�
p2

9w2w1

�3
wj

wi
(145)

xi (p; w) =

vuut p6

729w3jw
3
i
wj

wi
(146)

xi (p; w) =

s
p6wj

729w3jw
4
i

(147)

xi (p; w) =
p3

27wjw2i
(148)

Now we turn to properties of the output supply and input demand functions. Note that these are no
longer conditional input demand functions because we are solving the pro�t maximization problem.

De�nition 9 (Properties of output supply and input demand functions) Let � (p; w) be a twice continuously
di¤erentiable pro�t function for some competitive �rm. Then, for all p > 0 and w >> 0, when � (p; w) is
well-de�ned:

1. The output supply function is homogeneous of degree zero in (p; w)

2. The own-price e¤ect of the output supply function, @y (p; w) =@p, is nonnegative.

3. The input demand functions are homogeneous of degree zero in (p; w)

4. The own-price e¤ects of the input demand functions are nonpositive, @xi (p; w) =@wi, for all i = 1; :::; n

5. The substitution matrix: 0BBBB@
@y(p;w)
@p

@y(p;w)
@w1

::: @y(p;w)
@wn

�@x1(p;w)
@p

�@x1(p;w)
@w1

::: �@x1(p;w)
@wn

...
...

. . .
...

�@xn(p;w)
@p

�@xn(p;w)
@w1

::: �@xn(p;w)
@wn

1CCCCA (149)

is symmetric and positive negative semide�nite.

For the homogeneity results we have:

y (p; w) =
p2

9w2w1
(150)

y (tp; tw) =
(tp)

2

9tw2tw1
(151)

y (tp; tw) =
t2p2

9t2w2w1
(152)

y (tp; tw) = y (p; w) (153)

and:

xi (p; w) =
p3

27wjw2i
(154)

xi (tp; tw) =
(tp)

3

27twj (twi)
2 (155)

xi (tp; tw) =
t3p3

27twjt2w2i
(156)

xi (tp; tw) = xi (p; w) (157)
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Again, these results simply mean that if you change all prices in the same proportion that the output supply
and input demand functions remain the same. We can also see the �rst derivatives of y (p; w) and xi (p; w)
have the correct signs:

y (p; w) =
p2

9w2w1
(158)

@y (p; w)

@p
=

2p

9w2w1
> 0 (159)

and:

xi (p; w) =
p3

27wjw2i
(160)

@xi (p; w)

@wi
=

�2p3
27wjw3i

< 0 (161)

The �rst result simply means that output supply follows the law of supply, while the second means if the
price of an input increases the �rm will use less of it, provided all other input prices are positive. Finally,
we have that:

@y (p; w)

@wi
= �@xi (p; w)

@p
(162)

p2

9wjw2i
(�1) = � 3p2

27wjw2i
(163)

�p2
9wjw2i

=
�p2
9wjw2i

(164)

4.2 Short run pro�t function

We can also discuss the short run pro�t function, which is simply the pro�t function when some inputs are
�xed.

De�nition 10 Let the production function be f (x; x) where x is a subvector of variable inputs and x is a
subvector of �xed inputs. Let w and w be the associated input prices for variable and �xed inputs, respectively.
The short run, or restricted, pro�t function is de�ned as

� (p; w;w; x) � max
y;x

py � w � x� w � x s.t. f (x; x) � y (165)

the solutions y (p; w;w; x) and x (p; w;w; x) are called the short run, or restricted, output supply and variable
input demand functions.
For all p > 0 and w >> 0, � (p; w;w; x) where well-de�ned, is continuous in p and w, increasing in p,

decreasing in w, and convex in p and w. If � (p; w;w; x) is twice continuously di¤erentiable, y (p; w;w; x)
and x (p; w;w; x) are homogeneous of degree zero in (p; w), @y(p;w;w;x)

@p � 0 and @xi(p;w;w;x)
@wi

� 0 and the
substitution matrix is symmetric and positive semide�nite.
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