
These notes correspond to chapter 5 of the text. There is some additional information in these notes

because I feel it is important that you all have some idea of where these concepts come from.

1 Curve �tting

� Types of data

1. time series �describes the movement of a variable over time
2. cross-section �looks at the individual characteristics of �rms or individuals at a point in time
3. panel (or pooled or longitudinal) data �combination of time series and cross-section data

Suppose we hypothesize that there is a relationship between two variables, X and Y. Economic theory
would tell us what we should expect this relationship to be, but we will use econometrics to estimate this
relationship. In order to estimate this relationship, we need data. If we were to have every possible
observation on a variable, we would then have the population of that variable. However, most of the time
we will have a sample of the available data. Thus, we will need to perform statistical tests to see if the
estimates we obtain are signi�cant (we will get to that later in the course). For now, suppose we have two
variables, X and Y. I have created some numbers for X and Y and placed them in the table below; the
scatterplot shows the graphical relationship between X and Y. I have also created two more variables, V
and Z, and created a table and a scatterplot for them as well.

Y X
13.5 15
12 9
14.5 18
12.5 12
10.5 5
17 26
14.5 18
12 10
16 24

V Z
49.6 8
24.4 6
64.9 -9
24.4 -6
14.5 5
36.1 7
36.1 -7
64.9 9
49.6 -8
14.5 -5
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When we attempt to �t �curves�to the data, what we are actually going to do is attempt to �t a straight
line to the data. This is where the term �linear�comes into play in our analysis. In some cases, attempting
to �t a straight line through the data may not be the best option. Looking at X and Y above, it seems that
a straight line might yield a good approximation of the relationship between X and Y, but it does not look
like a straight line (we are only going to try to �t one line to ALL of the data points) will yield a very good
approximation of the relationship between V and Z. You should be aware that sometimes a linear approach
is NOT the best approach to approximating the relationship between two variables �however, we will focus
on linear regression techniques.

1.1 What line to �t?

We can attempt to �t an in�nite number of lines through the X and Y data. We could connect the lowest
point (5,11) and the highest point (26,17). We could try to draw a line in by hand that looks like it will
�t and then try to measure the slope and intercept by hand. However, the method that we will use is the
least squares method. We use the least squares method to �nd the line of best �t. The line of best �t is
de�ned as the line which minimizes the sum of the squared (vertical) deviations of the points of the graph
from the points of the straight line that we choose. So what we do is draw a line through the data, measure
how far the data point is vertically from the line (that is the deviation), and square that value (that is the
squared deviation). We do this for each data point and then sum the squared values. This gives us our
�sum of squared deviations�. What we would then do is draw a di¤erent line through the data and �nd the
sum of the squared deviations of that line � if the sum of squared deviations of the second line was lower
than the sum of the squared deviations of the �rst line, then the second line would be a better �t than the
�rst line. Of course, we could draw a third line and repeat the process and see if it has a lower sum of
squared deviations than the second line. Hopefully you get the idea.

1.2 Why use least squares?

We could use other methods of trying to �nd the line of best �t. Two possible alternative criteria are using
the sum of the deviation values themselves (NOT squaring them) and using the sum of absolute value of the
deviations. When using the sum of the deviations we would want to try to get the sum as close to zero as
possible. One reason that we do NOT want to use the sum of the deviations without squaring them has
to do with the following example. Suppose we have two data points. The X value of both data points is
10. The Y value of the �rst data point is 17 and the Y value of the second data point is 7. Clearly, the
line that best approximates this relationship is a vertical line at X = 5. However, ANY line that passes
through the point (5,12) will have a sum of deviations equal to zero, because one data point will be 5 units
above the line and the other will be 5 units below the line. Thus it may be possible to �nd a line that has
a sum of deviations equal to zero that does not give a good approximation of the data. As has also been
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suggested, we could try to minimize the sum of the absolute value of the deviations, as this would eliminate
the problem of having two data points cancel each other out (since we are summing only positive values).
There are two reasons we do not use absolute value. The �rst is that using the sum of the absolute value
of the deviations puts less weight on a data point that is very, very far away from the line than the least
squares method does while it puts more weight than least squares on data points that are fairly close to the
line. The second reason that we use the least squares method rather than the absolute value method is
mathematical. For those of you that have had calculus, whenever you see �minimize�or �maximize�you
should think derivative. If you recall what the absolute value function looks like, it has a kink in it (it is not
smooth), which makes it nondi¤erentiable, which makes it a mess to work with. The least squares method
also has the added bonus in that it permits statistical testing of the estimates of the slope and intercept that
we will obtain.

2 The Linear Regression Model

After we have looked at our data, we need to propose a model. As I have mentioned, we will work with
LINEAR models in this class. Most of our models will look like:

Y = �0 + �1X

Notice that when we write down our model, we put Y on the left-hand side and X on the right-hand side.
We have, in e¤ect, decided that X has an in�uence on Y. We call X (or, more generally, the right-hand side
variable) the independent variable because we are assuming it is NOT in�uenced by anything. We call Y
the dependent variable because we are assuming that X helps determine Y.

I will not hold you all responsible for knowing the derivation of least squares estimates, but it might
provide some of you with some insight so I have provided a link ?? .1 Keep in mind those are only the
estimates for a simple model �the expressions for models with more than a constant and a single independent
variable are much more involved (it�s easier to use matrix algebra to represent those estimates).

2.1 The General Linear Model

When we talk about the LINEAR regression model, we are talking about a model that is linear in the
parameters (the parameters are �0; �1; �2;:::). There are models which are linear in the parameters that
can test NONLINEAR relationships between X and Y. Consider the following 3 models:

1. Y = �0 + �2X1 + �2(X1)
2 + "

2. Y = 
0 + 
1 ln(X2) + "

3. ln(Y ) = �0 + �1 ln(X2) + "

Model 1 is linear in the parameters (the ��s) but suggests a nonlinear (speci�cally parabolic) relationship
between X and Y. The equation that we might normally think of is Y = aX2 + bX + c. Model 2 also
suggests a nonlinear relationship between X2 and Y . For those of you unfamiliar with (or who may have
forgotten) the natural log function, the graph of Y = ln(X) is:

1 In the derivation of the least squares estimates the parameter �0 is represented as �, and the parameter �1 is represented
as �.
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This function is a nonlinear function of X. Model 3 can be shown to be a transformation of: Y =
!1(X2)

!2". This function looks similar to production functions that we will discuss in chapter 7. If we
take logs of both sides we get model 3 above. Some other models are:

� Exponential model: ln(Y ) = �0 + �1X1 + �2X2 + "

� Reciprocal model: 1
Y = �0 + �1X1 + �2X2 + "

� Interaction model: Y = �0 + �1X1 + �2X2 + �3(X1X2) + "

Again, all of the above models are linear in the parameters, though they may represent nonlinear rela-
tionships between Y and X. We can use multiple regression analysis to estimate the parameters for all of
these models. Throughout this chapter we will discuss interpretation of these parameters.

3 Interpreting Regression Results

When we have an estimated coe¢ cient we will denote it as b� (read as "beta hat"). Consider our basic linear
regression model Y = �0 + �1X + ". For the slope coe¢ cient, c�1, it means that if X increases by one unit,
then Y will increase (or decrease if c�1 is negative) by c�1 units. If c�1 = �1:9, then this means that a one
unit increase in X will cause a 1.9 unit decrease in Y .
For c�0, think about what the intercept tells you in an equation of a line. It tells you what Y will equal if

X = 0. There are two notes about the statistical signi�cance of the intercept that you should be aware of.
Even if the intercept is NOT statistically signi�cant, we need to have the intercept in the regression equation,
otherwise we will be forcing our regression line through the origin, which may not be very accurate. It is
more important to have the freedom that the intercept provides than it is too worry about its signi�cance.
The second note about the intercept is that even if it IS statistically signi�cant, it may not mean much to us
if we do not have a lot of Xs that are close to zero. This last note is important: the intercept is assuming
that X = 0. If we do not have a lot of observations in which X = 0, then it will be di¢ cult for us to make
any real claims about the economic importance of the intercept. We will discuss the interpretation of the
intercept with some of the sample data sets we have in class.

3.1 Coe¢ cient Estimates for Multiple Regression

Now suppose we have a model like Y = �0 + �1X1 + �2X2 + ". The interpretation of the estimated
intercept coe¢ cient, c�0, is still the same, only now we are assuming both X1 and X2 are equal to zero. The
interpretation of the estimated slope coe¢ cients, c�1 and c�2, are a little more complicated now. Now, whilec�1 still tells us the change in Y given a one-unit change in X1, we also have other variables in the model.
In this case c�1 tells us the change in Y given a one-unit change in X1, holding X2 constant. That last part
is key, and it will sometimes lead to confusion when signs do not match up with hypothesized directions.
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Example using housing data I have a dataset provided by a former professor at FSU, Tim Sass, that
has information on 980 houses sold in Santa Clara county in 1987. We can estimate two basic models to
begin:

SalesPricei = �0 + �1LivingAreai + "i

SalesPricei = �0 + �1Bedroomsi + "i

I am using di¤erent parameters (� and �) for the di¤erent models for clarity. Shortly we will discuss the
mechanics of estimating the regression models using Excel and Stata, but for now I will just produce the
results. Before viewing the results, we should hypothesize about the direction of the slope coe¢ cients. I
believe that both living area (which is measured in square feet) and number of bedrooms (which is simply
a count of bedrooms) should be positively related to the price of a house, so that both �1 and �1 will be
positive.
My estimation provides the following results:

�0 = 33903:48c�1 = 98:01

�0 = 162476:90

�1 = 7057:869

Now, both coe¢ cient estimates are positive, which is what we hypothesized. The coe¢ cient estimate
for living area (c�1) tells us that each additional square foot of living area yields an extra $98.01 in sales
price, while the estimated coe¢ cient for bedrooms (c�1) tells us that each additional bedroom provides an
additional $7057.87 in sales price. The magnitudes of the coe¢ cients are vastly di¤erent, but think about
how they are measured �houses might be 2000 or 3000 square feet, while number of bedrooms might reach
a maximum at 7 or 8 (maybe 9). The intercepts tell us that if a house has 0 square feet, then it will sell for
$33,903.48 (the estimated coe¢ cient c�0), while if a house has zero bedrooms it will sell for $162,476.90 (the
estimated coe¢ cient c�0). Neither of those is very reasonable, because the mean living area is 1555 square
feet (the minimum is 544), and the mean number of bedrooms is 3.38 (the minimum is 1 �it turns out the
maximum number of bedrooms in this data set is 30, which is almost certainly a typo because the house is
is only 892 square feet; rule number 1, know your data).
Now, suppose we had the following model:

SalesPricei = �0 + �1LivingAreai + �2Bedroomsi + "i

What might we hypothesize the sign of �1 and �2 would be, based on both intuition and our prior estimation
results? It seems both should be positive, right? The estimated coe¢ cients are:

c�0 = 49360:50c�1 = 105:00c�2 = �7778:45

These results seem a bit odd �the intercept is positive, the coe¢ cient for square feet of living area is positive,
but the coe¢ cient for number of bedrooms is negative.2 How do we explain these results? Is it a bad draw of
data? It should not be because we saw "reasonable" results for the single variable regression model. Think
about what the c�2 coe¢ cient tells us �this coe¢ cient represents the e¤ect of adding one more bedroom,
but now we are HOLDING LIVING AREA CONSTANT. What does this mean? It means that the house
will have smaller bedrooms, which is typically viewed as a negative.

2Some might think the data point with 30 bedrooms is causing problems with the estimation. While it likely is, a huge
bene�t of using statistical packages other than Excel is that observations can be easily removed using various commands.
Removing all observations with more than 19 bedrooms (which is only the single observation with 30 bedrooms), the estimated
coe¢ cients are c�0 = 80371:65, c�1 = 123:4665, and c�2 = �25637:91. While the coe¢ cient estimates change, the signs do not.
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4 Statistical Testing

An additional bene�t of multiple regression analysis is that it allows us to perform statistical tests on our
estimated coe¢ cients. With the housing data, c�1 = 105:00, but is that estimate statistically di¤erent
than zero? The same could be asked of c�2, even though it is a much larger (in absolute terms) number
(�7778:45). In this section we will discuss various statistical tests that can be performed on individual
coe¢ cients, multiple coe¢ cients, and the entire regression. What we will do is discuss the tests and their
meanings �for a more detailed discussion of statistics see the statistics review ?? . Again, I am not going
to hold you responsible for the statistics review on any exams, but for those of you who really want to know
why we are using certain tests the information is there.

4.1 Testing Individual Coe¢ cient Estimates

When we obtain our estimates for �̂1; �̂2 and �̂3, we do not know how reliable the estimates are, so we need
to perform some statistical tests. We can show that:

�̂1 � �1
s�̂1

~tN�k

�̂2 � �2
s�̂2

~tN�k

�̂3 � �3
s�̂3

~tN�k

where �̂1; �̂2 and �̂3 are our coe¢ cient estimates; �1; �2 and �3 are our null hypotheses; s�̂1 ; s�̂2 and s�̂3
are the standard errors of �̂1; �̂2 and �̂3; and k is the number of independent variables, INCLUDING the
constant (intercept) term. In this model, Wagei = �1 + �2Tenurei + �3Agei + "i, we would have k = 3.
We can then construct hypotheses about our estimated coe¢ cients. Typically we will want to test the
hypothesis that the estimated coe¢ cient is equal to zero, so essentially all we would have to do to calculate
the test statistics is take the ratio of the coe¢ cient estimate to the standard error of the coe¢ cient (we have
not really discussed how to calculate this but it is the standard deviation of the sampling distribution of a
statistic, or an estimate of the standard deviation). HOWEVER, there are times when we want to test a
hypothesis other than the estimated coe¢ cient equals zero. In particular, there are times when we want to
know if a slope coe¢ cient is equal to 1. In these cases, you need to use the formulas above to calculate the
test statistics.
Basic steps for hypothesis testing:

1. Set up the null and alternative hypotheses.

2. Construct your test statistic (remember to take the absolute value for a two-tailed test)

3. Pick a signi�cance level

4. Look up the critical value in the table �remember how to count your degrees of freedom (N � k)

5. Reject or fail to reject the null hypothesis

We can use some shortcuts to testing hypotheses. Remember that the table for the t-distribution jumps
from 120 degrees of freedom to 1 degrees of freedom. When we have 1 degrees of freedom (meaning more
than 120), we can use the critical values for the normal distribution, which are 1.96 and 2.57 for the 5%
signi�cance level and the 1% signi�cance level, respectively. If the absolute value of our test statistic is
greater than 1.96, we can say the estimate is signi�cant at the 5% level. If the absolute value of our test
statistic is greater than 2.57, we can say the estimate is signi�cant at the 1% level. While the shortcut
method is useful for large data sets, we will need to know how to count degrees of freedom for small data
sets. A huge bene�t of using statistical software packages (other than Excel) is that the t-statistics for the
hypothesis that the coe¢ cient estimate is equal to zero are reported for you, as are the p-values (which are
the exact level of signi�cance).
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4.1.1 One-tailed vs. two-tailed tests

For a two-tailed test we are testing whether or not the coe¢ cient is signi�cantly di¤erent than the hypoth-
esized value. Thus, the coe¢ cient can either be greater or less than the hypothesized value. In general,
these are the types of statistical tests that we conduct.
At times, a one-tailed test may be useful. In these situations we are testing whether or not the estimated

coe¢ cient is speci�cally greater than (or speci�cally less than) the hypothesized value. The most common
reason for conducting this test is to determine if an estimated coe¢ cient is positive (greater than zero) or
negative (less than zero). What this means is that our region of rejection is in a single tail of the distribution,
and not both tails of the distribution.

4.2 Goodness of Fit/Regression Signi�cance

We will discuss a few measures of goodness of �t. All we mean by "goodness of �t" is how well the model
does in estimating the dependent variable.

4.2.1 R2 and Corrected R2 (or �R2)

We can measure how well the regression line �ts by looking at the residuals that are generated. Recall that
the residuals tell how much the actual Y di¤ers from the predicted Y . If the residuals are small, then the
regression line is a good �t. If the residuals are large, then the regression line is not as good of a �t. Here�s
the problem with just looking at the residuals:
Suppose you have residuals that are in the hundreds of dollars. Is this residual small or large? If your

dependent variable is measured in millions of dollars they might be small, but if the dependent variable is
measured in thousands of dollars then they might be large. So just looking at the residuals will not tell
you much because their �largeness�or �smallness�will depend on the units that the dependent variable is
measured in.
In order to �nd a scale-free measure of goodness of �t, we divide the variation in Y into two parts, the

explained variation and the unexplained variation. The variation in Y is given by:

NX
i=1

(Yi � �Y )2

This is known as the total sum of squares, or TSS, or Total Variation in Y. We can show that this can
be decomposed into the residual sum of squares or error sum of squares (ESS), which is the portion of the
variation in Y that is UNEXPLAINED by the model, and the regression sum of squares (RSS) which is the
portion of variation of Y that is explained by the model.

NX
i=1

(Yi � �Y )2 =
NX
i=1

(Yi � Ŷi)2 +
NX
i=1

(Ŷi � �Y )2

The �rst term on the left side of the equation is the ESS, and the second term is the RSS. Note that if

ALL of the variation in Y was explained by the model, then we would have
NP
i=1

(Yi � �Y )2 =
NP
i=1

(Ŷi � �Y )2, or

perfect prediction.3

Now, we have an equation that breaks the variation in Y into explained and unexplained portion. What
we need to do to get rid of the units of measurement (remember that is our goal) is to normalize the variation.

3****IMPORTANT NOTE**** You may see the acronyms ESS and RSS in other sources used in a di¤erent way. As I
have de�ned it, ESS is the error sum of squares. But notice that the error sum of squares is also called the Residual variation.
Also, as I have de�ned RSS it is the regression sum of squares. But notice that the regression sum of squares is also called
the Explained variation. Notice that I�ve capitalized and bold-faced the R and E. Other sources de�ne RSS as the residual
sum of squares and ESS as the explained sum of squares. Notice that this is the exact opposite of how I have de�ned them.
The point is, if you look at another source and they are talking about the RSS, make sure that they have de�ned RSS as the
regression sum of squares and NOT the residual sum of squares.
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We do this by dividing through by the TSS. So we have our equation as:

NX
i=1

(Yi � �Y )2 =
NX
i=1

(Yi � Ŷi)2 +
NX
i=1

(Ŷi � �Y )2

TSS = ESS +RSS

Now, divide through by TSS to get:

1 =
ESS

TSS
+
RSS

TSS

De�ne R2 as RSS
TSS .

R2 tells us how much of the variation in Y is explained by the regression model that we have estimated.
It is unit-free and it will lie between 0 and 1. An R2 = 1 tells us that ALL of the variation in Y is explained.
An R2 = 0 tells us that NONE of the variation in Y is explained. Generally, if R2 is large (close to 1) we
say that the model does well in explaining the variation in the dependent variable. If R2 is small (close
to 0) we say that the model does not do well in explaining the variation in the dependent variable. These
are just general rules of thumb however. If the model uses time-series data, it is likely that the model will
have a high R2. Why? Because with time-series data most of the variables trend upward over time, so one
variable typically �explains� a lot of the variation in the other just because they both increase over time.
So R2 may not be the best measure to use to check how well the model does when using time-series data.
One other problem with R2 is that the regression equation itself may not be signi�cant. We will discuss
this concept shortly.
Should our goal be to maximize R2? While this seems like an appropriate goal, consider the following.
We draw a sample of the dependent variable, Y . The sample that we draw has a speci�c numerical

value for its total variation (or total sum of squares). So let the total sum of squares of our sample of Y
be TSSY . We know we can break TSSY into the portion of the variation explained by the model and
the portion of the variation that is not explained by the model. Suppose TSSY = 100. We estimate a
regression model with one independent variable, X1. We �nd that the RSS of the model is equal to 20 with
just the X1 variable. In this simple model, R2 = :2. Now, suppose we want to add another independent
variable to our model, X2. Suppose that X2 has very little to do with Y . The question is, will the new
model Y = �1 + �2X1 + �3X2 + ", explain LESS than the old model, Y = �1 + �2X1 + "? The answer
is no. The new model will explain at least 20% of the variation in Y , due to the fact that X1 is included
in the model. If X2 has ZERO e¤ect on Y , then it will explain ZERO of the variation in Y , which means
that we will still only be explaining 20% of the model. We can never explain less of the variation in Y by
adding more independent variables. So if our goal was to maximize R2, then we would use what is called
the �kitchen sink approach�. The kitchen sink approach means we throw in every single variable that we
can �nd and this will maximize R2 because adding additional regressors to the model can NEVER lower the
amount of explained variation in the model, and is likely to increase it (at least minimally).
Because R2 can never decrease when we add additional regressors, we need a method of adjusting our

�goodness of �t� when we are using multiple regression models. The statistic that we will use is called

corrected R2 or �R2. We de�ne �R2 as: �R2 = 1� V̂ ar(")

V̂ ar(Y )
, where V̂ ar(") is the estimated error variance and

V̂ ar(Y ) is the estimated variance of Y . Notice that this looks very similar to our de�nition of R2. Recall
that R2 = RSS

TSS = 1 �
ESS
TSS . We can show that R2 is related to �R2, but we will not get into those details.

We have a simple formula for computing �R2 that uses just the R2 from the regression model, the number of
observations, and the number of regressors:

�R2 = R2 �
�
k � 1
n� k

��
1�R2

�
Note the following:

1. If k = 1, R2 = �R2 (this is easy to see)

2. If k > 1, R2 � �R2 (this is a little more di¢ cult to see)

3. �R2 can be negative (also a little more di¢ cult to see)
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Again, we will not go into all the details. The main idea is that by adding unimportant regressors, �R2

gets penalized more heavily. In other words, suppose you had two regression models for sales price of a
home. In one regression model you included living area in square feet and the lot size that the home was on.
Both of those likely in�uence the sales price of the home. Now suppose the second model had living area
in square feet and the length of the hair of the purchaser (I�m trying to guess at something that we would
think is ridiculous in determining home price). The penalty for including the hair length variable (assuming
there is no relationship between hair length and sales price) would be greater than that of including lot size
(assuming that lot size is important in determining sales price). I will say the same thing over and over:
most statistical packages (other than Excel) report �R2 so that you do not have to calculate it manually.

Final note on R2 We can only use R2 to compare models that have the exact same independent variable.
That is, suppose we had 2 models, where one model used Y as the independent variable and the other model
used lnY . Although it seems like we are using the same variable (after all, lnY is just a transformation of
Y ), the models will have di¤erent total sums of squares and will NOT be comparable.

4.2.2 F-tests

We would like to know if the regression model is statistically signi�cant. We can perform a statistical test
to answer this question. Formally, we are testing:
H0 : �2 = �3 = �4 = ::: = �k = 0
HA : At least one � 6= 0
Note that we do not include the intercept in our null hypothesis, meaning that we are testing to see if

k�1 coe¢ cients are equal to zero. What we wish to test is that all the regression coe¢ cients are JOINTLY
equal to zero. This is di¤erent than looking at each parameter estimate and seeing if it is (individually)
di¤erent than zero, so we need a di¤erent statistical test than the t-test. The primary reason for this test
might be called "I don�t like my t-statistics." What I mean by that is that you may estimate a regression
model and see that many (or all) of your estimated coe¢ cients are individually INsigni�cant. However, this
result does not mean the regression model is useless, as the independent variables may be jointly signi�cant
(which likely means that you have multicolinearity in your model).
The statistical test that we use is an F -test. We calculate our F -statistic as:

RSS
k�1
ESS
N�k

~Fk�1;N�k

Alternatively, we could write:
R2

k�1
1�R2

N�k
~Fk�1;N�k

You should convince yourself that you will obtain the same F -statistic regardless of which formula you
use to calculate it.
Why do we use the F -distribution? We can show that our F -statistic is the ratio of 2 independent �2

random variables to their respective degrees of freedom.
To �nish the test you just need to look up the critical value in the table in the back of the book. If

your F -statistic is greater than the critical value then you reject the null hypothesis. As for choosing a
signi�cance level, realize that there are only tables in the back of the book for the 1% and 5% levels, so those
are the only 2 signi�cance levels you can test at unless you want to �nd tables for the other signi�cance
levels. Once again, if the F -statistic that you calculated was greater than the critical value, you reject the
null hypothesis and conclude that at least one � is signi�cant at the chosen signi�cance level. Again, most
packages (other than Excel) will give you the exact level of signi�cance for this F -test.

Other F-tests Note that the F-test described above is simply a special case in which we are testing that
all regressors are jointly equal to zero. However, we can also conduct F-tests to determine if a subset of
regressors is jointly signi�cant.
Suppose we wanted to include only independent variables that were signi�cant at the 5% level in our

regression model. One possible method of eliminating insigni�cant independent variables would be to remove
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any variables that had a t-value less than 1.96 (or a p-value greater than .05) from the model. However,
there is a chance that two variables are insigni�cant individually but are JOINTLY signi�cant. To make
sure that we are not dropping variables that are jointly signi�cant from our regression equation, we must
perform a test of joint signi�cance.
Suppose we have the following model:

Y = �1 + �2X2 + �3X3 + :::+ �kXk + "

We will call this the UNRESTRICTED model. The reason we will call this the unrestricted model is
because we are not restricting any of our ��s to be zero. We are estimating all of them. From this model
we need to other write down what the ESSUR (that is the error sum of squares, unrestricted) is or what the
R2UR (the unrestricted R

2) is.
Now, suppose we want to test that q ��s are JOINTLY insigni�cant. We then need to run the RE-

STRICTED model:
Y = �1 + �2X2 + �3X3 + :::+ �k�qXk�q + "

Note that in the restricted model we are only estimating (k � q) coe¢ cients, while in the unrestricted
model we are estimating k coe¢ cients. From the restricted model we need to know the ESSR (the error
sum of squares for the restricted model) or the R2R (the restricted R

2). We also need to know q, which is the
number of restrictions. The reason this is the number of restrictions is because we have forced q coe¢ cients
to equal zero in the restricted model (by NOT including those independent variables and their coe¢ cients
we have imposed that each of those coe¢ cients equals zero). The test statistic is as follows:

(ESSR � ESSUR) =q
ESSUR=(n� k)

~Fq;n�k

An alternative test statistic, using R2, is: �
R2UR �R2R

�
=q

(1�R2UR)=(n� k)
~Fq;n�k

If our test statistic is greater than the critical value we reject the null �this means that at least one of
the coe¢ cients is signi�cantly di¤erent than zero.
What is the intuition behind this test? Focus on ESSR � ESSUR. First, note that ESSR � ESSUR,

and so ESSR � ESSUR � 0. Why? Recall that when we add independent variables to our regression
model that the RSS (regression sum of squares or explained variation) will NEVER decrease. This means
that the error sum of squares from the restricted model must be at least as big as the error sum of squares
from the unrestricted model. Suppose that the independent variables we add to the restricted model add
NOTHING to the regression sum of squares. Then, ESSR = ESSUR and ESSR�ESSUR = 0. Intuitively,
if neither of these variables adds anything to the regression sum of squares then they should be meaningless
in explaining our dependent variable. This gets at the very point of the test. If ESSR � ESSUR is very
low then we will most likely be failing to reject the null hypothesis; if ESSR�ESSUR is large, than a larger
portion of the variation in the dependent variable is explained by the additional independent variables added
in the unrestricted model, and we should reject the null hypothesis.
Again, the F-test for the signi�cance of the regression is just a special case of the general F-test. In

testing the signi�cance of the regression, we just have q = k� 1 because we are imposing that all coe¢ cients
are equal to zero, and R2R = 0 because there are no independent variables, so we are not explaining any of
the variation in the dependent variable.

5 Dummy (or binary) Independent Variables

This section is not covered in the text but (1) it is fairly easy to understand and (2) could be quite useful.
Up until now we have focused strictly on using quantitative variables (price, number of bedrooms, square

feet of �oor space, etc.) as independent variables. While we will continue to use ONLY quantitative variables
for the dependent variables (using qualitative variables as dependent variables involves methods we will not
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cover in this class), we would like to be able to incorporate qualitative variables as independent variables.
A qualitative variable is a variable that has no direct analog numerically. For example, in a regression to
determine the impact of various factors on the sales price of a home, whether or not the home comes with
a swimming pool impact the sales price, even controlling for all other factors. The question is how do we
incorporate this knowledge about a swimming pool without having any quantitative measure of the pool (for
instance, how large it is)?
We will consider a di¤erent set of data, using individual wages, for our discussion of dummy variables.

Some important factors that impact an individual�s wage might be age, years employed at current job, years
of schooling, years of work experience in the �eld, and gender. Most of these variables are quantitative, but
how do we incorporate a qualitative variable such as gender? Suppose our spreadsheet looks like:

wage age tenure school experience gender
12.42 41 5 13 22 male
6.50 24 0 16 2 male
15.00 37 12 17 14 female
9.87 56 35 9 41 female
etc.
We want our regression model to be:

wage = �0 + �1age+ �2tenure+ �3school + �4experience+ �5gender + "

There is a slight problem. When we calculate our regression coe¢ cients we have some formulas. Consider
the intercept, �0 = �Y � �1 �X1 � �2 �X2 � �3 �X3 � �4 �X4 � �5 �X5. This formula will work �ne until we get
to �X6. What is the mean of a column that consists of the words male and female? It doesn�t exist. So
we need to transform our qualitative variable into a quantitative variable. To do this transformation we
create what are known as dummy variables. A dummy variable for gender (also called a binary variable)
is just a variable that takes on the value 1 for one category and 0 for the other category (it could be 1 if
gender is male and 0 if gender is female, or we could make our dummy variable 1 if gender is female and 0 if
gender is male �it will not matter for purposes of the overall �t of the model, but the numerical sign of the
dummy variable will change in a very predictable fashion). Once this transformation is complete we can
then estimate our model.
So what will dummy variables do? Suppose we have a very simple model, Y = �1+�2X2+ ", where X2

is a dummy variable. What is the expected value of the dependent variable (Y ) if X2 = 1? It is �1 + �2.
And if X2 = 0, then the expected value of Y is just �1. Thus a dummy variable acts as an intercept shifter.
If the dummy variable takes on the value of 1, the intercept will become �1 + �2. If the dummy variable
takes on the value of 0, the intercept is just �1. When we add more independent variables the dummy
variable performs the same function � it simply shifts the intercept depending on whether the qualitative
variable is classi�ed as a 1 or a 0.

5.1 Dummy variable trap

The dummy variable trap occurs when you add a dummy variable for EACH of the values a qualitative
variable can have. Suppose you wished to estimate a model that included a dummy variable for male (=1
if the observation is male, 0 otherwise) as well as a dummy variable for female (=1 if the observations is
female, 0 otherwise). In this case you will have fallen into the dummy variable trap (assuming that the data
on gender contain only male and female values) by causing PERFECT colinearity among your variables.4

Suppose your model is: Y = �1 + �2X2 + �3X3 + ", where X2 is a dummy variable for male and X3 is a
dummy variable for female. If we were to look at your spreadsheet of data it would look like:

wage age tenure school exp gender male female constant
12.42 41 5 13 22 male 1 0 1
6.50 24 0 16 2 male 1 0 1
15.00 37 12 17 14 female 0 1 1
9.87 56 35 9 41 female 0 1 1

4Technically the estimation of regression coe¢ cients involves inverting a matrix. With perfect colinearity, the matrix is
not full column rank (there is some perfect linear relationship between two or more independent variables), and is thus not
invertible. Many statistical packages won�t let you estimate a model with perfect colinearity, and instead will choose a variable
to omit for you (if you included both a male and female dummy variable it would exclude one of those).
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etc.
Notice that I have included the column for the constant term. The constant term is just a column of

ones (although it could be twos or threes). If we add together the rows for male dummy and female dummy
at each observation we get a column of ones, which is exactly the same as the column of ones in the constant
column. This is perfect colinearity �the three variables (male dummy, female dummy, and constant) form
a PERFECT linear relationship. Even if we change the constant term to a column of twos it is STILL a
perfect linear relationship because now constant=2*(male dummy + female dummy). So we have a decision
to make �do we drop the constant term, the male dummy, or the female dummy? There are reasons (we
will not go into the details, but mainly it has to do with calculating R2) that we do not want to drop the
constant term. That narrows our choice down to the male dummy and the female dummy �how will we
decide? It doesn�t matter. Our results will be the �same�. Well, not EXACTLY the same, but very close.
See the section on interpreting dummy variables that follows.

5.2 Interpreting dummy variables

Again, suppose you are concerned with including either the male dummy variable or the female dummy
variable. Also suppose your two competing models will be:

Model 1 : wage = �1 + �2tenure+ �3male+ "

Model 2 : wage = 
1 + �2tenure+ 
3female+ "

First, if it is true that all of your �gender�observations are male and female, then your coe¢ cient on tenure
(�2) will remain unchanged. However, the intercepts (�1 and 
1) and the coe¢ cients on your dummy
variables (�3 and 
1) will change, but in a predictable fashion. The estimate that you get for �3 will be the
exact same as your estimate for 
3, except that it will have the OPPOSITE sign. The intercept in model
1 (�1) will be equal to the intercept in model 2 plus the coe¢ cient on female in model 2 (
1 + 
3). The
intercept in model 2 (
1) will be equal to the intercept in model 1 plus the coe¢ cient on male in model 1
(�1 + �3). So what do these coe¢ cients mean?
Model 1, intercept (�1): In model 1 the intercept tells us how much a FEMALE worker with zero tenure

will earn.
Model 1, coe¢ cient on male (�3): In model 1 this coe¢ cient tells us how much more (or less) a MALE

will earn when compared to a female with the same years of tenure. When compared to a female with zero
years of tenure, a male worker will earn the intercept PLUS the coe¢ cient on male.
Model 2, intercept (
1): In model 2 the intercept tells us how much a MALE worker with zero tenure

will earn.
Model 2, coe¢ cient on female (�3): In model 2 this coe¢ cient tells us how much more (or less) a FEMALE

will earn when compared to a male with the same years of tenure. When compared to a male with zero
years of tenure, a female worker will earn the intercept PLUS the coe¢ cient on female.
The main point is that the coe¢ cient on the dummy variable tells us how much more (or less) the people

with the characteristic captured by the dummy variable earn with respect to the group that has NOT been
included as a dummy variable.
Since we know that the models yield the same results, let�s look at the estimated regression equations

for MALE and FEMALE (based on our data set):
MALE: wage = 11:86 + 0:29tenure
FEMALE: wage = 8:68 + 0:29tenure
Graphically, our regression lines look like:
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where the top line is the regression line for MALE and the bottom line is the regression line for FEMALE.
Note that the Y-axis is in dollars and the X-axis is in years (because tenure is measured in years).
Suppose we had three groups of people, OLD, MIDDLE-AGED, and YOUNG. We could create three

dummy variables (one for each group) although we would only include TWO dummy variables in any
regression model that we want to estimate (to avoid perfect colinearity). Suppose we leave out the YOUNG.
Then the coe¢ cient on OLD will tell us how much more (or less) the OLD earn when compared to the
YOUNG. The coe¢ cient on MIDDLE-AGED will tell us how much more (or less) the MIDDLE-AGED
earn when compared to the YOUNG. How would we �nd out how much more (or less) the OLD make when
compared to the MIDDLE-AGED? We could run a separate regression where we leave out the OLD (then
they would be the reference group).

5.3 Other uses for dummy variables

There are a few other dummy variable models that we can use.

5.3.1 Dummy variables as interaction terms

We can also make dummy variables act as interaction terms. Suppose we have the following model:

wage = �1 + �2tenure+ �3(male � tenure) + ":
Now, if male = 1, the equation becomes: wage = �1 + �2tenure + �3(tenure) + " which is the same as
wage = �1 + (�2 + �3)tenure + ". So we are allowing the slope coe¢ cient to change. If male = 0, the
equation becomes: wage = �1 + �2tenure + ". So the slope coe¢ cient for males is equal to �2 + �3 while
the slope coe¢ cient for females is equal to �2.
The estimated regression equations using our data are:
MALE: wage = 10:33 + 0:4tenure
FEMALE: wage = 10:33 + 0:15tenure
These results suggest that the wages of males rise faster than the wages of females when tenure increases.

Graphically, our regression lines are:
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where the line with the steeper slope is the estimated regression line for males. Once again the Y-axis
is in dollars and the X-axis is in years.

5.3.2 Using dummy variables to allow the slope and intercept to change

We can also use dummy variables to allow the slope and intercept to change. Suppose we think that
both the slope and intercept is di¤erent for males and females. We can estimate the following equation:
wage = �1 + �2tenure+ �3male+ �4(male)(tenure) + ". What will the regression model be if male = 1?
It will be:

wage = �1 + �2tenure+ �3 + �4(tenure) + "

This simpli�es to:
wage = (�1 + �3) + (�2 + �4)tenure+ "

So the intercept for males becomes �1 + �3 and the slope becomes �2 + �4. For females, we have: wage =
�1 + �3tenure, so the intercept is �1 and the slope is �3.
The estimated regression equations are:
MALE: (9 + 2:60) + (0:25 + 0:77)tenure = 11:6 + 1: 02tenure
FEMALE: 9 + 0:25tenure
All coe¢ cients are statistically signi�cant, suggesting that both the slope and intercept of wages (based

on tenure) di¤er for males and females. If �3 was not statistically di¤erent than zero we could conclude
that the intercept for male and female wages is the same. If �4 was not statistically di¤erent than zero we
could conclude that the slope for male and female wages is the same. The plots of the regression lines are:
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where the MALE regression line has the steeper slope and higher intercept.
As mentioned, dummy variables are an easy way of allowing slope and intercept coe¢ cients to vary for

di¤erent groups. Also, they are easy to implement and interpret.
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