
Simultaneous games of complete information�

1 Introduction

Why study theory? There are two reasons that I can think of to study theory. The most important is that
theory provides a way for a researcher to determine the assumptions he or she views as important, reduce
the model of behavior to those assumptions, and then make predictions about behavior that follow logically
from those assumptions. The key is that predictions follow logically from the assumptions (hence why it
is emphasized) �anyone can make statements about what might occur, and just about all of those things
may actually come true at some point in time, but the point is to understand what behavior drives us to
those predictions. It is completely possible that the researcher neglects one or two important aspects, but
the theory can always be revised to incorporate new assumptions. The second reason is that �everyone
else does it�. For better or worse, the language of economics is basically theoretical and mathematical
economics (although that may be changing �slowly). Thus, in order to communicate with other economists
it is important to understand that in which they believe. Also, in order to e¤ectively criticize a theoretical
model you need to be able to understand it.1 Simply making a statement like �Well, that�s just theory�is
not going to win you an argument with a theorist, nor should it.
Now, why study game theory? Most of standard economic theory assumes that individual actors are

non-strategic in the sense that their actions have little to no e¤ect on others actions. For example, consider
the classic case of a consumer in a market. The consumer has a budget constraint and a utility function, and
sees a set of prices, and then chooses the a¤ordable bundle of goods that provides the highest utility. For
large numbers of consumers or �rms this non-strategic view may be true, but what about when there are only
small numbers of either �rms or consumers? A classic example is oligopoly theory, which was basically the
theory of the kinked demand curve prior to the introduction of game theory (recall in the movie �A Beautiful
Mind�that when John Nash is being informed about his receiving the Nobel Prize that the informer tells
him his equilibrium concept has been used in antitrust cases). The idea is that when agents are allowed
to make strategic decisions, and other agents know that the other agents will be strategic, predictions may
change.

2 A normal (or matrix or strategic) form game

The classic example of a simultaneous game with complete information is the Prisoner�s Dilemma.

Two prisoners have been charged with a crime. Each prisoner is strictly interested in his or
her own well-being, and less time in jail is better than more time in jail (6 months is better than
10 months). The prisoners are isolated in di¤erent holding cells where they will be questioned
by the DA. The DA comes in and makes an o¤er to Prisoner 1. The DA says that if Prisoner 1

�Based on Chapter 1 of Gibbons (1992).
1You should also attempt to understand why the theory was developed. For instance, a lot of people criticize general

equilibrium models without understanding why general equilibrium was developed in the �rst place. Walras and later Arrow
and Debreu and some others I am forgetting set out with showing that markets can be e¢ cient, and provided a nice set of
axioms to show the conditions under which this is true. I do not believe any of them ever argued that all the conditions
were true in the real world, just that if these conditions held then markets would be e¢ cient. If you think about this in the
context of the time, this is extremely important given that the prevailing thought was that some central planner was needed to
coordinate activity (check out Samuelson�s prediction about how the Soviet Union was supposed to surpass the US in some of
the early editions of his text).
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confesses and Prisoner 2 confesses that both will be sentenced to 6 months in jail. However, if
neither prisoner confesses, then both of you will do the minimum amount of time and be out in 2
months. But if Prisoner 1 confesses and Prisoner 2 does not confess then Prisoner 1 can go home
free (spend zero months in jail) and Prisoner 2 gets to spend 10 months in jail. The DA also tells
you that Prisoner 2 is o¤ered the same plea bargain and that if he/she confesses and you don�t,
then you will be sentenced to 10 months in jail and Prisoner 2 will go home free. What should
the prisoners do?

Before solving the game we should identify the elements of the game. There are two players, Prisoner 1
and Prisoner 2 (technically there is a third player, the DA, but that player is passive in the sense that his
action to make the o¤er has already been determined). According to the rules of the game, there are only
2 actions that each player can take, �Confess�or �Not Confess�. There are 4 outcomes �both prisoners
confess, both prisoners do not confess, or one prisoner confesses and the other does not. The payo¤s to each
of these outcomes are, respectively, (�6;�6), (�2;�2), (�10; 0) (when Prisoner 2 confesses but Prisoner 1
does not), and (0;�10) (when Prisoner 1 confesses but Prisoner 2 does not). Now, to analyze a game of
this type we can use the matrix (or bi-matrix or normal or strategic) form of the game. I will provide the
picture of the normal form of the game and then describe its construction.

Prisoner 2
Confess Not Confess

Prisoner 1 Confess �6;�6 0;�10
Not Confess �10; 0 �2;�2

We call Prisoner 1 the row player and list his possible strategies (in this game each action is a strategy
for the game) along the rows. Prisoner 2 is the column player and his actions are listed along the columns.
Note that in this game both prisoners have the same number of strategies as well as the same strategies, but
neither of these need be true. There are 4 outcome cells. In the �Confess, Confess�outcome cell are the
numbers �6 and �6, representing the payo¤ to Prisoner 1 and Prisoner 2 respectively. Each of the other
outcome cells also has a pair of payo¤s listed in it. It is important to note that the convention is to list the
row player�s payo¤ on the left (or �rst). So all you need to know to create the normal form of a game is who
the player�s are, what their strategies are, and what the payo¤s associated with the play of those strategies
are.
Before we get any further, we should formally de�ne some concepts. Each player i has a strategy space,

Si, which is the set of all strategies available to player i. For the prisoners, Si = fConfess;Not Confessg.
Let si denote an individual strategy for player i, so that si = Confess or si = Not Confess for the prisoners.
We can also write that si 2 Si. While in this game there is no di¤erence between a strategy and an action,
in other games this is not true. Technically, strategies are sets of feasible actions. Consider the game of
Chess. On the opening move there are 20 actions that White can take. On White�s next move there are a
lot more actions that he can take, depending on the action he took at his �rst move and what exactly Black
did. However, White�s strategy for the game is a complete contingent plan for EVERY POSSIBLE scenario
he might encounter. So his strategy might include moving his Kingside pawn on his �rst move. But then
he would also have to determine what actions he will take on his second move for each of the 20 moves
that the Black player may make. So after each player moves once White�s strategy already has 21 pieces of
information (his opening move as well as what his move would be for each of the 20 moves by Black). The
number of actions that White has at this stage is ... well, more than 21.
Consider I players in a game. Then (s1; s2; :::; sI) denotes a combination of strategies for each of the I

players. This leads to an outcome. Let ui (s1; s2; :::; sI) be player i�s payo¤ (or utility) function. Formally,
we can de�ne a game as (notation is slightly di¤erent from Gibbons below �the �N notation that I use is quite
common in the economics literature on game theory, owing to the fact that the primary PhD Microeconomics
text uses �N as the symbol for a normal form game):

De�nition 1 Let �N denote the normal form representation of a game. A normal form game �N =
[I; fSig ; fuig] where fSig is the set of strategy spaces for all I players and fuig is the set of payo¤ functions
for all I players.
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2.1 Solving a normal form game

We still have not answered what the players should do. One way to determine what the players will do is
to analyze what each player would do if the other player chose one of his strategies. For instance, what
would Prisoner 1 choose if Prisoner 2 chose �Confess�? If Prisoner 1�s payo¤ is accurately measured by the
payo¤ in the cell, Prisoner 1 would choose �Confess�because �6 > �10. If Prisoner 2 chose �Not Confess�,
Prisoner 1 would still choose �Confess� because 0 > �10. Thus, we (as well as Prisoner 2) can see that
regardless of what Prisoner 2 chooses Prisoner 1 will choose �Confess�. When a strategy for player i does
at least as well against all the strategies of the other player j than another strategy for player i we say that
the strategy is a weakly dominant strategy.

De�nition 2 A strategy si 2 Si is a weakly dominant strategy for player i in game �N = [I; fSig ; fuig] if
for all s0i 6= si we have:

ui (si; s�i) � ui (s0i; s�i) for all s�i 2 S�i.

The term s�i refers to the strategies of the other players in the game besides player i. The strategy is
strictly dominant if the inequality is strict (if ui (si; s�i) > ui (s0i; s�i) for all s�i 2 S�i). In the Prisoner�s
Dilemma, �Confess�is a strictly dominant strategy for both players. So one potential way to solve the game
is to look for weakly or strictly dominant strategies. If a player has a strictly dominant or weakly dominant
strategy, the player should play it. Unfortunately, not many games have strictly or weakly dominant
strategies.
Another possibility is to look for strategies that do strictly worse than other strategies. For instance, �Not

Confess�does strictly worse than �Confess�for both prisoners (hopefully this is obvious since �Confess�is a
dominant strategy). Strategies that do strictly worse than other strategies are called strictly dominated
strategies.

De�nition 3 A strategy si 2 Si is strictly dominated for player i in game �N = [I; fSig ; fuig] if there exists
another strategy s0i 2 Si such that for all s�i 2 S�i

ui (s
0
i; s�i) > ui (si; s�i) :

A strategy is said to be weakly dominated if ui (s0i; s�i) � ui (si; s�i). Note that while strictly dominated
strategies should never be played, it may be possible for weakly dominated strategies to be part of the solution
to the game since they are not strictly worse than another strategy. Thus, another possible way to look
for a solution to a game is to remove any strategies that are strictly dominated and then see if any of the
strategies for the other player become strictly dominant. Here is an example:

Player 1
Left Center Right

Top 7; 4 6; 3 4; 11
Player 2 Middle 8; 8 10; 4 6; 7

Bottom 18; 7 11; 9 4; 6
Note that there are no dominant strategies for either player. However, �Top� is strictly dominated by

�Middle�for Player 2. So we know that Player 2 will never choose top and so we can eliminate it from the
game. The game is now:

Player 1
Left Center Right

Player 2 Middle 8; 8 10; 4 6; 7
Bottom 18; 7 11; 9 4; 6

Once �Top� is removed the strategy �Right� is strictly dominated by the strategy �Left� for Player 1.
Note that this was not the case when �Top�was still considered by Player 2. So now we eliminate �Right�
and get:

Player 1
Left Center

Player 2 Middle 8; 8 10; 4
Bottom 18; 7 11; 9
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We can now see that �Bottom� is a strictly dominant strategy for Player 2, and Player 2 will use this
strategy. Also, we can say that �Middle�is strictly dominated by �Bottom�and eliminate �Middle�. This
leaves:

Player 1
Left Center

Player 2 Bottom 18; 7 11; 9
It is quite obvious that Player 1 will choose �Center� since 9 > 7. Thus, the solution to this game is

Player 2 chooses �Bottom�and Player 1 chooses �Center�. This method of eliminating strictly dominated
strategies is known as iterated elimination of dominated strategies (IEDS).
Again, while IEDS is a useful tool for solving games it is not the case that all games have strictly

dominated strategies. Consider the following game

Two people wish to attend either a boxing match or an opera. Unfortunately, they have
lost their cell phones and all other devices that allow for communication. If they both go to
the boxing match, then Player 1 receives a payo¤ of 2 and Player 2 receives a payo¤ of 1. If
they both go to the opera, then Player 1 receives a payo¤ of 1 and Player 2 receives a payo¤ of
2. However, if they show up at either event and the other person is not there they are deeply
saddened and receive a payo¤ of 0.

Player 2
Boxing Opera

Player 1 Boxing 2; 1 0; 0
Opera 0; 0 1; 2

Note that in this game (called a coordination game or the Battle of the Sexes) neither player has a strictly
(or even weakly) dominant strategy. Nor does either player have a strictly dominated strategy. How do we
solve this game? We can check each outcome cell to see if either player would choose a di¤erent strategy.
If we are in the �Boxing, Boxing�outcome cell, then Player 1 does not want to choose �Opera�because this
would give Player 1 a payo¤ of 0, which is less than the payo¤ of 2 that Player 1 receives from choosing
�Boxing�when Player 2 chooses �Boxing�. The same is true for Player 2, since Player 2�s payo¤ of 1 is
greater than the 0 he would get by switching. So �Boxing, Boxing�is a solution to the game.
We found a solution, can we stop there? No, we must check ALL the outcome cells. It is easy to see that

if the players are at �Boxing, Opera�or �Opera, Boxing�that either player would want to switch strategies.
However, if both players choose �Opera� then neither player wishes to switch. Thus, �Opera, Opera� is
ALSO a solution to the game. So it is possible for one game to have 2 solutions (technically there is a third
solution which we will discuss later in the course).
The underlying characteristic of all these solutions is that once an outcome is reached in which neither

player can unilaterally change strategies and make him or herself better o¤ then that outcome (or set of
strategies) is a solution to the game. Basically, we have achieved equilibrium since no one can choose
di¤erently to make himself better o¤. In game theory, we call this set of strategies a Nash equilibrium,
after John Nash. Please note that a Nash equilibrium is a SET OF STRATEGIES.
De�nition 4 A strategy pro�le s = (s1; :::; sI) constitutes a Nash Equilibrium of game �N = [I; fSig ; fuig]
if for every i = 1; :::; I,

ui (si; s�i) � ui (s0i; s�i)

for all s0i 2 Si.

Take a look at the Prisoner�s Dilemma. If both players choose �Confess�(which is each player�s dominant
strategy), neither player can unilaterally choose a di¤erent strategy and make himself better o¤. It is
certainly the case that both players could choose di¤erent strategies and make themselves better o¤ (if both
choose �Not Confess�both will be better o¤ than if both choose �Confess�), but if one prisoner chooses �Not
Confess�then what will the other prisoner want to do? The other prisoner will want to choose �Confess�
because 0 < �2 �this leads us right back to �Confess, Confess�.
Another useful way to de�ne a Nash equilibrium is by using the concept of a best response corre-

spondence.
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De�nition 5 In game �N = [I; fSig ; fuig], strategy si is a best response for player i to his rivals�strategies
s�i if

ui (si; s�i) � ui (s0i; s�i) for all s0i 2 Si
Strategy si is never a best response if there is no s�i for which si is a best response.

So a best response correspondence only focuses on one player�s best response to the other player�s strate-
gies. Essentially, we hold the strategies of the other player(s) �xed and then determine what the original
player in question would do in each case. Let�s consider the Battle of the Sexes game again. If Player 2
were to choose �Boxing�, Player 1�s best response would be to choose �Boxing�. If Player 2 were to choose
�Opera�, then Player 1�s best response would be to choose �Opera�. In the normal form version of the
game we can draw a geometric shape around the best response payo¤s like so:

Player 2
Boxing Opera

Player 1 Boxing 2; 1 0; 0
Opera 0; 0 1; 2

We can do the same for Player 2:
Player 2
Boxing Opera

Player 1 Boxing 2;1 0; 0
Opera 0; 0 1;2

Any of the outcome cells where both (or all if there are more than 2 players) payo¤s are enclosed is a
Nash equilibrium of the game. Note that this is consistent with what we found earlier. We will denote a
player�s best response correspondence by bi (�). A de�nition of Nash equilibrium using the best response
concept is:

De�nition 6 A strategy pro�le (s1; :::; sI) is a Nash Equilibrium of game �N = [I; fSig ; fui (�)g] if and only
if si 2 bi (s�i) for i = 1; :::; I.

Thus, a set of strategies is a Nash Equilibrium if and only if the strategies are best responses to one
another.

2.2 Existence and uniqueness

When forming models in economics our primary focus is on some notion of equilibrium. There are two
questions we primarily ask about equilibrium:

1. Does an equilibrium exist?

2. Is that equilibrium unique?

These questions arose primarily in response to partial and general equilibrium concepts, and not in
response to game theoretic solution strategies. Nonetheless, they are still important questions to ask.
Given some fairly reasonable assumptions we can show that an equilibrium exists but it is di¢ cult
to prove uniqueness. In fact, game theory su¤ers from �an embarrassment of riches�, in that in
some games (primarily those with repeated interactions, which are discussed in the next set of notes)
many outcomes can be supported as an equilibrium to the game. Thus, game theory provides a third
question:

3. How is one equilibrium selected over another?

This is an interesting question and one for which evolutionary game theory may provide an answer. We
may discuss some of the basics of evolutionary game theory a little later in the course. Most of economic
theory is concerned with static predictions (many economic models discuss the concept of being at an
equilibrium and there is no discussion of how the economic agents came to be at that equilibrium), not
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with dynamic predictions. However, it was recognized over 100 years ago that economics may have more in
common with biology and physics.2 For now we turn to existence of equilibrium.

Theorem 7 In the I-player normal form game �N = [I; fSig ; fuig], if I is �nite and Si is �nite for every
i, then there exists at least one Nash equilibrium.

So we basically have two conditions needed for existence of a Nash equilibrium. The number of players
needs to be �nite and the number of strategies each player has also needs to be �nite. These seem like
reasonable assumptions.
Here is a more advanced (and useful when showing a picture) version of the theorem:

Theorem 8 A Nash Equilibrium exists in game �N = [I; fSig ; fuig] if for all i = 1; :::; I

1. Si is a nonempty, convex, and compact subset of some Euclidean space RM

2. ui (s1; :::; sI) is continuous in (s1; :::; sI) and quasiconcave in si

For the �rst part think of a strategy space that is something like the closed interval from [0; 1]. Alterna-
tively, think about a �rm determining how much of a good to produce. The lowest amount they can produce
is 0, while the largest amount (call it C) they can produce is constrained by their available technology, the
amount of money they can spend, and the prices of inputs (for simplicity we assume that �rms can produce
any real number between 0 and C). For the second part, think about the fact that there are no �large
jumps� in payo¤s when moving from one strategy to another that is �close� to it. The idea relies on a
�xed-point theorem. An overview of a �xed-point theorem is that if we take a function f (x) with domain
and range of [0; 1] then there exists at least one �xed-point, which is a point where f (x�) = x�. In the
case of the games we are discussing, there are points in the best response correspondences of players that
map back into themselves. Please note that neither version of the theorem makes any statement about
uniqueness of the equilibrium.

3 Rock, Paper, Scissors

Consider the classic game of Rock, Paper, Scissors. In this game there are 2 players who simultaneously
determine which object to form with their �ngers. Each player has 3 strategies �form a Rock, form Paper,
or form Scissors. If both players form the same object then they tie and receive 0. If one player forms a
Rock and the other forms Scissors then Rock wins and receives a payo¤ of 1 while Scissors loses and receives
a payo¤ of �1. If one player forms Scissors and the other forms Paper then Scissors wins and receives a
payo¤ of 1 while Paper loses and receives a payo¤ of �1. If one player forms Paper and the other forms
Rock then Paper wins and receives a payo¤ of 1 and Rock loses and receives a payo¤ of �1. Essentially,
Rock smashes Scissors, Scissors cut Paper, and Paper covers Rock. The normal form version of the game
is:

Player 2
Rock Paper Scissors

Rock 0; 0 �1; 1 1;�1
Player 1 Paper 1;�1 0; 0 �1; 1

Scissors �1; 1 1;�1 0; 0
Note that neither player has a dominant strategy nor a dominated strategy. We can then look at the

best response correspondences for the players by enclosing the payo¤s in a square.
Player 2

Rock Paper Scissors
Rock 0; 0 �1;1 1;�1

Player 1 Paper 1;�1 0; 0 �1;1
Scissors �1;1 1;�1 0; 0

2Alfred Marshall, who wrote THE principles of economics text used in the early 20th century, made claims of this type. You
can read about Marshall and his link to biology in two articles of the Economic Journal. A piece by Geo¤ Hodgson appears
in the March 1993 issue (pgs. 406-415) and a piece by John Foster appears in the July 1993 issue (pgs. 975-991).

6



There is now a problem. Nash�s theory says that an equilibrium exists if there are a �nite number of
players and if each of those players has a �nite number of strategies. There are 2 players (fairly �nite)
and each player has 3 strategies (also fairly �nite). But there are no outcome cells that have both payo¤s
enclosed. Is Nash wrong?

3.1 Mixed strategies

Think about what type of strategy you would use if you were playing this game repeatedly with a friend.
Would you always use the same strategy? If you were Player 1 and you always played Rock after a few
rounds your friend may just start playing Paper.3 It might be in your best interest to mix your play of
strategies by assigning some probability distribution over your available strategies. Note that games where
players have dominant strategies are simply a special case of a mixed strategy. In the Prisoner�s Dilemma,
Prisoner 1 assigns a probability of 1 to playing �Confess�and a probability of 0 to playing �Not Confess�.
The same is true for Prisoner 2. When a player chooses a strategy with probability 1 we call this a pure
strategy. The question then becomes how a player determines which probability to assign to each strategy.
To determine which probability to assign to each strategy we need a criterion (or set of criteria) that tells

us what the players are attempting to do. When determining the probabilities for the mixed strategy Nash
equilibrium the goal is to make the other player indi¤erent over ANY of his pure strategies (this will also
make the other player indi¤erent over his mixed strategies). For instance, we know that Player 1 should
not always choose Rock. However, suppose Player 1 chooses Rock 50% of the time, Paper 25% of the
time, and Scissors 25% of the time. What should Player 2 do? Well, if Player 2 always chooses Paper (or
chooses paper with a probability of 1 or 100%) then Player 2 will win 50% of the time and tie 25% of the
time. That�s better than choosing Rock all the time for Player 2 (25% wins, 50% ties, and 25% losses) and
better than choosing Scissors all the time (25% wins, 25% ties, and 50% losses). So Player 1 choosing Rock
50% of the time, Paper 25% of the time, and Scissors 25% of the time CANNOT be a mixed strategy Nash
equilibrium (MSNE). How then do we determine the probabilities?
Let p1rock be the probability that Player 1 plays Rock, p1paper be the probability that Player 1 plays

Paper, and p1scissors be the probability that Player 1 plays Scissors. Let p2rock, p2paper, and p2scissors
be the respective probabilities for Player 2. Player 1�s goal is to make Player 2 indi¤erent among his pure
strategies. We know that if Player 1 uses his mixed strategy and Player 2 ALWAYS chooses Rock, then
Player 2 will receive 0 with probability p1rock, �1 with probability p1paper, and 1 with probability p1scissors.
If Player 2 ALWAYS chooses Paper, then Player 2 will receive 1 with probability p1rock, 0 with probability
p1paper, and �1 with probability p1scissors. If Player 2 ALWAYS chooses Scissors, then Player 2 will receive
�1 with probability p1rock, 1 with probability p1paper, and 0 with probability p1scissors. We can say that
the expected value for Player 2 of playing each of these strategies is then:

E2 [Rock] = 0 � p1rock + (�1) � p1paper + 1 � p1scissors
E2 [Paper] = 1 � p1rock + 0 � p1paper + (�1) � p1scissors

E2 [Scissors] = (�1) � p1rock + 1 � p1paper + 0 � p1scissors

We now have 3 unknowns �p1rock, p1paper, and p1scissors. It must be that Player 2 has:

E2 [Rock] = E2 [Paper]

E2 [Paper] = E2 [Scissors]

By transitivity, this gives that E2 [Rock] = E2 [Scissors]. However, there are only 2 equations and 3
unknowns. The third equation is that probabilities must sum to 1, so that our 3 equations are now:

0 � p1rock + (�1) � p1paper + 1 � p1scissors = 1 � p1rock + 0 � p1paper + (�1) � p1scissors
1 � p1rock + 0 � p1paper + (�1) � p1scissors = (�1) � p1rock + 1 � p1paper + 0 � p1scissors.

p1rock + p1paper + p1scissors = 1

3There is a scene in a Simpson�s episode where Bart and Lisa play Rock, paper, scissors. Bart is thinking �Good old Rock
never loses�. Lisa is thinking, �Poor predictable Bart. He always picks Rock�. There is a similar scene in an episode of
That 70�s Show where Fez is a little confused about the circular nature of the game. In essence, Fez is looking for a dominant
strategy.
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We can now solve the 3 equations for p1rock, p1paper, and p1scissors. Rewrite p1scissors = 1�p1rock�p1paper
and substitute into the �rst two equations. We get:

(�1) � p1paper + 1 � (1� p1rock � p1paper) = 1 � p1rock + (�1) � (1� p1rock � p1paper)
1 � p1rock + (�1) � (1� p1rock � p1paper) = (�1) � p1rock + 1 � p1paper

Now it is just a simple matter of solving the system.

�p1paper + 1� p1rock � p1paper = p1rock � 1 + p1rock + p1paper
p1rock � 1 + p1rock + p1paper = �p1rock + p1paper

Simplifying:

�3 � p1paper + 2 = 3 � p1rock
3 � p1rock � 1 = 0

We have p1rock = 1
3 from the last equation. Substituting that into the �rst equation we get:

�3 � p1paper + 2 = 3 �
1

3

Solving for p1paper gives p1paper = 1
3 . Now, using p1scissors = 1�p1rock�p1paper we �nd that p1scissors =

1
3 .

So if Player 1 plays Rock 1
3 of the time, Paper

1
3 of the time, and Scissors

1
3 of the time this will make Player

2 indi¤erent over his pure strategies. The expected value for Player 2 of playing Rock is 0, of playing Paper
is 0, and of playing Scissors is 0. We can also check some mixed strategies for Player 2. If Player 2 plays
Rock 50% of the time and Paper 50% of the time his expected value of playing that strategy is 0. If Player
2 plays Rock 50% of the time, Paper 25% of the time, and Scissors 25% of the time his expected value is 0.
This is what is required when �nding a MSNE.
Now, we have only found the probabilities for Player 1. We know that all strategies (pure or mixed) by

Player 2 provide the same expected value when Player 1 chooses Rock, Paper, and Scissors 13 of the time each.
Can Player 2 then just choose any strategy? No, because not any strategy will make Player 1 indi¤erent
over his strategies. We then have to �nd p2rock, p2paper, and p2scissors using the same methodology that we
just used to �nd p1rock, p1paper, and p2scissors. Luckily, in the Rock, Paper, Scissors game the two players
have symmetric payo¤s and strategies, so that the probabilities for Player 2 that make Player 1 indi¤erent
between his strategies are p2rock = 1

3 , p2paper =
1
3 and p2scissors =

1
3 . The mixed strategy Nash equilibrium

for this game (and the only Nash equilibrium of this game) is that Player 1 chooses Rock, Paper, and Scissors
each with 1

3 probability, and Player 2 chooses Rock, Paper, and Scissors each with
1
3 probability. Note that

the expected value for both players of playing this game is 0.
Now, suppose that Player 2 uses a di¤erent strategy, like p2rock = 1

3 , p2paper =
1
2 and p2scissors =

1
6 .

Should Player 1 respond with the exact same strategy? NO. If Player 1 uses the exact same strategy as
Player 2 then his expected value of using that strategy is also 0. Player 1 can do BETTER than 0 if he uses
a strategy like �Always choose Scissors�. If Player 1 uses this strategy against p2rock = 1

3 , p2paper =
1
2 and

p2scissors =
1
6 then Player 1 will have an expected value of

1
6 because he will earn (�1) with

1
3 probability

(when Player 2 picks Rock), 1 with 1
2 probability (when Player 2 picks Paper) and 0 with

1
6 probability

(when Player 2 chooses Scissors). Of course, if Player 1 always chooses Rock then Player 2 would always
choose Paper. But then Player 1 would always choose Scissors. And the cycle would go on. The only time
it stops is when p1rock = 1

3 , p1paper =
1
3 and p1scissors =

1
3 and p2rock =

1
3 , p2paper =

1
3 and p2scissors =

1
3 .

3.2 Matching Pennies

In this game there are two players who each have a penny. They simultaneously place the pennies on the
counter. If the pennies match (meaning both pennies show heads OR both pennies show tails), then Player
1 wins $1 and Player 2 loses $1. If the pennies do not match (meaning one shows a head and the other
shows a tail), then Player 2 wins $1 and Player 1 loses $1. The normal form of this game is:
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Player 2
Heads Tails

Player 1 Heads 1;�1 �1; 1
Tails �1; 1 1;�1

It is easy to show that there are no pure strategy Nash equilibria to this game. It is also easy to show
that the mixed strategy Nash equilibrium to the game is for Player 1 to play Heads 50% of the time and
play Tails 50% of the time, while Player 2 also plays Heads 50% of the time and Tails 50% of the time.
These are simple enough to show, but the reason that I mention this game is to show the best response
correspondences for this game.
Let the x-axis represent the probability that Player 1 chooses Heads, so that the origin represents a choice

(for Player 1) of playing Tails 100% of the time while the point (1; 0) represents a choice (again for Player
1) of playing Heads 100% of the time. Let the unit interval [0; 1] on the y-axis represent Player 2�s choice of
choosing Heads, so that the origin represents Player 2 choosing Tails 100% of the time and the point (0; 1)
represents Player 2 choosing Heads 100% of the time. Every point in the unit square now represents some
outcome over the possible mixed (and pure) strategies that may be used by both players. What you should
do now is think about the best responses (start for Player 1) to any mixed strategy choice of Player 2 and
then plot them. Start with Player 2 choosing Tails 100% of the time. If Player 2 did this then Player
1 would choose Tails 100% of the time as well and win every single game (earning $100 every 100 games).
What if Player 2 chooses Tails 99% of the time and Heads 1% of the time? Player 1 should still choose
Tails 100% of the time. In essence, Player 1 wins 99 games and loses 1, so he would earn $98 per every $100
games. It is hopefully clear that Player 1 should not choose Heads 100% of the time, because if he did this
then he would win 1 game and lose 99 games, losing $98 every $100 games (on average). But what if Player
1 chose a mixed strategy like 50% Heads, 50% Tails while Player 2 chose 1% Heads, 99% Tails. Player 1
would win 50% of the games and lose the other 50%, so that he would earn (on average) $0 over 100 games.
Note that this is worse than playing Tails 100% of the time. Even if Player 1 used a strategy like 1% Heads
and 99% Tails, he only wins 98.02% of the games, which is less than the 99% of the games he won playing
Tails 100% of the time. So if Player 2 uses ANY mixed strategy that is weighted more heavily on Tails than
Heads (even something like 49.5% Heads and 50.5% Tails), Player 1�s best response is to play Tails 100% of
the time. So we can �ll this in as follows (red line is Player 1�s best response):

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.6

0.7

0.8

0.9

1.0

Prob 1 plays Heads

Prob 2 plays Heads

Now what if Player 2 chooses a mixed strategy that is more heavily weighted towards Heads (meaning some
strategy in which he plays Heads more than 50% of the time)? Then Player 1�s best response is to choose
Heads 100% of the time. Here is this new portion of the best response for Player 1 added to the picture.
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Now what if Player 2 uses 50% Heads and 50% Tails? Then it does not matter what strategy Player 1
uses �if Player 1 uses 100% Heads he wins 50% of the time; if Player 1 uses 100% Tails he wins 50% of the
time; if Player 1 uses 50% Heads and 50% Tails he wins 50% of the time. In short, Player 1 is indi¤erent
among all strategies if Player 2 uses a 50/50 mix of Heads/Tails. So we �nish up Player 1�s best response
correspondence as:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
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Prob 2 plays Heads

Now we can �nd Player 2�s best responses using the same logic. If Player 1 uses a mixed strategy that is
weighted more towards Tails then Player 2 would choose 100% Heads. If Player 1 uses a mixed strategy
that is weighted more towards Heads then Player 2 would use the 100% Tails strategy. If Player 1 chooses
a 50/50 strategy, then Player 2 is indi¤erent among all of his strategies. Adding Player 2�s best response
correspondence we have:
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These are the best response correspondences for Players 1 (in red) and 2 (in green) for the Matching Pennies
game. Note that the intersect only one time, when both players use the mixed strategy 50% Heads and
50% Tails.

3.3 Boxing-Opera and MSNE

When we initially discussed the Boxing-Opera game in class I mentioned that there was a third NE. The
�rst two are that Player 1 and Player 2 both choose Boxing, and that Player 1 and Player 2 both choose
Opera. Here is the game again:

Player 2
Boxing Opera

Player 1 Boxing 2; 1 0; 0
Opera 0; 0 1; 2

There is also a MSNE to this game. Let p1boxing and p1opera be the probabilities with which Player 1
chooses Boxing and Opera respectively. Let p2boxing and p2opera be the probabilities with which Player 2
chooses Boxing and Opera respectively. Player 1 must make Player 2 indi¤erent over his 2 pure strategies,
so:

E2 [Boxing] = E2 [Opera]

Or:
1 � p1boxing + 0 � p1opera = 0 � p1boxing + 2 � p1opera

We also have that p1boxing + p1opera = 1. Using these two equations we �nd that:

p1boxing = 2 (1� p1boxing)

Or:
p1boxing =

2

3

This means that p1opera = 1
3 . Now we need to �nd Player 2�s mixed strategy. Note that while this game

looks symmetric it is not. We need:

E1 [Boxing] = E1 [Opera]

Or:
2 � p2boxing + 0 � p2opera = 0 � p2boxing + 1 � p2opera:
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Using p2boxing + p2opera = 1 we have:

2p2boxing = 1� p2boxing:

Or:
p2boxing =

1

3
:

This means that p2opera = 2
3 . Thus, the MSNE for the Boxing-Opera game is that Player 1 chooses Boxing

with 2
3 probability and Opera with

1
3 probability and Player 2 chooses Boxing with

1
3 probability and Opera

with 2
3 probability. Note that the expected value of either player from playing this set of strategies is 2

3 ,
which is lower (for both players) then following either one of the two pure strategy Nash equilibria. But
with these mixed strategies neither player can do any better by changing his strategy.

3.3.1 It�s your opponents payo¤s that matter

In the Boxing-Opera game it looks fairly reasonable �each player chooses the venue that he prefers with a
higher probability than the other venue. But what if the game looked like:

Player 2
Boxing Opera

Player 1 Boxing 100; 1 0; 0
Opera 0; 0 1; 2

In this game, Player 1 REALLY likes going to the Boxing match with Player 2. Would the probabilities
that Player 1 used for his mixed strategy in the earlier version (where the 100 was a 2) change?
No.
Player 1�s probabilities depend on Player 2�s payo¤s. They have nothing whatsoever to do with his own

payo¤s. In fact, we could turn the 100 into a 1
2 and Player 1�s probabilities would not change. But Player

2�s probabilities would change because Player 1�s payo¤s had changed. In this new game (with the 100
payo¤), Player 2�s Nash equilibrium mixed strategy would be p2boxing = 1

101 and p2opera =
100
101 . Because

Player 1 has a larger payo¤ of going to the Boxing match this actually reduces the amount of times the 2
players end up at the boxing match.

3.3.2 Randomize

One last note on mixed strategies. If you only play a game that requires mixed strategies once in your life
then it can never be shown that you did not correctly calculate the mixed strategy (there is only observation
after all). However, consider playing Rock, Paper, Scissors repeatedly. It would be easy to devise a
statistical test that determines whether or not your play is consistent with the probabilities of the MSNE.
However, the key to using a MSNE is to RANDOMIZE. If you played 99 games of Rock, Paper, Scissors
and you followed the strategy of �Choose Rock in the �rst game�, �Choose Paper in the second game�, and
�Choose Scissors in the third game�, then repeat (Rock in 4th, 7th, 10th etc. games, Paper in 5th, 8th, 11th

etc. games, Scissors in 6th, 9th, 12th etc. games) it would not be very di¢ cult to beat you every time because
the pattern is predictable. Even though you would be playing the strategies in the correct proportions you
would not end up earning 0 on average if you were playing someone with any shred of intelligence. The
person would beat you practically every time, and certainly every time after the 10th round or so. Sometimes
when ESPN shows the World Series of Poker they will cut away to the game of Rochambeau (which is the
fancy way of saying Rock, Paper, Scissors). Some people when playing the game will use a randomizing
device to determine their strategy for the game (one person in particular uses the �rst character of a dollar
bill to determine what to do �I am still not quite certain what the mechanics of the process are). The key
is to have the randomizing device yield the probabilities of 13 for each strategy. Thus, throwing a single die
and assigning the rolls of 1 and 2 to choosing Rock, 3 and 4 to choosing Paper, and 5 and 6 to choosing
Scissors would be one method of randomizing with 1

3 probability for each strategy.
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