
Calculus and optimization

These notes essentially correspond to mathematical appendix 2 in the text.

1 Functions of a single variable

Now that we have de�ned functions we turn our attention to calculus. A function f is di¤erentiable if it
is continuous and "smooth" with no breaks or kinks. A derivative, f 0 (x), gives the slope or instantaneous
rate of change in f (x). If f 0 (x) is di¤erentiable, then we can �nd the second derivative, f 00 (x), too. The
second derivative is related to the curvature of the original function as it tells how the �rst derivative is
changing. Table 1 provides some common rules of di¤erentiation.
We now state some equivalency relations for concave functions.

Theorem 1 Let D be a nondegenerate interval of real numbers on which f is twice continuously di¤eren-
tiable. The following statements are equivalent:
1. f is concave
2. f 00 (x) � 0 for all x 2 D
3. For all x0 2 D : f (x) � f

�
x0
�
+ f 0

�
x0
� �
x� x0

�
4. If f 00 (x) < 0 for all x 2 D, then f is strictly concave.

From our prior theorem relating convex and concave functions we also have a theorem for convex functions
by reversing the inequalities and changing the word "concave" to "convex".

2 Functions of several variables

Many times we will work with functions of several variables. In consumer theory �rms have utility functions
which are functions of the quantities consumed of various goods; in producer theory �rms have cost functions
which are functions of the quantities of inputs used to produce a good. Since there are multiple variables,
it is sometimes easier to think in terms of the slope of one particular variable, holding the other variables
constant.

De�nition 2 Let y = f (x1; :::; xn). The partial derivative of f with respect to xi is de�ned as:

@f (x)

@xi
� lim

h!0

f (x1; :::; xi + h; :::; xn)� f (x1; :::; xi; :::; xn)
h

(1)

Constants, � d
dx (�) = 0

Sums d
dx (f (x)� g (x)) = f

0 (x)� g0 (x)
Power rule d

dx (�x
n) = n�xn�1

Product rule d
dx (f (x) g (x)) = f (x) g

0 (x) + f 0 (x) g (x)

Quotient rule d
dx

�
f(x)
g(x)

�
= g(x)f 0(x)�f(x)g0(x)

(g(x))2

Chain rule d
dx (f (g (x))) = f

0 (g (x)) g0 (x)

ln rule d(� ln x)
dx = �

x

Table 1: Common rules of di¤erentiation
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The �rst thing to notice is that there are n partial derivatives. In essence, to �nd the nth partial derivative
of a particular function simply treat the other n� 1 variables as constants. If f (x1; x2) = x21 + 3x1x2 � x22,
then we have:

@f
@x1

= 2x1 + 3x2
@f
@x2

= 3x1 � 2x2
(2)

If we collect the n partial derivatives into a row vector, then this will be the gradient of the function. So
for our example the gradient, de�ned as rf (x) is:h

@f
@x1

@f
@x2

i
=
�
2x1 + 3x2 3x1 � 2x2

�
(3)

We can also consider the partial derivatives of the gradient, as the second partials of the original function
should provide information about the curvature of the original function. Note that if one takes the second
partial derivatives of a row vector of length n then the result will be an n�n matrix of second partials. This
matrix of second partial derivatives is called the Hessian matrix. Considering our example of f (x1; x2) =
x21 + 3x1x2 � x22, the Hessian matrix, H (x), is:

H (x) =

"
@2f

@x1@x1

@2f
@x1@x2

@2f
@x2@x1

@2f
@x2@x2

#
=

�
2 3
3 �2

�
(4)

A theorem which we will be able to invoke later is Young�s Theorem, which basically states that the order
in which the partial derivatives are taken does not a¤ect the resulting second partial derivative:

Theorem 3 (Young�s Theorem) For any twice di¤erentiable function f (x)

@f2

@xi@xj
=

@f2

@xj@xi
(5)

We can see in our example that @2f
@x1@x2

= @2f
@x2@x1

= 3.
While we will not get into the details of curvature it should be helpful to state some results:

Theorem 4 Let D be a convex subset of Rn with a nonempty interior on which f is twice continuously
di¤erentiable. The following statements are equivalent:
1. f is concave
2. H (x) is negative semide�nite for all x in D.
3. For all x0 2 D : f (x) � f

�
x0
�
+rf

�
x0
� �
x� x0

�
2.1 Homogeneous functions

A homogeneous function are real-valued functions which behave in particular ways as all variables are
increased simultaneously and in the same proportion.

De�nition 5 A real-valued function is called homogeneous of degree k if

f (tx) � tkf (x) (6)

If a function is homogeneous of degree 0, then increasing the variables in the same proportion will leave
the value of the function unchanged. If the function is homogeneous of degree 1, then increasing the variables
in the same proportion will increase the value of the function in the same proportion (if all the variables are
doubled, the value of the function doubles, etc.).
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3 Optimization

Suppose we have a single variable function f (x). Assume that f (x) is di¤erentiable. The function f (x)
achieves a local maximum at x� if f (x�) � f (x) for all x in some neighborhood of x�. The function
f (x) achieves a global maximum at x� if f (x�) � f (x) for all x in the domain of the function. The local
maximum is unique if f (x�) > f (x) for all x in some neighborhood of x� and the global maximum is unique
if f (x�) > f (x) for all x in the domain of the function.
Similarly, the function achieves a local minimum at ex if f (ex) � f (x) for all x in some neighborhood ofex and a global mininum at ex if f (ex) � f (x) for all x in the domain of the function. If the inequalities are

strict then the minimum is unique. What follows are the �rst-order necessary conditions and second-order
necessary conditions for the optima of a general twice continuously di¤erentiable function of one variable:

Theorem 6 Let f (x) be a twice continuously di¤erentiable function of one variable. Then f (x) reaches a
local interior:
1. maximum at x� =) f 0 (x�) = 0

=) f 00 (x�) � 0
2. minimum at ex =) f 0 (x�) = 0

=) f 00 (ex) � 0
3.1 Optima for real-valued functions of multiple variables

Suppose that D � Rn and let f : D ! R be a twice continuously di¤erentiable real-valued function of n
variables. Intuitively, a local maximum is achieved at x� if no small movement away from x� results in the
function increasing. The �rst-order necessary conditions for a local interior optima at x� are as follows:

Theorem 7 If the di¤erentiable function f (x) reaches a local interior maximum or minimum at x� then
x� solves the system of simultaneous equations:

@f(x�)
@x1

= 0
@f(x�)
@x2

= 0

:::
@f(x�)
@xn

= 0

(7)

The second-order necessary conditions are as follows:

Theorem 8 Let f (x) be twice continuously di¤erentiable.
1. If f (x) reaches a local interior maximum at x�, then H (x�) is negative semide�nite.
2. If f (x) reaches a local interior minimum at ex, then H (ex) is positive semide�nite.
Again, we will not get into the details of negative and positive semide�niteness, but the function will be

strictly concave if the principal minors of the Hessian matrix alternate in sign, beginning with a negative
sign. It will be strictly convex if the principal minors of the Hessian matrix are all positive.

3.2 Constrained optimization

Thus far we have focused on unconstrained optimization. However, in many problems there are constraints
which must be met. They may be equality constraints, such that we are optimizing a particular function
f
�
x1; x2

�
subject to the equality constraint g

�
x1; x2

�
= 0. They may be constraints as simple as nonnega-

tivity constraints, so that x1 � 0 and x2 � 0. They may be more complex inequality constraints, such that
we are optimizing the function f

�
x1; x2

�
subject to g

�
x1; x2

�
� 0. The function g

�
x1; x2

�
may be linear

or nonlinear.
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3.2.1 Equality constraints

Formally, an optimization with an equality constraint is set up as:

max
x1;x2

f (x1; x2) s.t. g (x1; x2) = 0 (8)

The function which we are optimizing, f in this instance, is called the objective function. The variables
that are being chosen, x1 and x2 in this problem, are the choice variables. The function g (x1; x2) is called
the constraint function.
With equality constrained optimization problems the problem can be solved by substitution. If we solve

for one of the variables in the constraint function, say x2, we would have a new function:

x2 = eg (x1) (9)

Substitute this directly into the objective function and the problem becomes:

max
x1

f (x1; eg (x1)) (10)

and then we are maximizing a function of a single variable. We then set the �rst derivative equal to zero
and �nd the critical value for x1. This �rst order condition is:

@f (x�1; eg (x�1))
@x1

+
@f (x�1; eg (x�1))

@x2

deg (x�1)
dx1

= 0 (11)

Once x�1 is known we �nd x
�
2 by using x

�
2 = eg (x�1). For simple problems this substitution method works

well; when the constraint functions are complex or there are multiple choice variables (or constraints) this
method becomes tedious.

3.2.2 Lagrange�s method

Solving unconstrained optimization problems is (relatively) easy. The idea that Lagrange had was to turn
constrained optimization problems into unconstrained optimization problems. Our problem from before is:

max
x1;x2

f (x1; x2) s.t. g (x1; x2) = 0 (12)

Now, multiply the constraint by the variable � (why? that comes later). Add that product to the objective
function and we have created a new function called the Lagrangian function (or Lagrangian). The Lagrangian
is:

L (x1; x2; �) = f (x1; x2) + �g (x1; x2) (13)

The �rst-order necessary conditions for optimizing the Lagrangian are the set of partial derivatives set equal
to zero:

@L
@x1

=
@f (x�1; x

�
2)

@x1
+ ��

@g (x�1; x
�
2)

@x1
= 0 (14)

@L
@x2

=
@f (x�1; x

�
2)

@x2
+ ��

@g (x�1; x
�
2)

@x2
= 0 (15)

@L
@�

= g (x�1; x
�
2) = 0 (16)

The idea of Lagrange�s method is that if we solve these three equations simultaneously for x�1, x
�
2, and �

�

we will have found a critical point of f (x1; x2) along the constraint g (x1; x2) = 0. While we will not go
through all of the details to prove why this method works, the book provides a nice discussion. Also, as
of now we do not know whether or not these critical values are maxima or minima, but some comments on
this topic will be made shortly.
Note that Lagrange�s method can be used for any number of variables (n) and any number of constraints

(m) so long as the number of constraints is less than the number of variables (m < n). There is still the
question of whether or not a solution actually exists for a problem and whether or not the � variable exists.
While these are important questions a general discussion of these concepts is more than is needed here.
When we discuss particular economic optimization problems we will discuss these concepts in slightly more
detail. The formal statement of Lagrange�s theorem is here (note that �� is a vector of the � variables):
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Theorem 9 Let f (x) and gj (x), j = 1; :::;m, be continuously di¤erentiable real-valued functions over some
domain D � Rn. Let x� be an interior point of D and suppose that x� is an optimum (maximum or
minimum) of f subject to the constraints, gj (x�) = 0, j = 1; :::;m. If the gradient vectors rgj (x�),
j = 1; :::;m are linearly independent, then there exist m unique numbers ��j , j = 1; :::;m such that

@L (x�;��)
@xi

=
@f (x�)

@xi
+

mX
j=1

��j
@gj (x�)

@xi
= 0 for i = 1; :::; n (17)

So this theorem guarantees us the existence of the � variables.
As for determining whether or not the constrained function is attaining a maximum or minimum, one

can check the determinant of the bordered Hessian of the Lagrangian function. The bordered Hessian is
simply the Hessian matrix of the Lagrangian function bordered by the �rst-order partial derivatives of the
constraint equation and a zero. The bordered Hessian for a problem with two choice variables and one
constraint is:

H =

24 L11 L12 g1
L21 L22 g2
g1 g2 0

35
where Lij = @2L

@xi@xj
and gi =

@g
@xi
. As a practical matter in this course we will not be concerned with

determining the sign of the determinant of the bordered Hessian matrix, but you are encouraged to read the
text for more detail.

3.2.3 Inequality constraints

In some problems we will have inequality constraints to contend with. Many times we assume that the
choice variables must be nonnegative, or xi � 0. Look at the following pictures and attempt to characterize
the solution to the problem:

x*=0 x*=0 x*>0

f’(x*)=0 f’(x*)=0
f’(x*)<0

Case 1 Case 2 Case 3

In case 1 we have x� = 0 and f 0 (x�) < 0.
In case 2 we have x� = 0 and f 0 (x�) = 0.
In case 3 we have x� > 0 and f 0 (x�) = 0.
In all three of these cases we have x� [f 0 (x�)] = 0. But this is not the only condition because in case 3

when ex = 0 we have ex [f 0 (ex)] = 0 but ex is NOT a maximum. So the necessary conditions we need to have
hold are:

f 0 (x�) � 0 (18)

x� [f 0 (x�)] = 0 (19)

x� � 0 (20)
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The necessary conditions for a minimum are fairly similar to those of a maximum. We have:

f 0 (x�) � 0 (21)

x� [f 0 (x�)] = 0 (22)

x� � 0 (23)

3.2.4 Kuhn-Tucker conditions

A general problem that we might encounter is:

max
x1;x2

f (x1; x2) s.t. g (x1; x2) � 0 (24)

This is a nonlinear programming problem, as a linear programming problem we have a linear function which
is optimized subject to linear equality constraints. We make no such restrictions here. We can construct
the Lagrangian to �nd:

L (x1; x2; �) = f (x1; x2) + � [g (x1; x2)] : (25)

The Kuhn-Tucker necessary conditions for this problem are:

@f

@x1
+ �

@g

@x1
= 0 (26)

@f

@x2
+ �

@g

@x2
= 0 (27)

�g (x1; x2) = 0 (28)

� � 0; g (x1; x2) � 0 (29)

Now, there are many times in which we might restrict our choice variables x1 and x2 to be greater than or
equal to 0. In those instances, our problem would be:

max
x1�0;x2�0

f (x1; x2) s.t. g (x1; x2) � 0 (30)

Technically, the Lagrangian is:

L (x1; x2; �1; �2; �3) = f (x1; x2) + �1 [g (x1; x2)] + �2x1 + �3x2 (31)

The Kuhn-Tucker necessary conditions for this type of problem are:

@L
@x1

� 0; x1 � 0; x1 � @L
@x1

= 0
@L
@x2

� 0; x2 � 0; x2 � @L
@x2

= 0
@L
@�1

� 0; �1 � 0; �1 � @L
@�1

= 0
@L
@�2

� 0; �2 � 0; �2 � @L
@�2

= 0
@L
@�3

� 0; �3 � 0; �3 � @L
@�3

= 0

:

Technically one would have to check all these conditions to see which constraints are binding and which are
not. For most consumer and �rm problems that we will solve we will be able to "know" that x1 > 0 and
x2 > 0 by looking at the objective function.
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