
These notes essentially correspond to chapter 4 of the text.

1 Consumer Choice

In this chapter we will build a model of consumer choice and discuss the conditions that need to be met for a
consumer to be making optimal decisions. We will begin with an overview of the restrictions that we place
on consumer preferences. Next we will discuss how these preferences are related to consumer utility. We
will then develop the concept of a budget constraint. Finally, we will show how to develop the conditions
that must be met for a consumer to be behaving optimally.

2 Consumer Preferences

The main presumption is that consumers get a certain bene�t or satisfaction (called utility in economics)
from consuming goods and services. The goal in this section is to determine the level of utility that each
bundle of goods and services gives a consumer. Although the analysis extends to more than 2 goods, we
will work with 2 goods for simplicity.

2.1 Properties of Consumer Preferences

There are 3 primary properties that we will deem necessary in order for our consumer preferences to be
rational. The properties are de�ned below. There may be some notation you are unfamiliar with, so I have
de�ned a few symbols.
% ��at least as good as�
� ��indi¤erent to�
� ��preferred to�

1. Completeness �this property says that consumers can rank their bundles such that, given 2 bundles
A and B

� A % B
� B % A
� A � B

Thus, one of these relationships must exist for every possible bundle. Note that if a consumer is
indi¤erent between bundles it means he receives the same level of utility for each bundle of goods.

2. Transitivity �given at least 3 bundles, A, B, and C, if

� A % B
� B % C

Then it must be the case that

� A % C

3. Nonsatiation (or, as it is more commonly called, more is better) �Suppose that bundle A consists
of two goods, good 1 and good 2. Let qA1 be the quantity of good 1 in bundle A and let qA2 be the
quantity of good 2 in bundle A. Suppose bundle B also consists of the same two goods, good 1 and
good 2. Let qB1 be the quantity of good 1 in bundle B and let q

B
2 be the quantity of good 2 in bundle

B. If qB1 > q
A
1 AND q

B
2 > q

A
2 , then B � A. Notice that the relationship between the quantities of the

goods is a greater than relationship (NOT greater than or equal to) and the relationship between the
bundles is a preferred to relationship (NOT an at least as good relationship). If a bundle has a larger
quantity of ALL goods than another bundle, then the bundle with the larger quantity is preferred to
the bundle with the smaller quantity. If the case were that bundle B had a larger quantity of good 1
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than bundle A but the exact same amount of good 2, then we would say that B % A. Thus, if one
bundle has more of one good but the exact same of the other goods then we say that the bundle with
more of the one good can be no worse than the bundle with the lesser amounts of goods.

We will say that all consumers will have preferences that satisfy these 3 properties. You should note
that our analysis still holds if we do NOT have the more is better property. The more is better property is
used for two reasons. First, it seems a reasonable assumption to make that if you have more of all goods
that you will be better o¤ in the sense of having a higher utility level. Second, it makes the analysis a little
more tractable.

2.2 Graphing consumer preferences

In this section we will use a graph to aid in our analysis of consumer preferences. We will focus on the
positive quadrant of the Cartesian plane, as we will assume that you cannot consume negative quantities of
goods. The axes of the graph will be labelled good 1 and good 2. Thus, each point (or ordered pair) on
the graph will represent a bundle of goods consisting of an amount of good 1 and good 2 corresponding to
that point. Below is a graph with 6 bundles distinctly labelled A�F.

Note that bundle A is given by the intersection of the 2 dotted lines, and it corresponds to a quantity of
9 of good 1 and 12 of good 2, or the ordered pair (12; 9). You will also note that each section of the graph
has been labelled as northeast (NE), northwest (NW), southwest (SW), or southeast (SE). These labels are
in relation to point A in the graph.1

NE corner Now, suppose that we want to compare bundle B and bundle A based on our properties of
consumer preferences. Notice that bundle B has more of both goods than bundle A. By the more is better
property, it must be the case that B � A. In fact, any bundle in the NE corner of the graph is preferred to
bundle A, as all of those bundles have more of both goods than bundle A.

SW corner Now, let�s compare bundle D and bundle A. Since bundle A has more of both goods than
bundle D, by the more is better property we know A � D. Notice that bundle A has more of both goods
than any bundle in the SW corner, which means that bundle A is preferred to any bundle in the SW corner.

1Another way to think about it is to create a new Cartesian plane with point A is the new origin. Then the NE corner is
quadrant I, the NW corner is quadrant II, the SW corner is quadrant III, and the SE corner is quadrant IV.
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NW and SE corners Notice that bundles in the NE corner (like bundle C) have more of good 1 than
bundle A, but less of good 2. Also, bundles in the SE corner (like bundles E and F) have more of good 2
than bundle A, but less than good 1. This means we cannot use the more is better principle to determine
which bundles in these corners are preferred to bundle A. Thus, the preference relation between bundles
in the SE and NW corners and bundle A are determined by how much a particular consumer likes good 1
and good 2. We will use the concept of an indi¤erence curve to determine the preference ordering of these
bundles.

2.2.1 Indi¤erence curves

An indi¤erence curve is a plot of all the bundles that give the consumer the same level of utility (hence
the name indi¤erence curve, meaning that the consumer is indi¤erent between the bundles along the curve).
Consumers have an in�nite amount of indi¤erence curves �if we were to plot all of the consumer�s indi¤erence
curve we would get their indi¤erence map. The plot below shows 3 indi¤erence curves for this consumer.
The curve through point B is labelled I3. The curve through points C, A, and F is labelled I2. The curve
through points D and E is labelled I1. Since C, A, and F are all on the same indi¤erence curve, the consumer
receives the same amount of utility from each bundle. Below the picture are some rules for indi¤erence
curves.

Rules for indi¤erence curves:

1. Bundles on indi¤erence curves farther from the origin are preferred to those closer.

This means that the consumer would prefer to be on I3 rather than on I2, and would prefer to be on
I2 rather than I1. Using the more is better principle we can see that this makes sense. The consumer
prefers bundle B to bundle A, so he must have a higher utility at bundle B than he does at bundle
A. Thus, all points along the indi¤erence curve that pass through bundle B must give a higher utility
level than those that are on the indi¤erence curve that pass through bundle A. So I3 is preferred to
I2. A similar argument can be constructed for the relationship between I2 and I1.

2. There is one and only one indi¤erence curve that passes through each point.

If there was more than one indi¤erence curve that passes through any point, then the consumer would
be saying that a bundle gives him a utility level of 12 (from the �rst indi¤erence curve passing through
the point) as well as a utility level of 10 (from the second indi¤erence curve passing through the same
point). Hopefully, it is obvious that this does not make any sense.
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3. Indi¤erence curves may not cross.

For starters, if they crossed then rule 2 above would be violated. You can also show that transitivity
is violated by indi¤erence curves that cross.

4. ***Indi¤erence curves are downward sloping.***

I have marked this rule because we have seen examples of indi¤erence curves that are not exactly
downward sloping. If the two goods are perfect complements, or if the consumer gets zero utility
from consuming one of the goods, then the indi¤erence curves will consist of perfectly vertical lines,
perfectly horizontal lines, or a combination of the two (meaning that they are L-shaped). See the
section below on special cases of indi¤erence curves.

2.2.2 Special cases of indi¤erence curves

We will look at 4 special cases of indi¤erence curves. The case where the consumer receives no utility from
good 1, the case where the consumer receives no utility from good 2, the case where the goods are perfect
complements, and the case where the goods are perfect substitutes.

No Utility from good 1 Suppose that the consumer receives no utility from good 1. In this case, the
consumer can only reach a higher level indi¤erence curve if he receives more of good 2. Since good 2 is
on the x-axis, the indi¤erence curves for these two goods will be perfectly vertical lines. As the consumer
receives more of good 2 he moves to a higher indi¤erence curve, which is an indi¤erence curve to the right.

No Utility from good 2 Suppose that the consumer receives no utility from good 2. In this case, the
consumer can only reach a higher level indi¤erence curve if he receives more of good 1. Since good 1 is on
the y-axis, the indi¤erence curves for these two goods will be perfectly horizontal lines. As the consumer
receives more of good 1 he moves to a higher indi¤erence curve, which is an indi¤erence curve above the
original indi¤erence curve.

Perfect Complements If two goods must ALWAYS be consumed in the same quantities, then the two
goods are perfect complements. The classic example is left shoes and right shoes. Having 26 right shoes but
only 1 left shoe is not going to make you any better o¤ than if you simply had 1 right shoe and 1 left shoe.
However, the bundle of 26 right shoes and 1 left shoe has to be at least as good as the bundle of 1 right shoe
and 1 left shoe. This is due to the portion of the more is better principle that says that a consumer cannot
be any worse o¤ if a bundle of goods has strictly more of one good and the exact same amount of all other
goods. If we were to plot these indi¤erence curves they would be L-shaped.

Perfect Substitutes If the consumer is indi¤erent between which of the 2 goods he consumes then the
goods are perfect substitutes. The key is that the consumer will move to a higher indi¤erence curve if the
sum total of the 2 goods increases. It should be noted that the slope of the indi¤erence curve for 2 goods
that are perfect substitutes is (�1).

2.2.3 Slope of an indi¤erence curve

The Marginal Rate of Substitution (MRS) is de�ned as the maximum amount of one good a consumer will
give up to obtain one more unit of another good. Thus we want to �nd the amount of good A that a person
will give up in order to get one more unit of good B. Writing this mathematically (assuming good B is on
the x-axis and good A is on the y-axis), we have the MRS = ��QA

�QB
. Notice that this is just a formula

for a slope as we simply have a change in the quantity of good 1 divided by a change in the quantity of
good 2. Also notice that the MRS is negative since we must give up some of good 1 in order to get more
of good 2. On a technical note, since the indi¤erence curve is a curve and not a straight line, the slope of
the indi¤erence curve will change depending on the point at which we evaluate the slope. We will return to
this concept later in the chapter.
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3 Utility

We have discussed indi¤erence curves as running through bundles of goods that give the same level of utility.
We will now make the concept of utility more formal. We suppose that every consumer has a �utility
function�which allows him to take di¤erent bundles of goods and assign them levels of utility in such a
manner that does not violate the properties of consumer preferences described above. For instance, let
U (QA;QB) be the consumer�s utility function that determines the level of utility a consumer receives from
consuming di¤erent quantities of goods A and B. A particular utility function might be:

U (QA;QB) =
p
QA �QB

Now, for any bundle of goods A and B, we can calculate the utility level of the bundles. The table below
has a few di¤erent calculations.

QA QB U (QA;QB)
9 16 12
13 13 13
12 12 12
8 18 12
Assume that the quantities in the bundles are given � then to �nd the utility level just plug in the

quantities and calculate. You should notice that the bundles (9; 16), (12; 12), and (8; 18) would all lie on the
same indi¤erence curve because they all have a utility level of 12. However, the bundle (13; 13) would lie on
a higher indi¤erence curve because it has a utility level of 13. Note that this conforms to the more is better
property because the bundle (13; 13) has more of both goods than the bundle (12; 12) so the consumer must
prefer the bundle (13; 13).

3.1 Where indi¤erence curves come from

Indi¤erence curves can be derived directly from utility functions. In order to do this, however, we need to
use three-dimensions. Stand in the corner of a room, facing outward diagonally. Let the �oor along one
of the walls be the axis for the quantity of good A and let the �oor along the other wall be the axis for the
quantity of good B. The crease where the walls meet is the level of utility. We can now plot the utility
function since we have three dimensions. It would essentially look like a cave that starts from the origin and
keeps expanding outward. Alternatively, you could think about cutting a cone into two symmetric halves.
If you lay one half of the cone down it (almost) looks like what we would call a utility shell. The picture
below actually graphs the function U (QA;QB) =

p
QA �QB , although it is a little di¢ cult to see since it is

supposed to be 3-D.
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5 Utility

Now, suppose we pick a utility level, say 2.5, and make a nice even cut through the utility shell at 2.5.
If we lay the new (now smaller) utility shell directly on the ground and trace around the bottom of the shell
we will have our indi¤erence curve for utility level 2.5. If we were to do the same at every utility level, then
we would have the consumer�s indi¤erence map.
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3.2 Marginal Utility

An important concept in consumer theory is marginal utility. Recall that marginal means additional �as
in how much additional utility a person would get if he consumed one more unit of the good. We can de�ne
the marginal utility of good A as:

MUA =
�U

�QA

We can also de�ne the marginal utility of good B as:

MUB =
�U

�QB

An interesting relationship then results if we �nd the ratio of marginal utilities:

MUB
MUA

=

�U
�QB

�U
�QA

Or:

MUB
MUA

=
�QA
�QB

Note that both of these changes in quantities are in the positive direction. Recall that:

MRS =
��QA
�QB

Now, if we multiply MUB
MUA

by (�1), we will get:

MRS =
�MUB
MUA

Thus the Marginal Rate of Substitution is the negative of the ratio of marginal utilities of the goods.
This will prove useful when showing some results later.

4 Budget Constraints

We had a few goals when developing our consumer choice problem, one of which was to discuss how consumers
choose the optimal bundle in a world where they have limited income. We will now discuss this concept
of limited income. First, we will make a few assumptions about consumer behavior/attitude towards this
limited income.

1. We begin with a �xed budget or endowment, denoted Y . We will analyze labor-leisure decisions a
little later in chapter 5, and for right now it is best to consider our consumer with a �xed income.

2. There is no borrowing allowed (thus, no credit cards).

3. There is no saving allowed. Again, a saving-spending decision could be represented with indi¤erence
curves. We will, however, assume that all of your income must be spent now or it is lost forever.

4. Only look at decisions regarding 2 goods, although the analysis extends to n goods, where n > 2.

5. Assume that you can purchase fractional amounts. While this may not be true at an instantaneous
point in time (try to go to Outback and order 1

4 of a steak), if we looked at your average purchases
of Outback steaks per day then it will not likely be a nice round number (and even if it is it is still
possible for it to be a fractional amount).
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4.1 Deriving a budget constraint

Whenever one derives a budget constraint it must be the case that we set expenditures equal to income
(technically we need expenditures to be less than or equal to income). So we would have (assuming equality
�which we will show will hold for the consumer who is behaving optimally):

Expenditures = Income

We know that our consumer�s income is �xed at a level of Y . Suppose we have two goods, A and B.
What are our expenditures on goods A and B? They are simply the price that we pay for the goods, PA
and PB respectively, times the amount that we consumer of those goods, QA and QB respectively (in this
analysis it is implicitly assumed that the same price is paid for all units of the good).
So we can rewrite our budget constraint as:

PA �QA + PB �QB = Y

At this point you should note that the prices, PA and PB , as well as the income are variables whose
values are known to the consumer. What the budget constraint maps out is the di¤erent quantities of goods
A and B that the consumer can a¤ord. Let�s rewrite the budget constraint by solving for QA. We get:

QA =
Y

PA
� PB
PA
QB

Notice that the budget constraint is in the form of an equation of a line, or y = mx+ b form (technically
it�s written as y = b +mx above). Note that the y-intercept of the line is Y

PA
and the slope of the line is�

�PB
PA

�
. If we were given values for Y , PA, and PB we could graph this line by labelling the y-axis as the

quantity of good A and the x-axis as the quantity of good B. Suppose that Y = 50, PB = 1, and PA = 2.
Plugging in the numbers we get:

QA = 25�
1

2
QB

If we were to plot the budget constraint we would get:
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Since plotting lines by using their equations is a little time-consuming, there is an alternative method by
which we can plot the budget constraint. Recall that all you need to plot a line is 2 points, then you just
connect the dots. The easiest points to �nd are the y-intercept and the x-intercept, and they have intuitive
economic meanings. The y-intercept in this case is 25, and the bundle at this point is 0 units of good B and
25 units of good A. So the y-intercept is just the amount of good A that one could buy if one purchased 0
of good B. Since Y = 50 and PA = 2, we can buy 25 units. It is similar for the x-intercept, which is 50 in
this case. Since Y = 50 and PB = 1, the consumer can purchase 50 units of good B if he purchases 0 units
of good A.
At this point it should be noted that the consumer can purchase any bundle on the budget constraint

OR inside the budget constraint. Hopefully this is intuitive. If I can a¤ord the bundle 26 units of good
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B and 12 units of good A (this is a point on the budget constraint), then I can a¤ord 13 units of good B
and 6 units of good A (this is a point inside the budget constraint). We can then de�ne the consumer�s
opportunity set as the set of all the bundles that he can purchase given his income and the prices of the
goods. This is the entire triangle made by the x-axis, y-axis, and budget constraint.

4.2 Income changes and the budget constraint

Suppose that the consumer�s income doubled �he now has $100. It is assumed that prices remain the same.
What will happen to his budget constraint?
The �rst thing we need to do is �nd out how his budget constraint changes. We know that the generic

formula for a budget constraint is:

QA =
Y

PA
� PB
PA
QB

If only his income changes, then only the y-intercept of the budget constraint is a¤ected. The slope of
the budget constraint remains the same since income does not enter the formula for the slope. If we plug
the new income into the budget constraint formula we see that the new budget constraint is:

QA = 50�
1

2
QB

Graphing the new budget constraint on the same graph as the old budget constraint gives us:
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Since we had an increase in income the new budget constraint has made a parallel shift outward. This is
re�ected in the change in intercepts, the y-intercept increasing from 25 to 50 and the x-intercept increasing
from 50 to 100. Notice that the consumer�s opportunity set has increased as well.

4.3 Price changes and the budget constraint

Now, suppose that one of the prices change. Assume that income and the price of the other good remain
constant. How does our budget constraint change?

4.3.1 Change in the price of good B

Suppose that we had a change in the price of good B. Looking at our generic formula for the budget
constraint we see:

QA =
Y

PA
� PB
PA
QB

The price of good B only enters into the slope of the equation, so the y-intercept will remain the same.
This should make sense, as the y-intercept tells us how much of good A we can buy if we buy 0 of good B.
Since neither income nor the price of good A change we will still be able to buy exactly the same amount of
good A if we buy 0 of good B. Letting the price of good B fall to 50 cents we have:
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QA = 25�
1

4
QB

Graphing this with the original budget constraint gives us:
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Since the price of good B fell, we get a pivot e¤ect on the budget constraint, as it swings out to the right.
If the price of good B rose, we would still get a pivot e¤ect, although the budget constraint would swing in
to the left.

4.3.2 Change in the price of good A

Since the price of good A enters both the slope and y-intercept of our budget constraint we will see both of
them change. However, the x-intercept will remain the same. What we will �nd is still a pivot e¤ect on
the budget constraint, only now the budget constraint pivots on the x-intercept.
Suppose the price of good A increases to $5. Our budget constraint is now (with the price of good B

being returned to it original $1 level):

QA = 10�
1

5
QB

Plotting this on the same graph with the original budget constraint we see:
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Notice that the increase in the price of good A caused the budget constraint to swing inward. A decrease
in the price of good A would have caused the budget constraint to shift outward.
The key to both changes in the price of good B and changes in the price of good A is that the slope of

the budget constraint changes when either changes. As we have already seen, slopes have been important
in economic analysis.
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4.4 Slope of the budget constraint

The slope of the budget constraint is given a speci�c name in economics. We call it the Marginal Rate of
Transformation (MRT). The MRT tells us the rate at which the market will allow consumers to exchange
goods. If the price of good A is $2 and the price of good B is $1, then the market says that if I give up
purchasing one unit of good A I can now purchase 2 additional units of good B. Mathematically then, the
MRT is the ��QA

�QB
, or how much of good A I must give up in order to get more of good B. Note that the

�QA is negative, as we must give up some units of good A to receive more units of good B.
You should also notice that ��QA

�QB
is a formula for a slope. Speci�cally, the MRT is the slope of the

budget constraint, which is always the same at any point along the budget constraint because the budget
constraint is a line. From our generic formula for the budget constraint we know that the slope is �PBPA

. So
we now know that:

MRT =
�PB
PA

This is another useful result that we will use in the next section on optimal consumer choice.

5 Optimal consumer choice �intuition and graphs

There are two types of solution we might �nd, an interior solution and a corner solution. It is easier to
de�ne a corner solution �rst. A corner solution occurs when a consumer buys either ONLY good A or ONLY
good B. Thus the optimal bundle (if it is a corner solution) will look like either (0; QA) OR (QB ; 0), where
QA and QB are both assumed to be greater than zero. At an interior solution the consumer will purchase
positive quantities of both goods. We will �rst consider the interior solution and then the corner solution.
One important point before beginning. If the consumer is acting optimally, will he purchase a bundle

inside, but not on, the budget constraint? The answer is no. The easy explanation is that if the consumer
chooses to purchase a bundle inside the budget constraint then he is not spending all of his money. Es-
sentially, he is throwing money into a lake (and we are assuming he gets no utility from throwing money
into a lake or a wishing well), and why would anyone throw away money when they could get goods for
it? Another explanation is that for any bundle inside the budget constraint that is being considered as the
optimal bundle, a di¤erent bundle ON the budget constraint can be found that has more of BOTH goods.
Thus the consumer can gain utility by moving to this bundle on the budget constraint because the more
is better property of consumer preferences tells us that bundles with more of both goods are preferred to
bundles without as much of both goods. So if the consumer is behaving optimally he will NOT choose a
point inside the budget constraint.

5.1 Interior solution

As mentioned above, an interior solution to the consumer�s problem is an optimal bundle at which the
consumer purchases positive quantities of both goods. Look at Figure 5.1:
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A consumer�s optimal choice problem �interior solution.

We know that a consumer who is optimizing will pick a point along the budget constraint, which is the
downward sloping straight line in the picture. There are 2 points labelled, E and F. Suppose the consumer
chooses point F. Is he behaving in an optimal manner? That is, does he maximize his utility? A consumer
maximizes his utility if he chooses a bundle such that there is no other bundle that he could have chosen,
given his limited income, that would place him at a higher utility level (or on a higher indi¤erence curve).
Looking at bundle F, we notice that this consumer is indi¤erent between bundle F and bundle G. However,
bundle G lies inside the budget constraint, so there must be an a¤ordable bundle (call it bundle X) that he
prefers to bundle G. If he prefers bundle X to bundle G, then he must prefer bundle X to bundle F. Thus,
F cannot be the optimal bundle.
Now, look at bundle E. The indi¤erence curve I2 only touches the budget constraint once (it is tangent

to the budget constraint). Note that there is no other bundle that the consumer can a¤ord that would put
him on a higher indi¤erence curve. Thus, the optimal bundle is found by �nding the indi¤erence curve that
is tangent to the budget constraint.

5.1.1 A key result for interior solutions

Recall that the slope of the budget constraint is the MRT. Also recall that the slope of the indi¤erence
curve is the MRS. A result from math class (I don�t remember which one) is that if a line is tangent to a
curve, then the slope of the line and the slope of the curve AT THE POINT OF TANGENCY are equal.
Thus, at the consumer�s optimal bundle we have:

MRT =MRS

We know a few other things. We know that:

MRT = �PB
PA

MRS = �MUB
MUA

Substituting, we get:

�PB
PA

=
�MUB
MUA

Doing some rearranging gives us:
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MUA
PA

=
MUB
PB

Notice what this equation tells us. At the optimal bundle, the marginal utility per dollar of each good
must be the same. If it is not, the consumer can do better by shifting some dollars from the good with
the lower MU=$ to the good with the higher MU=$. As an example, suppose that the consumer has $10
and that he goes to Rio Bravo when they sell $1 drafts and 10-cent wings. For simplicity, assume he must
buy 10 wings at a time, so that he gets 10 wings for $1. Now suppose that you purchase 90 wings and 1
draft. You get through 10 wings and your 1 draft and think, �I would really like another draft to go with
the other 80 wings that I have�. Clearly you have NOT equated the marginal utilities per dollar for the two
goods, otherwise you would not have thought this thought. In this case, if you could go back in time and
reallocate your $10 by making a di¤erent purchase, you would take some of the money you spent on wings
(which have a low MU since you have so many of them) and you would shift those funds to drafts (which
have a high MU at the bundle (90 wings, 1 draft) because you only have one draft).

5.2 Corner solution

A corner solution has slightly di¤erent implications for behavior than an interior solution. The key is that
the result that we have from an interior solution, MRS = MRT , does NOT have to be met at a corner
solution. Corner solutions typically occur when indi¤erence curves are relatively �at or relatively steep. A
relatively �at indi¤erence curve suggests that a consumer gets more marginal utility from the good on the
y-axis, while a relatively steep indi¤erence curve suggests that the consumer heavily favors the good on the
x-axis.2 Take a look at Figure 5.2:

A picture of the consumer�s choice problem �corner solution.

In this instance the consumer puts more weight on good B in the utility function than he does on good
A. Thus, unless the price of good A is very small relative to the price of good B (which means that the
budget constraint must be very steep), the consumer will purchase only good B. This is shown by bundle
F in the picture, which is the bundle where the budget constraint and the x-axis intersect. Notice that this
point is on the budget constraint, but we cannot �nd a bundle that would give the consumer a higher level
of utility. Thus, the consumer only purchases good B to maximize his utility.

2Think about the cases where the consumer gets no utility from one of the two goods. They are perfectly horizontal and
vertical indi¤erence curves. The consumer will NEVER purchase a good for which he gets no utility, thus we will always end
up at a corner solution in those cases.
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If you look at the graphs of the interior solution and the corner solution you should see one key di¤erence.
If an interior solution occurs, there will be indi¤erence curves that cross the budget constraint twice (such
as I1 in the interior solution picture). However, if a corner solution occurs, the indi¤erence curves will only
cross the budget constraint once.

5.2.1 Does MRS =MRT at a corner solution?

The answer is, �maybe�. There are cases where MRS = MRT at the corner solution. These are very
special cases however, and the vast majority of the time MRS 6= MRT at a corner solution. If you look
at the picture, notice that I2 actually intersects the budget constraint � it is NOT tangent to the budget
constraint. If there is an intersection of the budget constraint and the indi¤erence curve at a corner solution
then the result that MRT = MRS will NOT hold. This is because the line is not tangent to the curve at
that point. The consumer would actually be better o¤ if he could consume negative quantities of good A in
this case, as the point of tangency for his indi¤erence curve and his budget constraint is actually in quadrant
IV of the Cartesian plane in this example.

6 Optimal consumer choice

The consumer�s goal is to maximize utility, given that they have a budget constraint. We can be a little
more formal, saying something like the consumer�s goal is to choose the most preferred consumption bundle
x (p; y) (note that x (p; y) is a vector of quantities �there is an x1 (p; y) and an x2 (p; y) in our 2 good world)
given prices p >> 0 and y > 0 (and hence, budget constraint p � x � y). Write this out as a maximization
problem:

max
x�0

u (x) subject to (or s.t.) p � x � y

This is a nice problem, but does it have a solution? There are two questions that you will want to ask
when setting up your models. The �rst is, Does a solution exist? The second is, Is the solution unique?
So existence and uniqueness are two concepts that model builders, at least in the sense of classical demand
theory, strive for.3 We will brie�y discuss the basics behind existence and uniqueness of the solution.
There is a nice result called the Weierstrass Theorem (extreme value theorem) that states that a con-

tinuous function attains a maximum (as well as a minimum) on any compact set. While we will not go
through the details, it guarantees that there is actually a maximum to our problem, so that a solution does
exist. Figure 6

3When we discuss game theory there are some game theorists who believe the fact that multiple equilibria exist in theory is
useful because multiple equilibria exist in the real world. The question then becomes how one of those equilibria was selected
in one case and how another was selected in a second case. So uniqueness is not necessarily that important to some game
theorists, but they still strive for existence.
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Examples that show a maximum may not be guaranteed without certain assumptions.

shows examples of why we need both a continuous function and a compact set to guarantee the existence of
a maximum. If the set is compact but the function is discontinuous then it is possible to have the function
be open where the maximum would be. Thus, the maximum would never be reached. The same is true
if the function is continuous but the set is not compact. The maximum may be at the boundary of the
set, but since that boundary is never reached the maximum is never reached. The bottom picture provides
an example where a maximum is attained, although it is only an example and not a proof. It would be
simple to construct examples for the other cases where a maximum is attained, but these counterexamples
are su¢ cient to disprove the suggestion that a maximum would be guaranteed without a continuous function
or a compact set. For uniqueness we need that the preference relation, %, to be convex, which simply means
that convex combinations of two bundles of goods are preferred to either of the two bundles.

6.1 Inequality Constrained Optimization

We now know that given our consumer�s problem there is a solution and it is unique (provided the assumptions
we made on % and u (�) hold). Now we will discuss the mechanics of actually solving the consumer�s problem
and �nding x (p; y).
Consider a general 2-good problem with goods x1 and x2. We assume that % is rational, continuous,

monotone, and strictly convex, so that u (x1;x2) is continuous, increasing, and strictly quasiconcave. The
consumer faces prices p1 > 0 and p2 > 0 for goods x1 and x2 respectively, and has a level of wealth y > 0,
and that p1x1+p2x2 � y. We will also assume (for the current example) that x�1 (p; y) > 0 and x�2 (p; y) > 0,
where x�1 (p; y) and x

�
2 (p; y) are the consumer�s optimal consumption levels of x1 and x2. This means there

is an interior solution, and not a corner solution. The consumer�s problem is then:

max
x1;x2

u (x1; x2) s.t. p1x1 + p2x2 � y

Some steps:
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1. Rewrite p1x1 + p2x2 � y as y � p1x1 � p2x2 � 0 (this is a technical aspect which we do not have time
to discuss in this class �setting up the inequality in this manner lets us add the constraint instead of
subtract it).

2. Form the Lagrangian,
L (x1; x2; �) = u (x1;x2) + � [y � p1x1 � p2x2]

3. Ponder where this � came from ... (we will discuss this shortly ... mechanics right now)

If x�1 (p; y) > 0 and x
�
2 (p; y) > 0, we get the following Kuhn-Tucker conditions:

@L
@x1

=
@u (x�1; x

�
2)

@x1
� ��p1 = 0

@L
@x2

=
@u (x�1; x

�
2)

@x2
� ��p2 = 0

y � p1x1 � p2x2 � 0

�� [y � p1x1 � p2x2] = 0

The �rst 2 conditions are the �rst order conditions (FOCs) with respect to our consumer�s 2 choice
variables, x1 and x2 (it is a maximization problem after all). The 3rd condition is our inequality constraint (it
is an inequality constrained maximization problem after all). The last condition is called the complementary
slackness condition. The consumer�s goal is to maximize u (x1; x2), NOT L (x1; x2; �). This complementary
slackness condition assures us that u (x1; x2) = L (x1; x2; �). This means that either �� = 0 or y � p1x1 �
p2x2 = 0. But we know from our discussion of the intuition of the consumer�s optimal choice problem that
y � p1x1 � p2x2 = 0, so we also know that condition 3 holds with equality. Now we have a system of 3
equations (the FOCs and the constraint which is now an equality) and 3 unknowns (x1; x2; �).
Something we can see is that at the optimum,

@u (x�1; x
�
2)

@x1
= ��p1

@u (x�1; x
�
2)

@x2
= ��p2.

Note that @u(x�1 ;x
�
2)

@x1
is the marginal utility of good x1, or MUx1 and that

@u(x�1 ;x
�
2)

@x2
is the marginal utility

of good x2, or MUx2 . If we take the ratio of those 2 equations, we get: MUx1
MUx2

= p1
p2
, or MUx1

p1
=

MUx2
p2

.
These equations should look familiar as we discussed them as the "conditions" for an interior solution to the
consumer�s optimization problem when we solved the problem graphically. Note that p1p2 is the slope of the

budget line (the negative of the slope) and that MUx1
MUx2

is the marginal rate of substitution, or the slope of
the indi¤erence curve at x�1 and x

�
2, so that the slope of the indi¤erence curve is equal to the slope of the

budget line at that point, or, in very technical terms, the budget line is tangent to the indi¤erence curve at
that point.
Now, what is �? This variable � tells us the marginal or shadow value of relaxing the constraint in the

consumer�s problem. When applied to the budget constraint, it is the marginal value of wealth. Think
about when � > 0 and � = 0. If � > 0, then wealth has a positive marginal value, and more y will increase
u (�) or L (�), if we hold the other variables constant. If � = 0 (and this is only hypothetically speaking
here), then additional y is worthless to the consumer, even holding the other variables constant. That is
because the constraint would be non-binding, and the consumer would have chosen x�1 and x

�
2 such that

y� p1x�1� p2x�2 > 0. Our concern as of right now is not with a speci�c value of �, but whether or not � > 0
or � = 0.
Here is an actual example with a utility function. Let u (x1;x2) = � lnx1+(1� �) lnx2, � 2 (0; 1). The

consumer�s problem is:
max

x1>0;x2>0
u (x1; x2) s.t. p1x1 + p2x2 � y
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We know that we will need to formulate the Lagrangian,

L (x1; x2; �) = u (x1;x2) + � [y � p1x1 � p2x2]

and to obtain the Kuhn-Tucker conditions:

@L
@x1

=
@u (x�1; x

�
2)

@x1
� ��p1 = 0

@L
@x2

=
@u (x�1; x

�
2)

@x2
� ��p2 = 0

y � p1x1 � p2x2 � 0

�� [y � p1x1 � p2x2] = 0

We know that if u (x1; x2) = � lnx1 + (1� �) lnx2, then

@u (x�1; x
�
2)

@x1
=

�

x1
@u (x�1; x

�
2)

@x2
=

1� �
x2

We also know that y � p1x1 � p2x2 = 0, so we have 3 equations with 3 unknowns. I won�t type out all the
rearranging of terms for this term to �nd the solution, but you should be able to verify that

x�1 (p; y) =
�y

p1

x�2 (p; y) =
(1� �) y
p2

�� =
1

y
> 0

Now suppose that p1 = 10, p2 = 5, � = 1
3 , and y = 100. We can actually �nd our consumer�s optimal bundle

in terms of a number. Plugging in those values we get that x�1 (p; y) =
10
3 , x

�
2 (p; y) =

40
3 , and �

� = 1
100 > 0.

Moreover, MUx1
MUx2

= 1=3
10=3=

2=3
40=3 = 2. Also,

p1
p2
= 2. So, MUx1

MUx2
= p1

p2
.

6.1.1 Slightly more general notation

We may not have a guarantee of an interior solution, but we still want to restrict x1 � 0 and x2 � 0. So,
our consumer�s problem is still to maximize utility subject to his budget constraint, but now we have the
additional constraints that x1 � 0 and x2 � 0. Writing this out for a two good problem we have:

max
x1;x2

u (x1; x2) s.t. p1x1 + p2x2 � y, x1 � 0, x2 � 0.

We can still follow the same steps as before, making sure that all our constraints are written as � constraints.
Since x1 � 0 and x2 � 0 are already written in this manner, that just leaves rewriting the budget constraint
as y � p1x1 � p2x2 � 0. Now we can form the Lagrangian:

L (x1; x2; �1; �2; �3) = u (x1; x2) + �1 [y � p1x1 � p2x2] + �2 [x1] + �3 [x2]

We will now have a full set of Kuhn-Tucker conditions for both our choice variables and our Lagrange
multipliers:

@L
@x1

� 0; x1 � 0; x1 � @L
@x1

= 0
@L
@x2

� 0; x2 � 0; x2 � @L
@x2

= 0
@L
@�1

� 0; �1 � 0; �1 � @L
@�1

= 0
@L
@�2

� 0; �2 � 0; �2 � @L
@�2

= 0
@L
@�3

� 0; �3 � 0; �3 � @L
@�3

= 0

:
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Note that in this case we have complementary slackness conditions for the choice variables because we are
uncertain as to whether or not the constraint is binding. If we end up at a corner solution, then either
x1 = 0 or x2 = 0, so one of the constraints will be binding. Notice why when we assumed that we had an
interior solution that we did not have @L

@x1
� 0 and @L

@x2
� 0, but @L@x1 = 0 and

@L
@x2

= 0. If x1 > 0 and x2 > 0,
then those partial derivatives must be zero. Technically, these Kuhn-Tucker conditions are one piece of
the necessary and su¢ cient conditions for a general maximization problem with no guarantee of an interior
solution. The theorem is called the Arrow-Enthoven Theorem, which we will not discuss in detail here but
which you can look up on your own.

6.1.2 An example with a binding constraint

Given our original problem, with u (x1; x2) = � lnx1 + (1� �) lnx2, budget constraint y � p1x1 � p2x2 � 0,
and an interior solution (note: think x1 > 0 and x2 > 0), we know that x�1 (p; y) =

�y
p1
and x�2 (p; y) =

(1��)y
p2

. Furthermore, when � = 1
3 ; p1 = 10; p2 = 5; and y = 100, x�1 (p1 = 10; p2 = 5; y = 100) =

10
3 and

x�2 (p1 = 10; p2 = 5; y = 100) =
40
3 . Now we will add the constraint that x1 � 4, which forces the consumer

to consume 4 units of good x1. Additionally, we will make one more assumption, that y > 4p1 rather than
y > 0. This ensures that our consumer can actually a¤ord 4 units of x1. Now, before we even start, will
this new constraint be binding using the parameters of � = 1

3 ; p1 = 10; p2 = 5; and w = 100? Of course
it will, since the consumer only chose to consume 10

3 < 4 units of x1 when the constraint was not imposed.
Now, let�s set up the Lagrangian:

L (x1; x2; �1; �2) = � lnx1 + (1� �) lnx2 + �1 [y � p1x1 � p2x2] + �2 [x1 � 4] :

We get:
@L
@x1

= �
x1
� �1p1 + �2 = 0

@L
@x2

= (1��)
x2

� �1p2 = 0
y � p1x1 � p2x2 � 0

x1 � 4 � 0
�1 � [w � p1x1 � p2x2] = 0

�2 � [x1 � 4] = 0

:

We know that the budget constraint will hold with equality, so that y � p1x1 � p2x2 = 0. Now focus on
our last equation, x1 � 4 � 0. Either x1 � 4 = 0 or �2 = 0 (there is the remote possibility that both occur,
which would happen using our numbers if we changed w from 100 to 120. However, �2 = 0 in this case
because the constraint does not bind, meaning that the consumer would choose LESS than 4 units at his
optimal consumption bundles). Now, if �2 = 0 then the constraint is not binding and we are right back to
where we started, with x�1 (p; y) =

�y
p1
and x�2 (p; y) =

(1��)y
p2

(just impose �2 = 0 in @L
@x1

to see this). If the
constraint is binding, then x�1 (p; y) = 4. If we know that x

�
1 (p; y) = 4, then from the budget constraint we

know that x�2 (p; y) =
y�4p1
p2

. So, our Walrasian demand function would be:

x�1 (p; y) =

�
4 if �2 > 0
�y
p1
if �2 = 0

x�2 (p; y) =

(
y�4p1
p2

if �2 > 0
(1��)y
p2

if �2 = 0

:

Now, how do we check for our speci�c problem? From @L
@x2

we know that �1 =
(1��)
x2p2

. Substituting this

back into @L
@x1

we can see that �2 =
(1��)p1
x2p2

� �
x1
(Note: if w = 120, and the remaining parameters are

kept as before, then x1 = 4 and x2 = 16. Plug those values into the equation for �2 and this illustrates that
�2 = 0 despite the fact that x1 = 4. Since the consumer would have chosen x1 = 4 without the constraint,
the constraint is not binding.). Now, if �2 = 0, then we are right back to the original utility maximization
problem because x1 =

x2�p2
(1��)p1 . When we plug this back into the budget constraint and solve for x2 we �nd

that x�2 =
(1��)y
p2

and x�1 =
�y
p1
if �2 = 0. However, once we substitute in our original parameters of � = 1

3 ,
p1 = 10, p2 = 5, and y = 100, we see that x�1 =

10
3 , which violates the constraint that x1 � 4, and so we

know that �2 > 0.
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In the general problem, which is to maximize u (x1; x2) subject to the budget constraint, you would

typically have to check 8 di¤erent cases.

x1 x2 �

+ + +
+ + 0
+ 0 +
0 + +
0 0 +
0 + 0
+ 0 0
0 0 0

You would have to check the cases that all of the

choice variables are positive, all are equal to 0, or some variables are positive and some are equal to zero.
With 3 choice variables we would have 23 = 8 possibilities, with 4 we would have 16, with 5 we would have
32, etc. However, in our general two good problem with a budget constraint we know that � > 0, and we
know that since y > 0 and p1x1 + p2x2 = y, and x1 and x2 are both greater than or equal to zero that
we cannot have � positive with both x1 = x2 = 0, so we are now down to 3 cases. Either �; x1; x2 > 0,
or �; x1 > 0 and x2 = 0, or �; x2 > 0 and x1 = 0. So basically all you would have to do is check to see
if either x1 = 0 or x2 = 0. You can do this by checking whether utility is higher at either x1 =

y
p1
and

x2 = 0, or x1 = 0 and x2 =
y
p2
, or at the interior solution you found. For our parameters of � = 1

3 , p1 = 10,
p2 = 5, and y = 100, and our optimal bundles x1 = 10

3 and x2 =
40
3 , we had u

�
10
3 ;

40
3

�
= 1

3 ln
10
3 +

2
3 ln

40
3 =

2: 128 2. For u (10; 0) = 1
3 ln 10 +

2
3 ln 0 we get something unde�ned since ln 0 is unde�ned, and the same

for u (0; 20) = 1
3 ln 0 +

2
3 ln 20. So we "know" that we have an interior solution, at least with the original

problem without the constraint that x1 � 4. It is easier to see this if we use u (x1; x2) = x�1x1��2 . For our

parameters the optimal consumption bundle is still x1 = 10
3 and x2 =

40
3 , so that u

�
10
3 ;

40
3

�
= 10

3

1=3 40
3

2=3
=

8: 399 5. If x1 or x2 equal 0, then our utility will be 0, which is less than 8.3995.
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