
These notes essentially correspond to chapter 14 of the text. There is a little more detail in some places.

1 Intro to game theory

Although it is called game theory, and most of the early work was an attempt at �solving� actual games
(like Chess), the tools used in game theory can be applied to many economic situations (how to bid in an
auction, how to bargain, how much to produce in a market setting, etc.). A game consists of the following
four items:

1. Players �the agents (�rms, people, countries, etc.) who actively make decisions

2. Rules �the procedures that must be followed in the game (knights must move in an L-shaped pattern
in Chess, three strikes and you�re out in baseball, a �rm cannot produce a quantity less than 0 �these
are all rules); may also include timing elements (white moves �rst in Chess then player�s alternate
moves, one �rm may produce �rst and the other �rm may observe this production before it makes a
quantity decision,

3. Outcomes �what occurs once all decisions have been made (in a winner/loser game like Chess or
baseball, the outcome is a win or a loss or perhaps a tie, while in a market game the outcome is more
like a pro�t level)

4. Payo¤s � the value that the player assigns to the outcome (in most of our examples outcomes and
payo¤s will be identical, as the outcomes will be dollars and players will just translate

1.1 Solution Concept

Our goal will be to �solve�these games. Although there are a variety of solution methods, the one we will
use is the Nash Equilibrium concept (yes, named after that guy Nash in the movie). A Nash Equilibrium
is a set of strategies such that no one player can change his strategy and obtain a higher payo¤ given the
strategy the other player(s) is (are) currently using.
A strategy is a complete plan of play for the game. Suppose we were trying to solve the game of Chess (if

you ever actually solve Chess you will become famous, at least within the mathematics community). There
are two players, and the player with the white pieces moves �rst. One piece of the white pieces player�s
strategy might be, �move king side knight to square X to start the game�. However, this is not a complete
strategy �you need to write down what you will do for every possible move that you will make. By contrast,
look at the beginning of the black pieces player�s strategy. There are 20 possible moves that the white pieces
player can use to begin Chess, and the black pieces player must have a plan of action for what he will do for
EVERY possible move the white pieces player would make. That�s a list of 20 moves that the black pieces
player must write out just to make his FIRST move. Thus, a complete strategy of Chess is very, very, very,
lengthy (even with the increases that we have seen in computing power no one has been able to program a
computer to solve Chess).

1.2 Simple duopoly example

Suppose that there are two �rms (Firm A and Firm B) engaged in competition. The two �rms will choose
quantity levels simultaneously. To keep this example simple, assume that the �rms�quantity choices are
restricted to be either 48 units or 64 units. If both �rms choose to produce 64 units, then both �rms will
receive a payo¤ of $4.1. If both �rms choose to produce 38 units, then both �rms will receive a payo¤
of $4.6. If one �rm chooses to produce 48 units and the other chooses to produce 64 units, the �rm that
produces 48 units receives a payo¤ of $3.8 while the �rm that produces 64 units receives a payo¤ of $5.1.
When analyzing 2 �rm simultaneous games (where there are a small number of strategy choices), we can

use a game matrix (or the normal form or strategic form or matrix form �it has many names) as an aid in
�nding the NE to the game. The game matrix is similar to the table above for the monopoly, only now we
have 2 �rms. I will write out the matrix below and then explain the pieces as well as some terminology.
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Firm B
QB = 48 QB = 64

Firm A QA = 48 $4:6, $4:6 $3:8, $5:1
QA = 64 $5:1, $3:8 $4:1, $4:1

One player is listed on the side of the matrix (Firm A in this example) and is called the row player, as
that player�s strategies (QA = 48 and QA = 64 in this example)are listed along the rows of the matrix. The
other player is listed at the top of the matrix (Firm B in this example) and is called the column player, as
that player�s strategies (QB = 48 and QB = 64 in this example)are listed along the columns of the matrix.
Each cell inside the matrix lists the payo¤s to the players if they use the strategies that correspond to

that cell. So the $4:6, $4:6 are the payo¤s that correspond to the row player (Firm A) choosing to produce
48 and the column player (Firm B) also choosing to produce 48. The cell with $5:1, $3:8 corresponds to the
row player choosing 64 and the column player choosing 48. Note that the row player�s payo¤ is ALWAYS,
ALWAYS, ALWAYS listed �rst (to the left) in the cell.
Now that the game is set-up, how do we �nd the Nash Equilibrium (NE) to the game? We could look

at each cell and see if any player could make himself better o¤ by changing his strategy.
If QA = 48 and QB = 48, then Firm A could make himself better o¤ by choosing QA = 64 (Firm B could

also have made himself better o¤ by choosing QB = 64, but all we need is one player to want to change his
strategy and we do not have a NE). Thus, QA = 48 and QB = 48 is NOT a NE.
If QA = 48 and QB = 64, then Firm A can make himself better o¤ by choosing QA = 64, because he

would receive $4:1 rather than $3:8. Thus, QA = 48 and QB = 64 is NOT a NE.
If QA = 64 and QB = 48, then Firm B could make himself better o¤ by choosing QB = 64. Thus,

QA = 64 and QB = 48 is NOT a NE.
If QA = 64 and QB = 64 then neither �rm can make himself better o¤ by changing his strategy (if either

one of them changes then the �rm that changes will receive $3:8 rather than $4:1). Since neither �rm has
any incentive to change, QA = 64 and QB = 64 is a NE to this game.
Working through each cell is a fairly intuitive, albeit time-consuming process. You can use this technique

if you want, but a word of caution. You must check EVERY cell in the game as there may be multiple NE
to the game �thus, even if you started by checking QA = 64 and QB = 64 and found that it was a NE you
would still need to check the remaining cells to ensure that they were not NE. However, there is another
method.
Another method that works to �nd NE of game matrices is called �circling the payo¤s�(it doesn�t really

have a technical name). Here�s the idea: hold one player�s strategy constant (so suppose Firm B chooses
QB = 48), then see what the other player�s highest payo¤ is against that strategy and circle that payo¤. So
if Firm B chose QB = 48, then Firm A would circle the payo¤ of $5:1 in the lower left-cell (the payo¤ of
$5:1 that corresponds to QA = 64 and QB = 48). If Firm B chose QB = 64, then Firm A would circle the
payo¤ of $4:1 since $4:1 > $3:8. So halfway through the process we have:

Firm B
QB = 48 QB = 64

Firm A QA = 48 $4:6, $4:6 $3:8, $5:1
QA = 64 $5:1, $3:8 $4:1, $4:1

Now, we simply hold Firm A�s strategy constant and �gure out what Firm B would do in each situation.
Firm B would circle the $5:1 payo¤ if Firm A chose QA = 48 and Firm B would circle the $4:1 payo¤ if
Firm A chose QA = 64. Thus, the result would be:

Firm B
QB = 48 QB = 64

Firm A QA = 48 $4:6, $4:6 $3:8, $5:1
QA = 64 $5:1, $3:8 $4:1, $4:1

Whichever cell (or cells) have both payo¤s circled are NE to the game. Note that this is the same NE
we found by going through each cell. Again, it is possible to have more than one NE to a game. Also,
it is possible to circle more than one payo¤ at a time. Suppose Firm A chose QA = 48 and that Firm B
received $5:1 if it chose QB = 48 or QB = 64. In this case, since the highest payo¤ corresponds to two
di¤erent strategies for Firm B you would need to circle both of the payo¤s. The �solved�game (with the
$5.1 replacing the $4.6 for Firm B only) would look like below:
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Firm B
QB = 48 QB = 64

Firm A QA = 48 $4:6, $5:1 $3:8, $5:1
QA = 64 $5:1, $3:8 $4:1, $4:1

2 Dynamic (or sequential) games

We had been studying simultaneous games, where each �rm makes its quantity choice or price choice without
observing the other �rm�s choice. Now, we want to extend the analysis to include sequential games, where
one �rm moves �rst, the second �rm observes this decision, and then the second �rm makes its decision.
To analyze sequential games, a structure, called a game tree, that is slightly di¤erent than the game matrix
should be used. The game tree provides a picture of who decides when, what decisions each player makes,
what decisions each player has seen made prior to his decision, and which players see his decision when it is
made. We can start by translating the simple quantity choice game from chapter 13 (when the �rms could
each only choose to produce a quantity of 64 or 48) into a sequential games framework.
Suppose that there are two �rms (Firm A and Firm B) engaged in competition. Firm A will choose its

quantity level �rst, and then Firm B will choose its quantity level after observing Firm A�s choice. To keep
this example simple, assume that the �rms�quantity choices are restricted to be either 48 units or 64 units.
If both �rms choose to produce 64 units, then both �rms will receive a payo¤ of $4.1. If both �rms choose
to produce 48 units, then both �rms will receive a payo¤ of $4.6. If one �rm chooses to produce 48 units
and the other chooses to produce 64 units, the �rm that produces 48 units receives a payo¤ of $3.8 while
the �rm that produces 64 units receives a payo¤ of $5.1. This game is sequential since Firm A chooses �rst
and Firm B observes Firm A�s decision.1

While we could use the matrix (or box or normal) form of the game for the sequential game, there is
another method for sequential games that makes the sequential nature of the decisions explicit. The method
that should be used is the game tree. A game tree consists of:

1. Nodes �places where the branches of the game tree extend from

2. Branches �correspond to the strategies a player can use at each node

3. Information sets �depict how much information the player has when he moves (if the second player
knows that he follows the �rst player but cannot observe the �rst player�s decision then his information
set is really no di¤erent than in the simultaneous move game; however, if the second player can observe
the �rst player�s decision, then his information set has changed)

A game tree corresponding to the quantity choice game previously described is depicted below. The
individual pieces of a game tree are also labelled. The label for information set is pointing to the open
circle that encircles the term �Firm B�. Thus, Firm B can see how much Firm A has decided to produce.
If Firm B could not determine if Firm A decided to produce 48 or 64 units, then Firm B would have one
information set, and there would be one open circle encircling both of Firm B�s decision nodes.

1 In the real-world Firm A may actually choose a quantity before Firm B, but if Firm B gains no additional information from
Firm A�s decision (such as a change in the market price), then the game is essentially one where Firm A and Firm B choose
simultaneously.
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To solve sequential games we start from the end of the game and work our way back towards the beginning.
This is called backward induction. To �nd the Nash Equilibrium (NE), we �rst determine what Firm B
would do given a quantity choice by Firm A. In this example, Firm B would choose QB = 64 as its strategy
if Firm A chose QA = 48 because $5:1 > $4:6. Also, Firm B would choose QB = 64 if Firm A chose QA = 64
because $4:1 > $3:8. Thus, Firm B�s strategy is: {Choose QB = 64 if Firm A chooses QA = 48; choose
QB = 64 if Firm A chooses QA = 48}. We now know what Firm B will do for any given choice by Firm A,
which means that we have an entire strategy for Firm B.
Firm A, knowing that Firm B will choose QB = 64 regardless of its quantity choice, can now �lop o¤ the

branches�that correspond to QB = 48. The reason that Firm A can lop o¤ these branches is that it knows
that it will never see the payo¤s associated with following those branches because Firm B will never follow
them. Thus, to Firm A, the game tree looks like:

I have left the payo¤s there but removed the branches. Firm A has one decision to make, produce a
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quantity of 48 or a quantity of 64. If it produces a quantity of 48, Firm B will produce 64, and Firm A will
receive a payo¤ of $3.8. If it produces a quantity of 64, Firm B will produce 64, and Firm A will receive a
payo¤ of $4.1. Since $4:1 > $3:8, Firm A will choose QA = 64. Thus, the complete NE for this game is:
Firm A: Choose QA = 64
Firm B: Choose QB = 64 if Firm A chooses QA = 48; choose QB = 64 if Firm A chooses QA = 48
Now, when the game is played only one payo¤ is received. To �nd this payo¤ just follow the path

outlined by the NE strategy. Firm A chooses QA = 64, and if Firm A chooses QA = 64 then Firm B chooses
QB = 64, which leads to a payo¤ of $4.1 for Firm A and $4.1 for Firm B. Notice that we didn�t use the
fact that Firm B chooses QB = 64 if Firm A chooses QA = 48 because Firm A did not choose QA = 48.
We still need to include that piece as part of our NE strategy even though we don�t use it when we �nd the
path that the game actually follows.

3 Pricing Practices

What follows is a game theoretic analysis of some prevalent pricing practices in industry.

3.1 Limit Pricing

Limit pricing is an entry deterrence strategy that may be used by a monopolist. The idea is that a monopolist
will underprice in one period (today) to keep potential entrants out of the market so that the monpolist can
reap the rewards of the monopolist market in future periods (tomorrow, and perhaps later time periods).
The monopolist�s goal would be to choose the highest possible price today that would keep the entrant from
entering today. Then the monopolist could choose the monopoly price in future periods.
One issue with limit pricing is why it should work � if entry is pro�table, and easy enough that the

monopolist would have to be concerned about it, one might think that as soon as the monopolist charges the
monopoly price some �rm will enter into the market. There is debate about how well limit pricing works in
practice.

3.2 Price Match Guarantees

Price-matching guarantees are very popular with �rms in the retail industry. Think about some advertise-
ments you may have seen �"If you �nd a lower advertised price, we will match (or perhaps beat) it!" Many
people view these policies as competitive policies, because, after all, �rms are guaranteeing that they will
sell the product at the lowest available price. But consider the following game.
In the standard simultaneous Bertrand (pricing) game with two �rms there is a unique pure strategy

Nash equilibrium in which both �rms choose a price equal to marginal cost c (we saw this in the Chapter 13
notes). Now suppose that before the �rms simultaneously choose price in the standard Bertrand game they
simultaneously choose whether or not to implement a price-matching policy. If a �rm implements a price-
matching policy this means that �rm will match the lowest price in the market. Firms observe each other�s
price-matching decision and then simultaneously choose their respective prices (under the assumptions of
the standard Bertrand pricing game), where a price can be any real number. A basic depiction of the game
is below, where PM means "price-matching", NPM means "no price-matching", and p1 and p2 are the price
choices of �rms 1 and 2 respectively:
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What can happen in equilibrium if both �rms choose a price-matching policy? There are many equilibria.
In the other 3 pricing subgames (the ones where both �rms choose NPM or one �rm chooses PM and the
other chooses NPM) we need p1 = p2 = c. In the price-matching subgame (the part of the tree in which
both �rms choose PM), any pair of prices where p1 = p2 and p1 2 [c; pm] is a Nash equilibrium, where c
is marginal cost and pm is the monopolist�s price. Consider p1 = p2 = pm. Because both �rms have a
price-matching policy, any attempt to undercut the price to capture the entire market will result in the other
�rm having its price pulled downward (because it has a price-matching policy). Now consider p1 = p2 < pm

(but greater than c). In this case, there is still no incentive to undercut the price as the other �rm�s price
would be pulled downward, but there is also no incentive to increase price (because whichever �rm increases
price has its price pulled back to the lower price). Finally, consider c < p1 < p2 < pm. This is not an
equilibrium. While there is no incentive for the �rm with the higher price to change its strategy, the �rm
with the lower price (p1) would be better o¤ charging the higher price (p2).
Far from being a competitive pricing policy, price-matching guarantees could be anti-competitive. While

this model is really simple, the end result that price-matching policies can lead to anti-competitive outcomes,
holds up under more realistic assumptions.

4 Auctions

In this section I will describe the four basic auction formats that we will discuss. The description will include
the process by which bids are submitted and the assignment rule for the winner. For now, consider only
the cases where we have a single, indivisible unit for sale. Keep in mind that the auctions we are discussing
are for those of many buyers (bidders) and a single seller; many results still hold if there is a single buyer
(such as a government awarding a contract) and multiple sellers (�rms attempting to obtain the government
contract), though the bidding functions will change. The latter type of auction (single buyer, multiple
sellers) are known as reverse auctions (or procurement auctions) and are used by a variety of businesses.

4.1 1st-price sealed bid auction

Process All bidders submit a bid on a piece of paper to the auctioneer.

Assignment rule The highest bidder is awarded the object. The price that the high bidder pays is equal
to his bid.
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Examples Many procurement auctions are 1st-price sealed bid. Procurement auctions are typically run
by the government to auction o¤ a construction job (such as paving a stretch of highway).

4.2 Dutch Auction

Process There is a countdown clock that starts at the top of the value distribution and counts backwards.
Thus, the price comes down as seconds tick o¤ the clock. When a bidder wishes to stop the auction he or
she yells, �stop�.

Assignment rule The bidder who called out stop wins the auction, and the bidder pays the last price
announced by the auctioneer.

Examples The Aalsmeer �ower auction, in the Netherlands, is an example of this type of auction. Hmmm,
wonder where the phrase �Dutch�auction comes from...
By the way, the Ebay dutch auctions are NOT, NOT, NOT Dutch auctions. They are multi-unit

ascending k + 1 price auctions. Perhaps we will discuss those later.

4.3 2nd-price sealed bid auction

Process Bidders submit their bids on a piece of paper to the auctioneer.

Assignment rule The highest bidder wins, but the price that the highest bidder pays is equal to the 2nd

highest bid. Hence the term 2nd-price auction.

Examples Ebay is kind of a warped 2nd-price auction. If you think about the very last seconds of an
Ebay auction (or if you consider that every person only submits one bid), think about what happens. You
are sending in a bid. If you have the highest bid you will win. You will pay an amount equal to the 2nd

highest bid plus some small increment. Thus if you submit a bid of $10 and the second highest bid is $4,
you pay $4 plus whatever the minimum is (I think it�s a quarter). So you would pay $4.25.
There are other reasons to think that ebay is not actually a 2nd-price auction �perhaps we will discuss

them in class or on a homework.

4.4 Ascending clock auction

Process A clock starts at the bottom of the value distribution. As the clock ticks upward, the price of
the item rises with the clock. This is truly supposed to be a continuous process, but it is very di¢ cult to
count continuously, so we will focus on one tick of the clock moving the price up one unit. If you like we
can consider the unit to be a penny, or we can consider a unit to be the smallest denomination of the most
worthless currency on the planet (those of you who know me know that I have very little background in
international economics �therefore, I leave it up to you to decide the most worthless currency). The idea
is that this is the smallest amount that anyone could possibly bid �that is how the ticks on the clock move
the price up. All bidders are considered in the auction (either they are all standing or they all have their
hands on a button �some mechanism to show that they are in). When the price reaches a level at which
the bidder no longer wishes to purchase the object, the bidder drops out of the auction (sits down or releases
the button). Bidders cannot reenter the auction. Eventually only two bidders will remain. When the next
to last bidder drops out, the last bidder wins.

Assignment rule The winning bidder is the last bidder left in the auction. The bidder pays a price equal
to the last price on the clock.

Examples The typical example given is Japanese �sh markets. I�m trying to �nd a speci�c reference, but
I have recently been told that the Japanese �sh market story may be an urban legend. Thus, the English
clock auction may only be a theoretical construct.
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4.5 Bidding strategies

The previous section is meant to introduce you to the auction formats. In this section we will discuss the
NE bidding strategies. In some cases we will �derive�the NE strategies, while in others I will discuss the
intuition behind the NE and leave the gory details to those interested.2

4.5.1 General Environment

Before discussing the bidding strategies we need to set up the general environment. This suggests that if
the environment (or pieces of it) change, the NE bidding strategies will change.
The general name for the environment is the Symmetric Independent Private Values environment (SIPV)

with Risk-neutral bidders. We will also assume that we are auctioning o¤ a single, indivisible unit of the
good.

1. There needs to be a probability distribution for player values, denoted vi. We will assume that all
player values are drawn from the uniform distribution on the unit interval. This means that all values
are drawn from the interval [0; 1] with equal probability. More importantly, if you draw a value of
0:7, then the probability that someone else drew a value less than you is also 0:7. Since probabilities
must add up to 1, and since the other player�s value draw must either be greater than your value or
less than your value. We will not allow for the fact that someone else could draw the exact same value
(theoretically, ties cannot occur with positive probability in a continuous probability distribution).
This means that the probability that the other player has a value greater than yours is 1� 0:7 = 0:3.

2. The setting is symmetric in the sense that all players know that the other player�s value(s) is drawn
from the same probability distribution.

3. The setting is independent in the sense that your value draw has NO impact on the value draw of the
other player(s).

4. The setting is private in the sense that only you know your value �thus, it is private information.

5. We add the fact that our bidders are risk-neutral, as risk aversion will alter some results. Thus, our
utility function will be:

u (x) =

�
x if win the auction
0 if don0t win

The term x in the utility function can typically that of as vi � bi, where vi is the player i�s value and bi
is player i�s bid.
This should lead you to our �rst bidding rule (in this particular environment).

1. Do NOT overbid, where overbidding is de�ned as the act of placing a bid greater than your value.
Overbidding is weakly dominated by not bidding.

Ascending clock auction �bidding strategy Consider the following example. You have a value of
10. The clock begins at 0 and ticks upward: 0, 1, 2, 3, ..., 9, 10, 11, 12, 13, ... The question is, when should
you sit down (or drop out of the auction)? Consider three possible cases:

1. The clock reaches 11:

In this case you should drop out. While you increase your chances of winning the item by staying in,
note that you will end up paying more than the item is worth to you. You can do better than this
by dropping out of the auction and receiving a surplus of zero. So, as soon as the price on the clock
exceeds your value you should drop out.

2Wolfstettar, Elmar (1999) Topics in Microeconomics: Industrial Organization, Auctions, and Incentives is an excellent
reference for such gory details.
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2. The clock is at some price less than 10:

In this case you should remain in the auction. If you drop out you will receive 0 surplus. However, if
you remain in the auction then you could win a positive surplus. If you drop out before your value is
reached you are essentially giving up the chance to earn a positive surplus. Since this positive surplus
is greater than the 0 surplus you would receive if you dropped out, you should stay in the auction.

3. The clock is at 10:

What happens when the price on the clock reaches your value? Well, if you win the auction you get 0
surplus and if you drop out you get 0 surplus, so regardless of what you do you get 0 surplus. We will
say that you stay in at 10, and drop out at 11. For one thing, it makes the NE bidding strategy simple
�stay in until your value is reached, then drop out. Another way to motivate this is to consider that
peoples values are drawn from the range of numbers [0:01; 1:01; 2:01; 3:01; :::] instead of [0; 1; 2; 3; :::].
However, assume the prices increase as [0; 1; 2; 3; :::]. It is clear that if you have a value of 3.01 you
should be in at 3, while if you have a value of 3.01 you should be out at 4. This is the �add a small
amount to your value�approach that I mentioned in class.

So what is the NE strategy? Stay in until your value is reached and drop out as soon as it is passed by
the clock.

2nd-price sealed bid auction �bidding strategy In this auction you submit a bid and pay a price
equal to that of the 2nd highest bid. How should you bid?
One method of �nding a NE (or a solution in general) is to propose that a strategy is a NE and then

verify it. Naturally, it is a good idea to propose the right strategy the �rst time. So, consider the strategy:
submit your value. Is this a good strategy?
What else could we do? We could submit a bid greater than the value or less than the value. Let�s

examine each of these.

Bid above your value Suppose we submit a bid above our value. What could this possibly change?
Well, if we were to win when submitting our value then absolutely nothing changes �we still pay the same
price since the price (if we win) is not tied to our bid. What happens if we submit a bid greater than our
value and this causes us to switch from losing the auction to winning the auction? Suppose our value is
10 and the other player�s value is 12. The other player submits 12 and we submit 10. We lose and earn
0 surplus. Now suppose we were to bid 13. We win, which is good, but we have to pay 12 for something
that is only worth 10 to us. So we earn a surplus of (�2). This is bad. We could have done better by
placing a bid of 10 (our value) and earning 0. So placing a bid equal to our value is better than placing a
bid above the value in this case.

Bid below your value Suppose we submit a bid below our value. What could this possibly change?
Well, if we were going to lose by submitting our value, then we still lose when submitting a bid below the
value. So this changes nothing (at least not for us � it would help the highest bidder if we were the 2nd

highest bid!) as we still receive 0 surplus. Suppose we lower our bid and still win �again nothing changes
because the 2nd highest bidder has still submitted the same bid. It is possible though that we lower our bid
and lose �here�s where the problem occurs. Suppose our value is 15 and the other value is 9. We submit a
bid of 15, we win, and we get a surplus of (15� 9) = 6. We submit a bid of 14, we still get a surplus of 6.
Now suppose we submit a bid of 8 �we go from getting a surplus of 6 to getting a surplus of 0. It would be
much better to submit a bid equal to your value and get a surplus of 6. So placing a bid equal to our value
is at least as good in most cases and strictly better in some cases.
We have now determined that submitting a bid equal to our value is at least as good as submitting a bid

greater than or lower than the value in some cases, and strictly better in other cases. Therefore, submitting
a bid equal to your value is a weakly dominant strategy.
NE for 2nd-price auction: Submit a bid equal to your value.
You should note that the 2nd-price sealed bid auction and the ascending clock auction are strategically

equivalent. This means that all players have the same bidding strategies in either auction, even though the
mechanism that produces the winner of the auction is slightly di¤erent.
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1st-price sealed bid auction �bidding strategy In this auction you pay an amount equal to your bid
if you win. The �rst question is, should you submit a bid equal to your value?

Bid equal to your value If you submit a bid equal to your value then you will expect to earn 0
surplus. If you win, then you will have to pay an amount equal to your value and if you lose you receive
nothing. It stands to reason that you may be able to do better than this by submitting a bid below your
value. The question is how far below your value?

Bid equal to the lowest possible value If you submit a bid equal to the lowest possible value that
could be drawn then you will also receive 0 surplus. The reason is that you will never win because your bid
was so low. Taken together with the fact that you will bid below your value, this means your actual bid
should fall between the lowest possible value and your value draw.

Actual problem The actual problem facing someone bidding in a 1st-price sealed bid auction is to
maximize their expected utility. Their expected utility can be written as:

E
�
1st � price auction

�
= Pr(win) � (vi � bi) + Pr (lose) � 0

Since the term Pr (lose) � 0 = 0, we can drop that from the equation to get:

E
�
1st � price auction

�
= Pr(win) � (vi � bi)

If you have taken a course like math econ, then this is a maximization problem, where the choice variable
is bi. You should note that the larger bi is the greater the probability of winning will be, but the larger bi
is then the lower the surplus will be if you win.
The idea is to pick the bid that maximizes this function. The general bidding strategy, for N bidders

IN THE SIPV-RN environment,3 is to bid N�1
N vi. Thus you are shaving your bid depending on how many

other bidders there are. The more bidders, the less you shave your bid.

Dutch auction �bidding strategy Recall that with a Dutch auction the bidder watches as the clock
descends, and then calls out when he sees a price that he wishes to pay. The problem facing the bidder is
to maximize their expected utility. Their expected utility can be written as:

E
�
1st � price auction

�
= Pr(win) � (vi � bi) + Pr (lose) � 0

Notice that this is the same problem faced in the �rst price auction. This suggests that the 1st-price
and the Dutch auctions are strategically equivalent. Thus, the bidding strategy in the Dutch auction is to
yell out stop when the clock reaches N�1

N of your value.

4.6 Which format is �better�?

Now that we have seen the di¤erent formats, the question turns to which one is better. Better can mean 2
things. From the standpoint of a benevolent social planner, better could mean more e¢ cient. We will say
that an auction is e¢ cient if the item goes to the person with the highest value. Of course, an individual
seller does not necessarily care about social goals such as e¢ ciency, but about the revenue that the auction
will generate for himself. The relevant question for the individual seller is then which format generates more
revenue. We will look at both of these notions of �better�.

3Note that if the assumptions about the environment are changed then the NE bidding strategy may (likely will) change.
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4.6.1 E¢ ciency

We will de�ne the level of e¢ ciency in an auction as Vw
VH
, where Vw is the value of the winning bidder and

VH is the value of the high bidder. Note that if the winner is the high bidder, then e¢ ciency is 1 or 100%.
The question is, in all of our auction formats will the bidder with the highest value bid more than, less than,
or an amount equal to bidders with lower values. It is easy to see that in an ascending clock or 2nd-price
sealed bid auction that higher values lead to higher bids because bidders simply submit their values as bids.
In the Dutch and 1st-price auctions, the bid function is bi = N�1

N vi. The question is, who will submit the
highest bid? It should be fairly easy to see that higher values will submit higher bids. Technically, we can
say that the bid function is increasing in the value draw �as the value draw increases, the bid increases.
Thus, bidders with higher values will submit higher bids, and the bidder with the highest value will submit
the highest bid. These auctions will also be 100% e¢ cient, assuming that all of our conditions hold and
bidders use the NE bidding strategies.

4.6.2 Revenue

As far as revenue goes we know that the 1st-price and Dutch auctions are strategically equivalent and that the
ascending clock auction and the 2nd-price are strategically equivalent. Thus we know that the revenue from
the 1st-price and Dutch will be equal and the revenue from the ascending clock auction and the 2nd-price
will be equal. The question is, does the 1st-price generate more revenue than the 2nd-price?
Let V1 be the highest value and V2 be the second highest value. Then the expected revenue of the

1st-price auction is:

Revenue
�
1st � price

�
=
N � 1
N

E [V1]

The expected revenue of the 2nd-price auction is:

Revenue
�
2nd � price

�
= E [V2]

We will assume that there are the same number of bidders in each auction. We now need to know what
E [V1] and E [V2] are in order to answer which of the auctions will generate more revenue. To do this we
use the concept of an order statistic �basically, an order statistic tells us what the expected value of the kth

highest draw from a distribution will be given that we make N draws from the distribution. In our case, we
are using the uniform distribution over the range 0 to 1. We �nd that the kth highest value will be equal to:

N � k � 1
N + 1

So:

E [V1] =
N

N + 1

E [V2] =
N � 1
N + 1

This means that the expected revenue from the 1st-price auction is equal to N�1
N+1 and the expected revenue

from the 2nd-price auction is also equal to N�1
N+1 . Thus, both auction formats are expected to generate the

same revenue.
While that may surprise some of you, we have a more powerful result called the revenue equivalence

theorem. Essentially, if the conditions of the theorem (laid out below) are met, then any mechanism
designed will lead to the same expected revenue.
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Revenue Equivalence Theorem Assume our set-up �SIPV with N risk-neutral agents. Values are
drawn from a distribution F (v) that is strictly increasing and atomless on [v; v]. Suppose no buyer wants
more than 1 of k identical, indivisible objects for sale.
Any mechanism in which:

1. Objects always go to the k buyers with the highest values

2. any buyer with value v = v expects 0 surplus

yields the same expected revenue and results in a buyer with value v making the same expected payment.
This is a very powerful result that extends beyond the scope of auctions, as you should see on the

homework.

4.7 Breaking revenue equivalence and e¢ ciency

If all formats are perfectly e¢ cient and generate the same revenue in expectation, why do auctioneers prefer
one type or the other? In the sections below we will look at how to �break�the results from above.

4.7.1 Breaking revenue equivalence

Suppose that instead of risk-neutral agents we had risk-averse agents. They still have the exact same
problem as before �they want to maximize their expected surplus. In the 2nd-price and ascending clock
auctions, there was no �maximization�problem �bidders simply submitted their bids or dropped out when
the clock reached their value. Thus, the strategy should not change in these types of auctions if bidders are
risk averse since they can do no better following another strategy. Since the strategy does not change the
expected revenue from the 2nd-price auction is still the same.
Consider the 1st-price auction. Bidders wanted to maximize their expected surplus, given by:

E
�
1st � price

�
= Pr (win) � (vi � bi)

However, in the risk averse case bidders want to maximize something like:

E
�
1st � price

�
= Pr (win) �

p
(vi � bi)

Recall that in the risk-neutral version of the 1st-price auction the bidder bid 1
2 of his value. In this risk

averse case, the bidder will bid 2
3 of his value. Thus, we can see that the bidder is going to bid more in the

risk averse case. Intuitively, if the bidder were to bid 1
2 of his value in the risk averse case the marginal bene�t

from increasing the bid (the increase in the probability of winning) would be greater than the marginal cost
(the amount of surplus lost). So we increase the bid until the marginal bene�t of increasing the bid equals
the marginal cost, just like we do with many other applications in economics.

4.7.2 Breaking e¢ ciency

Suppose we want to break e¢ ciency. The true version of the ascending clock auction has the price moving
up continuously with the tick of the clock. However, we know that people do not have continuous values,
or, even if they do, there is some rational minimum amount by which their values must increase. In the US
the smallest value one can have for a good is a penny, so it is not a stretch to think that the smallest unit
in which values can be denominated is a penny. If this is a case, then a clock which moves at the rate of
1 penny per second (or 1 penny per hour or 1 penny per half-second �the rate is not important, but the
units that it counts are) will still be perfectly e¢ cient in the sense that the highest valued bidder will get the
object. However, consider a clock that increases the price at a rate of 1 penny per second. Now consider
the following prices and the corresponding amount of time it will take to auction o¤ objects of these values:
$10 �16.67 minutes
$1 million �3.17 years
$1 billion �3170 years
It doesn�t really seem �e¢ cient� to take 3170 years to auction o¤ an item. In fact, it seems quite

ine¢ cient. So what auctioneers will typically do is impose a minimum bid increment. This minimum
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bid increment is the minimum amount by which the clock will increase (or the minimum amount by which
bidders must increase the bid if they wish to place a new bid). While this speeds up the process, the
introduction of the minimum increment can also destroy the e¢ ciency results of auctions. For instance,
suppose 2 players have values of $14:08 and $14:92 respectively. If the clock ticks up at $1 per second, then
both bidders will drop out at $14. In this case, a tie is declared and we must use the tie-breaking mechanism.
The tie-breaking mechanism is usually a coin �ip or some other equal probability game. Thus, on average,
the bidder with a value of $14.08 will get the item half of the time. As you can see, the minimum increment
introduces the possibility of ine¢ ciency into the auction process.
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