
Dynamic games of complete information�

1 Introduction

We have discussed games where both players make choices simultaneously. In many games players make
choices sequentially, so that one player observes the other player�s decision and then gets to act. The classic
example is the game of Chess. Considering some of the �economic�examples I mentioned, it may be that
one �rm observes another �rm�s quantity choice and then gets to choose how much it will produce, that one
voter observes what other voters have done and then gets to cast a vote, or that one bidder in an auction
can observe a bid by another bidder (EBay). We will begin by discussing the relevant parts of a game of
this type and then proceed with a discussion on how to solve games of this type. Along the way we will
make a re�nement of the Nash equilibrium concept. This will be our �rst attempt to eliminate some of the
equilibria from consideration.

2 Sequential Games

We call games where players take turns moving �sequential games�. Sequential games consist of the same
elements as normal form games �there are players, rules, outcomes, and payo¤s. However, sequential games
have the added element that history of play is now important as players can make decisions conditional on
what other players have done. Thus, if two people are playing a game of Chess the second mover is able
to observe the �rst mover�s initial move prior to making his initial move. While it is possible to represent
sequential games using the normal (or matrix) form representation of the game (in fact, we will discuss how
to do this and why we might want to do this), it is more instructive at �rst to represent sequential games
using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a
history of play or a path of play. This will be important when discussing the re�nement technique.

2.1 A Game Tree

Game trees consist of the following pieces. There is an initial node to the game tree. This is the starting
point of the game (think about the setup of the board when a game of Chess is begun �this is the initial
node). From that initial node there are actions that the �rst mover can take. These actions are represented
as branches to the game tree. At the end of each branch is a node. If the �rst mover makes a move and
the game ends after that move, then we say that the game has reached a terminal node. A terminal node is
a node at which no more actions can be taken. If the �rst mover makes a move and the second mover then
gets to choose an action, we call this a decision node. The second mover�s actions are then represented by
branches extending from the decision node. The game tree extends until all the nodes are terminal nodes.
At the terminal nodes, the payo¤s to the players are listed. It is the convention to list the payo¤s in the
order that the players moved. One other important aspect of the game tree is the information set. For the
games we will initially consider all decision nodes will also be information sets. However, it is possible that
a game is being played and a player is uncertain as to which of a few decision nodes the player is at. In this
case, the collection of decision nodes is that player�s information set.

Consider a game where there is an entrant and an incumbent. The entrant moves �rst and
the incumbent observes the entrant�s decision. The entrant can choose to either enter the market

�Based on Chapter 2 of Gibbons (1992).
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or remain out of the market. If the entrant remains out of the market then the game ends and
the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant
chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses
between �ghting entry or accommodating entry. If the incumbent �ghts the entrant receives a
payo¤ of �3 while the incumbent receives a payo¤ of �1. If the incumbent accommodates the
entrant receives a payo¤ of 2 while the incumbent receives a payo¤ of 1.

The ultimate goal is to solve this game, but �rst we can display it as a game tree (or in extensive form,
which is the technical name for a game tree). I have two "versions" of the extensive form of the Entry
Game. The �rst has labels for each of the components of the game (node, branch, information set) and the
second is the actual game without all the components labeled.

Entrant

Incumbent

Stay Out
Enter

Fight Accommodate

0

2

3

1

2

1

Initial Node

Branches

Decision Node

Information
sets

Terminal Nodes
Game tree with its components labeled.
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Game tree without the components labeled.

Now, before discussing the re�nement of the Nash equilibrium concept it is instructive to �nd the Nash
equilibria to the normal form version of this game. Any extensive form game can be represented as a normal
form game (and vice versa, although it is less instructive to represent a game that is truly simultaneous as
an extensive form game). All we need to do to represent the extensive form game as a normal form game is
to determine the strategies available to each player (hence why the normal form is also called the strategic
form). In the Entry game the Entrant has two strategies, Stay Out or Enter. The Incumbent also has
2 strategies, Fight or Accommodate. So we can represent the extensive form of the Entry game as a 2x2
normal form game:

Incumbent
Fight Accommodate

Entrant Enter �3;�1 2; 1
Stay Out 0; 2 0; 2

We can now �nd the pure strategy Nash equilibria (PSNE) to this game. The two PSNE to this game
are that the Entrant chooses Enter and the Incumbent chooses Accommodate; and that the Entrant chooses
Stay out and the Incumbent chooses Fight:

Incumbent
Fight Accommodate

Entrant Enter �3;�1 2;1
Stay Out 0;2 0;2

Note that both of these outcomes are Nash equilibria since they both have the property that neither
player would wish to unilaterally change his strategy given what the other is doing. For completeness, there
is also a mixed strategy Nash equilibrium where the Entrant plays Stay Out with probability 1 (note that
the Incumbent is indi¤erent between Fight and Accommodate if the Entrant always plays Stay Out) and
the Incumbent plays Fight with probability 2

5 and Accommodate with probability
3
5 . The actual payo¤s

with the MSNE will be the same as the payo¤s where the Incumbent always chooses Fight and the Entrant
always chooses Stay Out, but the strategies are di¤erent (because the Incumbent is using a mixed strategy).
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Now, the new question is whether either of these PSNE (we will ignore the MSNE) are more reasonable
than the other when looking at the game as it is played sequentially. Consider the Stay Out, Fight
equilibrium from the perspective of the Entrant. The Entrant chooses Stay Out because the incumbent is
threatening to Fight if the Entrant should choose to Enter. This seems somewhat logical, but would the
Incumbent really choose Fight if the Entrant chose Enter? Of course not, because in this game that is only
played once the Incumbent does better if it chooses to Accommodate when the Entrant chooses Enter.1 We
can see this by noting that Enter, Accommodate is an equilibrium to this game. The Entrant, moving �rst,
knows that if it chooses Enter the Incumbent will choose Accommodate. Thus, the Entrant should always
choose Enter in the sequential game because it knows that the Incumbent will always follow a play of Enter
with a play of Accommodate. The process of eliminating one (or some) of the Nash equilibria is formalized
in the next section.

2.2 Subgame Perfect Nash Equilibrium (SPNE)

The Nash equilibrium re�nement that we use in dynamic games of complete and perfect information is
subgame perfection.2 But �rst we must de�ne a subgame. As the name implies, a subgame is part of
a game, but a subgame has some particular features. A subgame must begin at an information set that
contains a single decision node. The subgame must contain all the decision nodes and terminal nodes that
follow that decision node, but no decision or terminal nodes that do not follow. A subgame cannot contain
part of an information set (if an information set contains 2 or more nodes the subgame must contain all of
the nodes in the information set). Technically, the entire game is a subgame (consider whether all of the
conditions needed for a subgame are met using the initial node) but sometimes we want to focus on those
subgames that are not the entire game. Thus, a subgame that is not the entire game is called a proper
subgame. If there are x proper subgames in a particular game, then there will be x+1 subgames (including
the entire game). I point out the terminology so that you know the di¤erence in the terms � it is not a
major point, so do not get bogged down in it.
In the Entry game there is one proper subgame, that being the subgame that starts with the Incumbent�s

decision node. The idea behind the subgame perfection re�nement is to look at the smallest (or last) subgame
in the game that contains terminal nodes. The smallest subgame should contain no other subgames. In the
Entry game there is only the one proper subgame so that is where we begin. We know that if the decision
node where the Incumbent chooses to Fight or to Accommodate is ever reached the Incumbent will choose
to Accommodate because the payo¤ to Accommodate is greater than the payo¤ to Fight (i.e. 1 > �3).
In e¤ect, this �removes�Fight as a viable strategy for the Incumbent. Since the game is one of complete
and perfect information, the Entrant knows that the Incumbent will never choose Fight if the Incumbent is
forced to make a decision. Thus, the Entrant can also �remove�the Fight branch from the game. Now we
move to the next subgame, which happens to be the initial node. If the Entrant chooses Stay Out it will
earn a payo¤ of 0. If the Entrant chooses Enter it will earn a payo¤ of 2 because the Entrant knows the
Incumbent will never choose Fight. Thus, the Entrant chooses Enter at the initial node since 2 > 0. Thus,
the Enter, Accommodate equilibrium is the one that �survives�this re�nement process.

De�nition 1 A Nash equilibrium is subgame perfect if the players�strategies constitute a Nash equilibrium
at every subgame.

Note that the de�nition of subgame perfection requires that every player acts in an optimal manner at
each subgame. Thus, the Stay Out, Fight equilibrium is NOT a subgame perfect Nash equilibrium because
for the Incumbent choosing Fight is NOT a best response if it actually gets to make a decision. Subgame
perfection rules out non-credible threats, which is exactly what choosing Fight is for the Incumbent. The
only way that the Incumbent can get the Entrant to Stay Out is by threatening to Fight, but if the Entrant
does Enter then the Incumbent no longer has any incentive to Fight, so the threat is non-credible.

1We will eventually discuss games that are repeated but for now our focus is on the game in question, which is played only
once.

2Complete information refers to knowing the other players�payo¤ functions � essentially, no player has any private infor-
mation. You can think of an auction as a case where players have incomplete information because players do not necessarily
know each others�values for an item. Perfect information refers to knowing exactly which decision node one is at in the game
tree.
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Figure 1: Illustration of SPNE of the Entry game.

The process we used, starting at the smallest (or last) subgame and working backwards by removing
branches is known as backward induction. If backward induction is used in a game of complete and perfect
information then the solution to the game found by using backward induction will be subgame perfect.
This provides an easy method of determining the subgame perfect Nash equilibrium in games of this type.
However, there may still be other Nash equilibria in the game which are NOT subgame perfect, as evidenced
by the Stay Out, Fight Nash equilibrium in the Entry game. One thing to remember is that all subgame
perfect Nash equilibria are Nash equilibria (hence why they are called subgame perfect Nash equilibria), but
not all Nash equilibria are subgame perfect. To denote the subgame perfect Nash equilibrium of the game
we simply mark arrows down a player�s action:This is just a technique used to recall which actions are chosen
at the decision nodes.
As for existence of NE and SPNE in sequential games, we have two propositions.

Proposition 2 (Zermelo�s Theorem) Every �nite game of perfect information has a pure strategy Nash
Equilibrium that can be derived through backward induction. Moreover, if no player has the same payo¤s at
any two terminal nodes, then there is a unique Nash Equilibrium that can be derived in this manner.

Proposition 3 Every �nite game of perfect information has a pure strategy subgame perfect Nash Equilib-
rium that can be derived through backward induction. Moreover, if no player has the same payo¤s at any two
terminal nodes, then there is a unique subgame perfect Nash Equilibrium that can be derived in this manner.

Note that we need perfect information in order to have these propositions hold, not just common knowl-
edge. Perfect information requires that all information sets contain a single decision node. Thus, the
simultaneous move game of Rock, Paper, Scissors and the simultaneous move Prisoner�s Dilemma game do
not have perfect information, so there is no guarantee that there is a PSNE to either of those games (there
might be though).
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Figure 2: Sequential move Prisoner�s Dilemma game.

2.2.1 The sequential Prisoner�s Dilemma

The Entry game was a fairly simple game. Now consider the sequential Prisoner�s Dilemma, which is only
slightly more complicated but which will illustrate the di¤erence between an action and a strategy (�nally).
The sequential Prisoner�s Dilemma has the same format as the simultaneous Prisoner�s Dilemma except that
Prisoner 1 makes an observable decision to Confess or Not Confess prior to Prisoner 2 making a choice.
The extensive form of this game is:The payo¤s have been changed slightly from the initial game that was
discussed but that is unimportant. Note that in this game there are 2 proper subgames and 3 total subgames
(including the entire game). We can start at either of the two proper subgames. If Prisoner 2 is at the
decision node where he has seen Prisoner 1 already Confess, what should Prisoner 2 do? Spending 8 months
in prison is better than spending 12 months in prison, so Prisoner 2 should Confess if Prisoner 1 chooses
Confess. We can eliminate the Not Confess branch extending from that node. Now, the next smallest
subgame is the one where Prisoner 2 observes that Prisoner 1 chose Not Confess. If Prisoner 2 is at this
node what should Prisoner 2 do? Well, spending 0 months in prison is better than spending 2 months in
prison, so Prisoner 2 should Confess if Prisoner 1 chooses Not Confess. Now we move to the next subgame,
which is the entire game. Both of Prisoner 2�s Not Confess branches have been removed, which leaves
Prisoner 1 with the choice of spending 8 months in Prison if he chooses Confess or 12 months in prison if
he chooses Not Confess. Since spending 8 months in prison is better than spending 12 months in prison
Prisoner 1 chooses Confess. Thus, the subgame perfect Nash equilibrium to this game is that Prisoner
1 chooses Confess and Prisoner 2 chooses Confess if Prisoner 1 chooses Confess and Confess if Prisoner 1
chooses Not Confess.
But wait a second, why do we need to state what Prisoner 2 will do if he sees Prisoner 1 choose Not

Confess? We know that Prisoner 1 is choosing Confess, so why can�t we just say that Prisoner 2 chooses
Confess when Prisoner 1 chooses Confess? That is an excellent question, and it illustrates the di¤erence
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between a strategy and an action. At a decision node (technically, at an information set, but since all of our
decision nodes are information sets right now they are the same thing �for now) each player must choose an
action that he would take at that decision node. The collection of actions that a player takes at ALL of his
decision nodes (technically, information sets) is the player�s strategy. A strategy is a complete contingent
plan of action, so actions that are not along the equilibrium path must be speci�ed. The equilibrium
path shows the outcome reached using the chosen strategies by the players, but the actions taken o¤ the
equilibrium path must be speci�ed. Why do they need to be speci�ed? When Prisoner 1 is choosing his
optimal strategy at the initial node he needs to know what Prisoner 2 will do at both nodes. If Prisoner
2 were to choose Not Confess for some reason when Prisoner 1 chose Not Confess then Prisoner 1 would
want to choose Not Confess because spending 2 months in prison would be better than spending 8 months
in prison. Thus the o¤ equilibrium path actions are an integral part of the game.
Now, Prisoner 2 in this game has 4 strategies:

1. Confess if Prisoner 1 chooses Confess (C if P1 C) and Confess if Prisoner 1 chooses Not Confess (C if
P1 NC)

2. Confess if Prisoner 1 chooses Confess (C if P1 C) and Not Confess if Prisoner 1 chooses Not Confess
(NC if P1 NC)

3. Not Confess if Prisoner 1 chooses Confess (NC if P1 C) and Confess if Prisoner 1 chooses Not Confess
(C if P1 NC)

4. Not Confess if Prisoner 1 chooses Confess (NC if P1 C) and Not Confess if Prisoner 1 chooses Not
Confess (NC if P1 NC)

Prisoner 1 still only has 2 strategies, Confess or Not Confess. Writing this game in the normal (or
strategic) form (note that because Prisoner 2 has 4 strategies it is easier to make Prisoner 2 the row player
when typing the notes) and solving it:

Prisoner 1
Confess Not Confess

C if P1 C, C if P1 NC �8;�8 0;�12
Prisoner 2 C if P1 C, NC if P1 NC �8;�8 �2;�2

NC if P1 C, C if P1 NC �12;0 0;�12
NC if P1 C, NC if P1 NC �12;0 �2;�2

There are now 8 outcome cells although each payo¤ is repeated twice. This is what happens in most
extensive form games �there are more outcome cells than there are terminal nodes so payo¤s end up being
repeated. Note that while the outcome in this sequential Prisoner�s Dilemma is the same as the outcome
in the simultaneous Prisoner�s Dilemma, neither player has a dominant strategy. This is because in the
case where Prisoner 2 uses the 2nd strategy in the list Prisoner 1 would do better by choosing Not Confess.
But Prisoner 2 is unlikely to use that strategy since it is weakly dominated by the 1st strategy in the list.
You should also note that in this game there is only one pure strategy Nash equilibrium (PSNE) and that
speci�c PSNE is also the subgame perfect Nash equilibrium (SPNE). Don�t be confused by the acronyms
PSNE and SPNE.

3 Repeated Games

Another type of sequential game is a repeated game. Consider the simultaneous Prisoner�s Dilemma that
is played multiple times by the same two players. One might think that if the players are playing this game
repeatedly that the Not Confess, Not Confess outcome, which has strictly better payo¤s for both prisoners
than the Confess, Confess outcome, might be a more viable strategy than it is when the game is played only
once.3 We will look at repeated games of two types �those that are repeated a �nite amount of times and
those that are repeated an in�nite amount of times.

3One might also think that if the two players are repeatedly being picked up by the police and charged with crimes that the
two players �nd new occupations.
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3.1 Finitely Repeated Games

Some games may be played a �nite amount of times. Consider the two prisoners in the Prisoner�s Dilemma
playing the game a known �nite amount of times. Let�s start with two times (the �gure is kind of large
and is probably on the next page): When solving this twice-repeated simultaneous game we �nd a subgame
perfect Nash equilibrium that is very similar to the single shot simultaneous game.4 Regardless of which
player is at which node that player should choose Confess.5 Well, that is of no help because the point of
repeating the game was to try to �nd a di¤erent SPNE. Of course, we could try repeating the game 3 times,
or 4 times, or 100 times, or 1062 times, but the fact of the matter is that no matter how many times the
game is �nitely repeated the subgame perfect Nash equilibrium to this game is still the same �both prisoners
Confess whenever they get a chance to take an action.
Why is cooperation (meaning Not Confess in this game) not a viable strategy in this game? The problem

is that once the end of the game is reached both players have an incentive to choose Confess since there
are no more repetitions of the game. If there is no future to the game then there is no way to punish a
noncooperator (someone who chooses Confess). Without the ability to punish (or be punished), there is no
incentive to continue to cooperate in the last period of the game.
Why don�t the prisoners cooperate until the last period? Consider it is the next to last period of the

game. The prisoners know that in the last period both will choose Confess since there is no incentive to
choose Not Confess in the last period. But now neither prisoner can punish the other in the last period
by choosing Confess since they are both already choosing Confess (the only way to punish someone is by
choosing Confess when he or she chooses Not Confess). So now there is no incentive to cooperate in the
next to last period as there is no possibility of punishment in the last period. This process continues to the
beginning of the game, and the game unravels. Now, it is not all games that unravel in this manner, but
ones with strictly dominant strategies do. Thus, there is no way that rational players can escape playing
the dominant strategy in a �nitely repeated Prisoner�s Dilemma.
Since this course will eventually deal with laboratory experiments, you should be aware that there is

experimental evidence that strongly suggests that human subjects do NOT behave in this manner in �nitely
repeated games, particularly when there are more than 5-10 periods remaining in the game. Only when the
game nears the end (say within the last 10 periods) does the unraveling typically occur. This leads to our
next section.

3.2 In�nitely Repeated Games

One may ask why we bother to study in�nitely repeated games since most players of games outside of Duncan
MacLeod tend to expire at some point in time. There are a few good reasons to study in�nitely repeated
games. One is that not all players need to expire �consider a corporation. Corporations can be in�nitely
lived and they play many economic games. A second reason is that although we will all eventually expire
the endpoint of the game is (hopefully) uncertain. There are results that show that games that are repeated
�nitely with an uncertain endpoint are consistent with games that are in�nitely repeated. The experimental
evidence on play in �nitely repeated games suggests a third reason. The subgame perfect Nash equilibrium
is a poor predictor of behavior in some of these repeated games. Studying in�nitely repeated games allows
for a di¤erent set of SPNE to be chosen. There is one major drawback to in�nitely repeated games, and
that is that multiple equilibria (even multiple SPNE) are bound to exist. Some view this as a problem,
but it just shifts the focus from trying to show that an equilibrium exists to trying to show why one of the
equilibria should be selected over another.

3.2.1 Evaluating strategies in in�nite games

We will use a slight modi�cation of the Prisoner�s Dilemma, mainly so that we can get rid of the negative
payo¤s. Consider the following game:

4The normal form of this game is a 32x32 matrix �you can check that to �nd the other NE to the game. I have a hunch
that there is more than just the one NE to the game.

5Technically, Prisoner 1�s strategy is Confess at the initial node, Confess if he seesfConfess; Confessg after the �rst
repetition, Confess if he seesfConfess;Not Confessg after the �rst repetition, Confess if he seesfNot Confess; Confessg
after the �rst repetition, and Confess if he seesfNot Confess;Not Confessg after the �rst repetition.
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Player 2
Defect Cooperate

Player 1 Defect 8; 8 32; 4
Cooperate 4; 32 25; 25

Note that this game is essentially a Prisoner�s Dilemma. Both players would be better o¤ if they could
both choose Cooperate instead of both choosing Defect, but Defect is a dominant strategy. In order to
evaluate strategies in in�nite games it will be necessary to add a particular parameter to the discussion.
The parameter added will be the player�s discount rate, �. It is assumed that � 2 [0; 1), and that players
have exponential discounting. All that exponential discounting means is that a payo¤ one time period from
today is discounted at � and a payo¤ two time periods from today is discounted at �2, etc. Thus, a player�s
payo¤ stream from the in�nite game would look like:

�0�0 + �
1�1 + �

2�2 + �
3�3 + :::

where �k denotes the player�s payo¤ in each period k. The � 2 [0; 1) assumption will be justi�ed shortly.6
It is typically assumed that players (and people in general) prefer $1 today to $1 tomorrow, and $1 tomorrow
to $1 two days from now. Thus, the sooner a player receives a payo¤ the less he discounts it. Why add
this discount rate? Well, if we do not have a discount rate then the players�payo¤s from following ANY
strategy (assuming that there are no negative payo¤s that the player could incur) of an in�nite game would
be in�nite. Well, that�s not very interesting. This is also why we assume that � < 1 rather than � � 1. If
� = 1, then a player weights all payo¤s equally regardless of the time period, and this leads to an in�nite
payo¤. If � = 0, then the player will only care about the current period. As � moves closer to 1, the
player places more weight on future periods. It is possible to motivate this discount rate from a present
value context, which I believe would make � = 1

1+r , where r is �the interest rate�. Thus, if r = 0:05, then
� � 0:95. All this says is that getting $1 one period from today is like getting 95 cents today, and getting
$1 two periods from today is like getting 90.7 cents today. While this interpretation of the discount rate is
the most closely linked to economic behavior, we will not assume that the discount rate is directly related
to the interest rate, but that it is simply a parameter that states how players value payo¤s over time.
Now, suppose that players 1 and 2 use the following strategies:
Player 1 chooses Cooperate in the initial period (at time t = 0) and continues to choose Cooperate at

every decision node unless he observes that player 2 has chosen Defect. If Player 1 ever observes Player
2 choosing Defect then Player 1 will choose Defect at every decision node after that defection. Player
2�s strategy is the same. These strategies call for Cooperation at every decision node until a Defection is
observed and then Defection at every decision node after Defection is observed. Note that this is a potential
SPNE because it is a set of strategies that speci�es an action at every decision node of the game. The
question then becomes whether or not this is a SPNE of the game. Recall that a strategy pro�le is an SPNE
if and only if it speci�es a NE at every subgame. Although each subgame of this game has a distinct history
of play, all subgames have an identical structure. Each subgame is an in�nite Prisoner�s Dilemma exactly
like the game as a whole. To show that these strategies are SPNE, we must show that after any previous
history of play the strategies speci�ed for the remainder of the game are NE.
Consider the following two possibilities:

1. A subgame that contains a deviation from the Cooperate, Cooperate outcome somewhere prior to the
play of the subgame

2. A subgame that does not contain a deviation from the Cooperate, Cooperate outcome

If a subgame contains a deviation then the players will both choose Defect, Defect for the remainder of
the game. Since this is the NE to the one-shot version (or stage game) of the Prisoner�s Dilemma, it induces
a NE at every subgame. Thus, the �Defect if defection has been observed�portion of the suggested strategy
induces NE at every subgame.
Now, for the more di¢ cult part. Suppose that the players are at a subgame where no previous defection

has occurred. Consider the potential of deviation from the proposed strategy in period � � t, where t
6The exponential discounting assumption is used because it allows for time consistent preferences. Hyperbolic discounting

is another type of discounting that has been suggested as consistent with choices made by individuals in experiments, although
hyperbolic discounting does not necessarily lead to time consistent preferences.
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is the current period. If player 2 chooses Defect in period � he will earn ���Deviate + ��
P1

i=1 �
i�D for

the remainder of the game, where �Deviate is player 2�s payo¤ from deviating and �D is his payo¤ each
period from the (Defect, Defect) outcome. If player 2 chooses to follow the proposed strategy, then he
will earn ��

P1
i=0 �

i�C , where �C is his payo¤ from the (Cooperate, Cooperate) outcome. The question
then becomes under what conditions will the payo¤ from deviating be greater than that from the payo¤ of
following the proposed strategy. To �nd the condition simply set up the inequality:

���Deviate + ��
P1

i=1 �
i�D � ��

P1
i=0 �

i�C

We can cancel out the �� terms to obtain:7

�Deviate +
P1

i=1 �
i�D �

P1
i=0 �

i�C

Now, using results on series from Calculus, we have:

�Deviate +
�

1� ��
D � 1

1� ��
C

Now, we can substitute in for �Deviate;�D; and �C from our game to �nd:

32 + 8
�

1� � � 25
1

1� �

Or:

32� 32� + 8� � 25

7� 24� � 0

7 � 24�
7

24
� �

Thus, choosing to deviate from the proposed strategy only provides a higher payo¤ if � � 7
24 , so that

continuing to cooperate is a best response if � � 7
24 . The discount rate will be a key factor in determining

whether or not a proposed equilibrium is a SPNE. In fact, when looking at in�nitely repeated games, it is
best to have a particular strategy in mind and then check to see what the necessary conditions are for it to
be a SPNE, given the multiplicity of equilibria.
Are there other SPNE to the game? Well, consider a modi�ed version of the game:

Player 2
Defect Cooperate

Player 1 Defect 8; 8 80; 4
Cooperate 4; 80 25; 25

The only change in this game is that the payo¤ of 32 that the player received from Defecting when
the other player Cooperates has been changed to 80. We can show that both players using a strategy of
cooperating until a defection occurs (the same proposed strategy from before) is a SPNE if:

80 + 8
�

1� � � 25
1

1� �

or � � 55
72 . Thus, if both players are su¢ ciently patient then the proposed strategy is still a SPNE. Note

that the discount rate increased in this example since the payo¤ to deviating increased. But, is there a
strategy that yields higher payo¤s? What if the following strategies were used by players 1 and 2:
If no deviation has occurred, Player 1 chooses Defect in all even time periods and chooses Cooperate in

all odd time periods. If a deviation occurs Player 1 always chooses Defect.
If no deviation has occurred, Player 2 chooses Cooperate in all even time periods and chooses Defect in

all odd time periods. If a deviation occurs Player 2 always chooses Defect.

7This canceling out of the �� terms typically leads to the assumption that if deviation is going to occur in an in�nitely
repeated game it will occur in the �rst time period. I proceed under this assumption in later examples.
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A deviation (from player 1�s perspective) occurs when Player 2 chooses Defect in an even time period.
A deviation (from player 2�s perspective) occurs when Player 1 chooses Defect in an odd time period. Note
that we start the game at time t = 0, so that Player 1 receives 80 �rst.
Look at what this strategy would do. It would cause the outcome of the game to alternate between the

(Defect; Cooperate) and (Cooperate;Defect) outcomes, giving the players alternating periods of payo¤s of
80 and 4, as opposed to 25 each period using the �cooperate until defect is observed, then always defect�
strategy. On average (and ignoring discounting for a moment), each player would receive 42 per period
under this new strategy and only 25 per period under the old. Is the new strategy a SPNE? We should
check for both players now that they are receiving di¤erent amounts of payo¤s in di¤erent periods.
For Player 1:

�Deviate = 80 +
P1

i=1 �
i8

�C =
P1

i=0 �
2i80 +

P1
i=0 �

2i+14

If �C � �Deviate then Player 1 will choose NOT to deviate:

80
1

1� �2
+ 4

�

1� �2
� 80 + 8

�

1� �
80 + 4� � 80

�
1� �2

�
+ 8� (1 + �)

4� � �80�2 + 8� + 8�2

72�2 � 4� � 0

18� � 1 � 0

� � 1

18

This is true, for any � � 1
18 .

For Player 2:

�Deviate =
P1

i=0 �
i8

�C =
P1

i=0 �
2i4 +

P1
i=0 �

2i+180

If �C � �Deviate then Player 2 will choose NOT to deviate:

4
1

1� �2
+ 80

�

1� �2
� 8

1

1� �
4 + 80� � 8 + 8�

72� � 4

� � 1

18

Thus, both players need to have a discount rate greater than or equal to 1
18 to support this strategy. Note

that this discount rate is much lower than the one needed to support the �cooperate until defect is observed,
then always defect�strategy. However, it also illustrates the �embarrassment of riches�of in�nitely repeated
games because for any � � 55

72 either of these strategies could be played. And those are NOT the only two
strategies.

3.2.2 Some results

There are a number of formal results for SPNE that one can show concerning in�nite games. Most of these
results hinge upon a discount rate � being su¢ ciently close to 1. In the Prisoner�s Dilemma type games
we have considered the punishment for deviating from the �cooperation�strategy is for the other player to
play the stage game (or single shot) Nash equilibrium for the remainder of the game (choose Defect forever).
Since there are only two actions a player can take at any decision node (Cooperate or Defect) the only method
of punishment is to play Defect. Equilibria where the punishment takes the form of playing the stage game
Nash equilibrium are known as Nash reversion since the game reverts back to the Nash equilibrium once a
defection is observed.
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Supporting average payo¤s greater than stage game Nash As we showed in the second example
(when the players alternated choosing the Cooperate and Defect strategies) it need not be the case that the
players always �agree�8 to choose the same strategy in each period. It is possible to show that ANY payo¤
stream that yields average (undiscounted) payo¤s above the Nash equilibrium level can be supported by the
threat of Nash reversion IF the discount rate is su¢ ciently close to 1. Again, consider the Cooperate, Defect
game:

Player 2
Defect Cooperate

Player 1 Defect 8; 8 80; 4
Cooperate 4; 80 25; 25

Suppose that you believe that Player 1 is a much tougher player than Player 2, whatever being �tougher�
means. A potential SPNE strategy is as follows: Player 2 always Cooperates unless a deviation is observed
and then chooses Defect forever once deviation is observed. Exactly what a deviation is will be made clear
momentarily, but consider Player 1 who plays Cooperate in the �rst period, then Defect for 4 periods, then
Cooperate in the next period, then Defect for 4 periods, etc., unless a deviation is observed. A deviation
by Player 2 is any play of Defect. A deviation by Player 1 is a choice of Defect in any period in which he
should be choosing Cooperate. If Player 1 were to choose Cooperate in periods 2, 3, 4, 5, 7, 8, 9, 10, etc.
Player 2 would NOT view this as a defection. Note that the payo¤ stream for Player 2 is 25, 4, 4, 4, 4, 25,
4, 4, 4, 4, etc. Every 5 periods Player 2 receives an undiscounted payo¤ of 41, with an average payo¤ of 8.2
per period. Since this average is greater than the payo¤ from playing the stage game Nash equilibrium (8),
Player 2 will �agree�to play this equilibrium IF his discount rate is close enough to 1. Given that we have
actual payo¤s we can see that Player 2 will choose to always Cooperate if:

1X
t=0

�
�5
�t
25 + �

1X
t=0

�
�5
�t
4 + �2

1X
t=0

�
�5
�t
4 + �3

1X
t=0

�
�5
�t
4 + �4

1X
t=0

�
�5
�t
4 � 80 + �

1X
t=0

�t8

You should check that the payo¤ stream on the left-hand side is the actual payo¤ stream. Simplifying this
expression gives:

25

1� �5
+

4�

1� �5
+

4�2

1� �5
+

4�3

1� �5
+

4�4

1� �5
� 80 + 8�

1� �
This is not an easy equation to solve for �, so we can evaluate it numerically. The goal (for the example)
is not to �nd the actual discount rate but to show that for some discount rate close to 1 that this set of
strategies constitutes a SPNE. Suppose that � = 0:99. The left-hand side (Cooperate) is:h

25
1��5 +

4�
1��5 +

4�2

1��5 +
4�3

1��5 +
4�4

1��5

i
�=:99

= 828: 48

The right-hand side (Defect) is:h
80 + 8�

1��

i
�=:99

= 872:0

So even for a � = :99 Player 2 would not play this equilibrium. But 0:99 is not as close as we can get to
1. What if � = 0:999? The left-hand side is:h

25
1��5 +

4�
1��5 +

4�2

1��5 +
4�3

1��5 +
4�4

1��5

i
�=:999

= 8208: 4

While the right-hand side is:h
80 + 8�

1��

i
�=:999

= 8072:0.

So, for some discount rate between 0:99 and 0:999 this set of strategies becomes a potential solution.
Another way to think about this is to consider the case where � = 1. Now, since the game is played in�nitely
any set of strategies will lead to an in�nite payo¤, but it may be that one set of strategies gets to in�nity
�faster�. Consider the �rst 355 periods of the game. Using the �defection strategy�, Player 2 will have
received 80 in the �rst period and 8 for the next 354 periods. This leads to an undiscounted payo¤ of 2912
for the 355 periods. Using the �cooperation strategy�, Player 2 will have received an average payo¤ of 8.2
each period for the 355 periods for an undiscounted payo¤ of 2911. In the 356th period Player 2 would
receive 8 using the �defection strategy�, bringing the total payo¤ up to 2920, and using the �cooperation
strategy�will receive 25, bringing the total payo¤ up to 2936. Up until the 356th period the total payo¤

8This is another slight problem with in�nite games �there are so many SPNE that it is di¢ cult to say how one particular
one arose.
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from �defection� is less than the total payo¤ from �cooperation�, but from the 356th period onward the
total payo¤ from "cooperation� is ALWAYS greater than or equal to that from �defection�. From period
361 onward the total payo¤ from �cooperation�is ALWAYS strictly greater than that from �defection�. In
a sense, the �cooperation strategy�overtakes the �defection strategy�at some point in time and from that
point in time onward is NEVER overtook by the �defection�strategy.

Supporting average payo¤s less than stage game Nash It is also possible to support payo¤s LESS
than the stage game Nash equilibrium payo¤s. However, this cannot happen in our Cooperate, Defect game
because the minimum payo¤ a player can guarantee himself in that game is 8, which is the stage game Nash
payo¤ (if someone plays Defect this guarantees that person will receive at least 8). It might be the case that
punishment can be WORSE than the Nash equilibrium to the stage game (again, to be clear, this is not the
case in the Cooperate, Defect game, but it could be in some other game with more strategies). Thus it is
possible to support average payo¤s that are less than the stage game Nash equilibrium payo¤s as an SPNE
as long as the discount rate is close to 1. For example, if the Nash equilibrium payo¤ is 10, but the highest
amount a player can guarantee himself is 6, then it is possible to �nd an SPNE where that player receives
an average of 6.1 each period.

Carrot-and-stick approach So far all of our SPNE have used what is known as a �grim trigger�strategy.
When using a grim trigger strategy, once a defection is observed play reverts to the Nash equilibrium (or
worse) � forever. This is an extremely harsh punishment as it allows no room for error. An alternative
is to use a carrot-and-stick approach. The punishment portion of the strategy speci�es that the punisher
will only punish for x periods rather than every ensuing period. That is the stick. The carrot is the
cooperation payo¤ that the player receives x periods in the future once a defection is observed, provided the
defecting player returns to cooperating. This approach is more forgiving than the grim trigger strategy, and
in games where (1) mistakes may be made (2) actions may be misinterpreted or (3) there is some uncertainty
that in�uences the players�payo¤s in addition to the players�chosen actions this more forgiving approach
may yield higher payo¤s than the grim trigger strategy. A good example of this approach can be found
in Green and Porter (1984),9 Econometrica, Noncooperative Collusion Under Imperfect Price Information,
87-100. In that model there is a group of �rms who wish to collude. The market price is in�uenced by
the total quantity produced by each �rm. In addition, the market price is also in�uenced by a random
shock. Thus, the market price may be low due to either (1) overproduction on the part of the �rms or
(2) bad luck. However, since individual �rm quantity choices are unobservable to all �rms, it is impossible
to verify the true cause of the low market price. This typically means that the �rms would be unable to
sustain a collusive agreement. However, using a punishment system where the �rms punish for x periods if
the market price ever drops below some level p regardless of the reason (either bad luck or overproduction)
the �rms are able to sustain a noncooperative collusive agreement.

How do we know which equilibrium will be played? We don�t really know which equilibrium will
be played �it typically depends on the type of game. There is an interesting paper by Todd Kaplan and
Bradley Ru e title �Which Way to Cooperate�which discusses a particular type of game and the conditions
under which di¤erent equilibria may be expected to arise.

9Green and Porter (1984), Econometrica, Noncooperative Collusion Under Imperfect Price Information, vol. 52:1, 87-100.
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