
Deriving the least squares estimates using summation operators. This information is provided for those
of you who wish to know more about the derivation of least squares estimates.

1 Finding the least squares estimates of � and �

Recall that we want to minimize the sum of squared deviations from our line. How do we write the sum of
squared deviations mathematically?

NX
i=1

(Yi � Ŷi)2

The Yi is just the actual data value for each Y . The Ŷi is our predicted value for Yi which is based on
the line we drew. The letter i is the index for our summation notation, and

P
tells us to some up all the

squared deviations from 1 to N , where N is the number of observations (data points) we have. Our goal is
to minimize this sum of squared deviations. Note that the lowest sum of squared deviations you can ever
have is zero since we are adding together numbers that must all either be positive (because we are squaring
numbers) or zero.

In order to minimize the sum of squared deviations
�
NP
i=1

(Yi � Ŷi)2
�
we �rst need to substitute in for Ŷi.

What can we substitute in for Ŷi? Since Ŷi is our predicted value of Yi, we know that Ŷi will be given to us
by the equation of our line. So Ŷi = �+ �Xi, where Xi is the X value that corresponds to the Y value. So
we substitute in �+ �Xi for Ŷi. We now have our sum of squared deviations as:

NX
i=1

(Yi � �� �Xi)2

Recall that to minimize a function we need to take the derivative and set it equal to zero. But just what
are we taking the derivative of? Well, we have two unknowns, � and �, that we are trying to estimate, so
we need to take the derivative of our function with respect to � and also with respect to �. So we need two
derivatives. Actually, we will take partial derivatives, which are denoted by @ rather than total derivatives,
which would be the normal dy=dx derivatives most people are probably used to. Partial derivatives are easy
to take �they just assume that other variables in the equation are constants. For example, if we take the
partial derivative of our sum of squared deviations with respect to �, we just treat � as if it were a constant.
So:

@

@�

NX
i=1

(Yi � �� �Xi)2 = �2
NX
i=1

(Yi � �� �Xi)

@

@�

NX
i=1

(Yi � �� �Xi)2 = �2
NX
i=1

Xi(Yi � �� �Xi)

Now, set both equations equal to zero, and solve for � and �:

�2
NX
i=1

(Yi � �� �Xi) = 0

�2
NX
i=1

Xi(Yi � �� �Xi) = 0
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I am not going through all of the math to solve for � and � so I will just skip to the answers:

� =
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N
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�2
Notice that � is written only in terms of Xi and Yi, so we can calculate � directly from the observed

data. As for �, notice that it includes a � in its solution as well as Xi and Yi. This is �ne because we
know that � only consists of Xi and Yi. We could plug in the formula for � into the formula for � so that
we would just have Xi and Yi in the formula for �, but this would lead to a very messy formula for �. We
can now obtain our least squares estimates for � and �, and �nd the estimated model.

You should now be able to compute the least squares estimates for a regression model with a constant and
one independent variable (but I do not suggest doing this by hand �computers are very good at crunching
numbers).
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