
Logic and Set Theory

These notes correspond to mathematical appendix 1 in the text.

1 Logical statements

A conditional statement is simply an �if, then� statement. Typically we will write, if p, then q. There
are many other details and plenty of terminology that I will skip. You can consult Epp, Susanna. Discrete
Mathematics with Applications. 2nd ed. PWS Publishing Company, Boston, MA, 1995 for additional details
beyond those in the textbook.
Related to our conditional statement, which we state as if p, then q, (we will write this as p ! q, or �p

implies q�) we have three other statements:
Converse: q ! p
Inverse: � p!� q (the symbol � is de�ned as �not�in this context; later we will de�ne it as �indi¤erent

to�)
Contrapositive: � q !� p
Of these 3 statements, only the contrapositive is logically equivalent to the conditional statement. For

two items to be logically equivalent, they need to have the same truth table. A truth table is a table that
lists the truth-values of a proposition that result from all the possible combinations of the truth-values of its
components. Table 1 shows the truth table for the conditional statement, p! q. Note that the conditional
statement is only false when p is true and q is false. If both are true then the statement is true. However,
the statement says nothing about whether or not q will occur if p does NOT occur, so the statement is still
true in those instances when p does not occur regardless of whether or not q occurs. Thus, if the conditional
statement is: If you show up to class, then you will receive an A, the only time we can say that the statement
is false is when you show up to class and do not receive an A. If you fail to show up to class then all bets
are o¤ �you may receive an A, you may not, but the conditional statement does not tell us anything about
what happens in those instances.
Table 2 shows a truth table for the statement, the converse, the inverse, and the contrapositive. Note

that we will need the truth values for � p and � q as well. We can see that the truth values for the
contrapositive are identical to those of the statement, so that the two are logically equivalent. This will be
useful information momentarily.

2 Three Methods of Proof

We will discuss three speci�c methods of proving theorems that may prove useful to you. Those three
methods are direct proof, proof by contradiction, and proof by contraposition. Proofs can be written out
in paragraph form, with correct grammatical structure (and should be for journal articles). However, that
sometimes obscures the thought process, and I will write proofs in a t-table.

p q p! q

T T T
T F F
F T T
F F T

Table 1: Truth table for conditional statement
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p q � p � q p! q q ! p � p!� q � q !� p
T T F F T T T T
T F F T F T T F
F T T F T F F T
F F T T T T T T

Table 2: Truth table for conditional statement, converse, inverse, and contrapositive

2.1 Direct Proof

Direct proof is straightforward � if we have a conditional statement and want to prove that q is true, we
assume that p is true and deduce, using �what we know�, that q is true. �What we know�typically consists
of previously proven theorems and results, de�nitions, and other common knowledge.
Suppose we have the following diagram as in Figure 2.1:

A

D
C

B

YY

ZZ

Two intersecting lines.

And you are told that segments ZZ and YY are straight lines. The following statement is then made: If
ZZ and YY are straight lines, then \B and \C are congruent. You are then asked to prove this:
Proof. If ZZ and YY are straight lines, then angle B and angle C are congruent

Statement Reason
1. \A+ \B = 180�; 1. De�nition of a straight line
\A+ \C = 180�
2. \B = 180� � \A 2. Subtraction
\C = 180� � \A
3. \B = \C 3. Substitution
) \B and \C are congruent by the de�nition of congruent.

2.2 Proof by Contradiction

A second method of proof is proof by contradiction. Here are the steps.

1. Suppose the statement to be proved is false.

2. Show that this supposition leads naturally to a contradiction.

3. Conclude that the statement to be proved is true.

Why does this work? Essentially, when you contradict the negation of the statement (which is what you
are assuming is true in step 1), you are proving it false. If the negation is false, then the statement is true.
We will use proof by contradiction to show that there is no greatest integer.
Proof. There is no greatest integer.
By contradiction. Assume there is a greatest integer, M .
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Statement Reason
1. M > m; 8 integers m 1. De�nition of greatest
2. Let N =M + 1 2. De�ning a new number by addition
3. N is an integer 3. The sum of integers is an integer
4. M + 1 > M 4. De�nition of greater
5. N > M 5. Substitution
Step 5 contradicts the original assumption, that M is the greatest integer, because we have found an

integer that is greater than M . ) There is no greatest integer.
Although there are no set rules as to when to use proof by contradiction, here are two guidelines as to

when you might �nd proof by contradiction useful.

1. When you want to show that there is no object with a certain property.

2. When you want to show that a certain object does not have a certain property.

2.3 Proof by Contraposition

A third method of proof is proof by contraposition. Here are the steps:

1. State the contrapositive of the statement.

2. Prove the contrapositive by direct proof.

Why does this work? Recall that the contrapositive and the conditional statement are logically equiva-
lent. Thus, if the contrapositive is true, then the conditional statement is also true. We will show that for
all integers n, if n2 is even, then n is even.
Proof. 8 integers n, if n2 is even, then n is even
By contraposition. 8 integers n, if n is odd, then n2 is odd
Statement Reason
1. k is an integer 1. assumption
2. 2k + 1 is an odd integer 2. de�nition of an odd integer
3. n = 2k + 1 3. we have now de�ned what is given to us
4. n2 = (2k + 1) (2k + 1) 4. De�nition of square
5. n2 = 4k2 + 4k + 1 5. Multiplication (FOIL)
6. n2 = 2

�
2k2 + 2k

�
+ 1 6. Distribution

7. x = 2k2 + 2k 7. De�ning a new number
8. x is an integer 8. Addition and multiplication of integers

results in an integer
9. n2 = 2x+ 1 9. Substitution
) n2 is odd by de�nition of odd. Since we have proven the contrapositive true, we know the statement

is also true, so that if n2 is even, then n is even 8 integers n
Note that the proof in the book skips some steps because they �know� that the product of two odd

integers is odd, so they can invoke what they �know�to conclude that n2 is odd after step 4. However, we
did not know that.
Again, there are no set rules for using proof by contraposition. One bene�t of using proof by con-

traposition is that we know exactly what we need to prove, so there is some guidance. With proof by
contradiction, we do not necessarily know what contradiction we are looking for. However, the bene�t of
proof by contradiction is that once we have shown any contradiction then we are �nished. Also, if a theorem
is proved using proof by contraposition, then it can also be proved using proof by contradiction. However,
the converse of that statement is NOT true (but you already knew that).

2.4 NOT Methods of Proof

Here is a list of things that people might want to use to prove a theorem. However, they are NOT methods
of proof.
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1. Proof by converse �we know that a statement and its converse are NOT logically equivalent, so proving
the converse is true does not necessarily prove the statement is true.

2. Proof by inverse �replace �converse�with �inverse�in the statement above.

Note: I have been thinking about this, and although I have no evidence, I believe that people like to use
�proof by converse�and �proof by inverse�as methods of proving the truth of a conditional statement
is because if p and q are both true then the conditional, converse, inverse, and contrapositive are all
true (just look at the truth table). However, one needs to consider ALL the possible combinations of
the truth of p and q, and the truth table shows us that the conditional and the inverse (and converse)
are not logically equivalent.

3. Proof by example �one million examples may suggest that something is true; however, all it takes is
one counterexample to prove that something is NOT true. And if you give one million examples of
something and state that it is true when it really is not true, someone with time on his or her hands
will �nd that one counterexample.

4. Proof by appealing to someone else�s proof for a case that is related to their theory, but not exactly as
it is speci�ed �economists will typically appeal to someone else�s theory (which will typically be done
in a continuous space for mathematical tractability) and say that it suggests certain results in their
example (which will typically be a discrete space if they are writing about something that actually
happened). If you have a speci�c example about which you are writing, take a little time to make
sure simple counterexamples to the theory do not exist.

2.5 Elements of set theory

A set is a collection of elements. We can list the elements S = f1; 8; 22g or describe the elements S0 =
fxjx < 10g. We use 2 to denote membership in the set, as in 1:82 2 S0.
A set S is a subset of the set T if all the elements of S are in T . If S = f1; 2g and T = fxjx < 10g then

S is a subset of T because all of the elements of S are in T . We can write S � T (S is contained by T ) or
T � S (T contains S). If S � T , then this implies that an element of S is also in T .
A set S is empty if it contains no elements. We denote the empty set by ?.
The complement of a set S � U are all the elements in U which are not in S. If U = f1; 2; 3; 4; 5g and

S = f1; 2g the complement of S is Sc = f3; 4; 5g.
The union of two sets S and T is the set of all elements which are contained in either set. We denote

union by [ and write S [ T � fxjx 2 S or x 2 Tg.
The intersection of two sets S and T is the set of all elements which are contained in both sets. We

denote intersection by \ and write S \ T � fxjx 2 S and x 2 Tg.
The product of two sets S and T is the set of ordered pairs in the form (s; t) where s 2 S and t 2 T .

We denote the product as S � T � f(s; t) js 2 S; t 2 Tg. The Cartesian plane is a product of two sets. We
let R denote the set of real numbers, so that R = fxj �1 < x <1g. The Cartesian plane is R � R �
f(x1; x2) jx1 2 R; x2 2 Rg. This set is often called two-dimensional Euclidean space and denoted as R2. We
can also have n-dimensional Euclidean space, which is Rn � R�R� :::�R, where there are n R�s. A vector
from a set product consists of one element from each individual set, so that if the space is R2 then we will
have an ordered pair (which you all should be familiar with), and if the space is Rn then we will have an
n-vector. Note that with two vectors x and y, x � y if and only if each element of x is greater than or equal
to the corresponding element of y, or xi � yi for all i = 1; :::; n. We state that x is strictly greater than y,
or x >> y, if and only if xi > yi for all i = 1; :::; n.

3 Convex sets

Convex sets are very important in microeconomic theory. Many results hinge upon some set being convex.
Consider a two-dimensional set, or a set in R2. The basic notion of convexity is that one can take any two
points in the set (including those on the boundary), draw a line between them, and all the points on the line
are also in the set. Figure 1 provides some examples of convex and nonconvex sets.
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Convex sets Nonconvexsets

Figure 1: Some convex and nonconvex sets

Extending the de�nition to Rn, a set S � Rn is a convex set if for all x1 2 S and all x2 2 S, we have
tx1 + (1� t)x2 2 S for all t 2 [0; 1]. This simply means that we can take any two n-vectors from the set
S and �nd all the weighted averages between those points and that if all those weighted averages are in the
set then the set is convex.

Theorem 1 Let S and T be convex sets in Rn. Then S \ T is a convex set.

Proof. Let S and T be convex sets. Let x1 and x2 be any two points in S \T . Because x1 2 S \T , x1 2 S
and x1 2 T . The same is true for x2. Let z = tx1 + (1� t)x2 for t 2 [0; 1]. Because S and T are convex
z 2 S and z 2 T . By the de�nition of the term intersection, z 2 S \ T . Because every convex combination
of any two points in S \ T is also in S \ T , the set S \ T is convex.

4 Relations

A binary relation is de�ned by specifying some meaningful relationship that holds between the elements of
the the ordered pair. Familiar binary relations should be �, >, �, and <. Some useful concepts concerning
binary relations are as follows.

Completeness

De�nition 2 A relation < on S is complete if, for all distinct elements x and y in S, x<y or y<x.

Let S be the set of all people, then the relation "is older than" is not complete because we can always
�nd two people who are the same age. If the relation "is at least as old as", then that relation is complete.

Re�exivity
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De�nition 3 A relation < on S is re�exive if, for all elements in S, x<x.

Again, the relation "is older than" is not re�exive as people are not older than themselves, but the relation
"is at least as old as" is re�exive because people are at least as old as themselves.

Transitivity

De�nition 4 A relation < on S is transitive if, for any three elements x, y, and z in S, x<y and y<z
implies x<z.

Both "is older than" and "is at least as old as" are transitive.

4.1 Functions

A function is a common kind of relation. A function maps from one element of one set to another single,
unique element of another set. We can write the function f maps from set D to set R as: f : D ! R, where
D is the domain and R is the range. The image of f is the set of points in the range into which some point
in the domain is mapped. If every point in the range is assigned to at most a single point in the domain,
the function is called one-to-one. If the image is equal to the range �if every point in the range is mapped
into by some point in the domain �the function is called onto.

5 Topology

Topology is the study of properties of sets and mappings. A metric is a measure of distance. A metric
space is a set with some associated distance measure. Consider the real number line R with the distance
given between two points on the real number line as d

�
x1; x2

�
=
��x1 � x2��.

Now consider the Cartesian plane with the following metric:

d
�
x1; x2

�
=

q
(x21 � x11)

2
+ (x22 � x12)

2 (1)

Note that this metric is an application of the Pythagorean theorem, which we can generalize to n dimensions.
Now some de�nitions.

De�nition 5 The open ball with center x0 and radius " > 0 (a real number) is the subset of points in Rn :
B"
�
x0
�
�
�
x 2 Rn : d

�
x0; x

�
< "

	
, where d

�
x0; x

�
is the distance from x0 to x

The closed ball with center x0 and radius " > 0 (a real number) is the subset of points in Rn :
B�"
�
x0
�
�
�
x 2 Rn : d

�
x0; x

�
� "

	
, where d

�
x0; x

�
is the distance from x0 to x

Note that the di¤erence between an open ball and a closed ball (besides the asterisk) is in the inequality.
So, an open ball contains all the points within a circle of given radius " but NOT the boundary of the circle,
while a closed ball contains all the points within a a circle of given radius " including the boundary points
(circle is for R2). So if a set is open then any element of the set can be contained within SOME open ball
(not every, but at least one) centered at that point. Think of the open unit interval (0; 1) (the term open
kind of gives it away). Even for points very close to 0 and 1 we can draw SOME open ball around them
and all the points in the open ball will be in the set. Now, think of the closed unit interval [0; 1]. A set
is closed if its complement (the complement is the set of all elements in the universal set � in our current
example, the real number line �that are not in our set) is open. The complement to the closed unit interval
is (�1; 0) [ (1;1), which is an open set.

De�nition 6 A set S is bounded if it is entirely contained within some open or closed ball. That is, S is
bounded if there exists some " > 0 such that S � B" (x) or S � B�" (x) for some x 2 Rn.

Basically, for R2, if one can draw a circle around the set, then it is bounded.

De�nition 7 A set S is open if for all of its elements x 2 S, there exists some " > 0 such that the open
ball B" (x) is in the set.
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De�nition 8 A set S is closed if its complement Sc is open.

De�nition 9 A set S is compact if it is closed and bounded.

Why do we need this information? When we get to consumer theory it will be useful to show that our
budget set, Bp;w is a compact set.

De�nition 10 A function f : R ! R is continuous at a point x0 if, for all " > 0, there exists a � > 0
such that d

�
x; x0

�
< � implies that d

�
f (x) ; f

�
x0
��
< ". A function is called a continuous function if it is

continuous at every point in its domain.

We will not delve too much into the notion of continuity �it is a fairly simple concept but the simplest
concepts tend to be some of the most di¢ cult to explain.
There is a nice result called the Weierstrass Theorem (extreme value theorem) that states that a con-

tinuous function attains a maximum (as well as a minimum) on any compact set. While we will not go
through the details, it is a useful theorem to have knowledge of as it will guarantee that a solution exists to
our consumer�s optimization problem.

6 Real-valued functions

A function is real-valued if it maps the elements of the domain D into the real number line R. Formally:

De�nition 11 A function f : D ! R is a real-valued function if D is any set and R � R.

Generally we will deal with functions that either rise or fall as the domain increases. These are increasing
and decreasing functions.

De�nition 12 Let f : D ! R, where D � Rn. Then f is increasing if f
�
x0
�
� f

�
x1
�
whenever x0 � x1.

If we have f
�
x0
�
> f

�
x1
�
when x0 >> x1, then f is strictly increasing. If we have f

�
x0
�
> f

�
x1
�

whenever x0 6= x1 and x0 � x1, then f is strongly increasing.

Note that every strongly increasing function is strictly increasing, and every strictly increasing function
is increasing.

De�nition 13 Let f : D ! R, where D � Rn. Then f is decreasing if f
�
x0
�
� f

�
x1
�
whenever x0 � x1.

If we have f
�
x0
�
< f

�
x1
�
when x0 >> x1, then f is strictly decreasing. If we have f

�
x0
�
< f

�
x1
�

whenever x0 6= x1 and x0 � x1, then f is strongly decreasing.

6.1 Functions over convex sets

Note that a general assumption that we will make is that when we have f : D ! R is a real-valued function
we assume D � Rn is a convex set. Also note that we de�ne xt � tx1+ (1� t)x2 for t 2 [0; 1]. That being
stated, we now de�ne various classes of functions.

De�nition 14 A function f : D ! R is a concave function if for all x1, x2 2 D, f (xt) � tf
�
x1
�
+

(1� t) f
�
x2
�
8t 2 [0; 1] :
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A concave function.

With a concave function we may have �at spots in the function, as in Figure 6.1. Note that all points below
a concave function form a convex set.

De�nition 15 A function f : D ! R is a strictly concave function if for all x1, x2 2 D, f (xt) > tf
�
x1
�
+

(1� t) f
�
x2
�
8t 2 (0; 1) :

Note that this de�nition of strictly concave function is the same as the one for a concave function except
(1) the inequality is now strict and (2) the interval (0; 1) is now open.

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­4

­2

2

4

6

x

y

A strictly concave function.

Figure 6.1 plots a strictly concave function. Again, all the points below a strictly concave function form a
convex set.

De�nition 16 A function f : D ! R is quasiconcave if and only if, for all x1 and x2 in D, f (xt) �
min

�
f
�
x1
�
; f
�
x2
��
for all t 2 [0; 1].
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x’

x’’

af(x’)+(1­a)f(x’’)

Always below f(a(x’)+(1­a)(x’’))

Concave Quasiconcave

x’

x’’

Clearly not concave, but f(ax’+(1­a)x’’)
>= min (f(x’),f(x’’))

Neither concave nor
quasiconcave

x’

x’’

x x

x

f(x) f(x)

f(x)

Figure 2: A concave and quasiconcave function as well as one that is neither.

Think about what quasiconcavity means � if we take a weighted average of two points, then the value
of that weighted average is greater than or equal to the minimum of the two original points. For strict
quasiconcavity replace � with > and � 2 [0; 1] with � 2 (0; 1). Comparing quasiconcavity with concavity,
for a function to be concave, we need f (tx0 + (1� t)x00) > tf (x0) + (1� t) f (x00) 8t 2 (0; 1). Concave
simply says that for any two points in the function, any weighted average of the two points evaluated by
the function is greater than weighted average of the evaluated values of the two points. Thus, if we pick
any two points on the function and draw a line between them the function will lie above that line. Note
that concavity is a stronger assumption than quasiconcavity, and the goal is to provide the weakest possible
assumptions to obtain various results. Figure 2 shows the di¤erence between a concave, quasiconcave, and
a function which is neither concave nor quasiconcave.

Theorem 17 A function f (x) is (strictly) concave if and only if �f (x) is (strictly) convex.

Essentially this just involves rearranging the inequality in the de�nition of a concave function. Note
that all points above a convex function will form a convex set. At this point in time it is useful to note that
there is a di¤erence between convex functions and convex sets.

De�nition 18 A function f : D ! R is quasiconvex if and only if, for all x1; x2 2 D, f (xt) � max
�
f
�
x1
�
; f
�
x2
��

8t 2 [0; 1].

De�nition 19 A function f : D ! R is strictly quasiconvex if and only if, for all x1 6= x2 2 D, f (xt) <
max

�
f
�
x1
�
; f
�
x2
��
8t 2 (0; 1).
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