
Calculus and optimization

These notes provide some calculus background. Throughout the course we will discuss why economists
use calculus.1

1 Functions of a single variable

In an earlier set of notes we de�ned the concept of a function and discussed the concept of slope. For a
line, calculating the slope was fairly straightforward as it is a constant and equal to the coe¢ cient on the
x coordinate. With the function y = 10 � 4x, the slope is �4. For functions with curvature the slope is
calculated in a similar manner (at least intuitively) but depends on the speci�c point along the curve. In
the notes on algebra one example used a parabola with the equation y = 3x2 + 7x � 4. The point (2; 22)
is on the graph of the parabola as is the point (�4; 16). But the slopes at those points are certainly not
the same �for starters, the half of the parabola on which (�4; 16) lies is decreasing while the half on which
(2; 22) lies is increasing. What we want to do is �nd the line that is tangent to the curve at each point. A
line is tangent to a curve if it touches the curve at a point but does not intersect the curve at that point.
The reason we want to �nd the line that is tangent at that point is because the slope of the tangent line
will be the slope at that point of the curve. I am going to "guess" that the line that is tangent at (2; 22) is
y = 19x� 16. I am also going to "guess" that the line that is tangent at (�4; 16) is y = �17x� 52. Figure
1 shows the parabola, the two points plotted, and the two "guesses" at the tangent lines.
At a basic level, the slope tells us the change in y for a speci�c unit change in x, or �y�x . When �nding the

slope of a particular point on a curve, we want the denominator, �x, to be as small as possible, essentially
an in�nitesimal (extremely small) or instantaneous change. The derivative function, f 0 (x), tells us the slope
of that line and that is one reason derivatives are important in economics. I am certainly not good enough
that I could guess the equations of those tangent lines; I used the derivative function of 3x2 +7x� 4 to �nd
the slope at that point and then created the line because I had the slope and I knew a point on the line.
Generally we are concerned with �nding the slope of the tangent line at a particular point and not concerned
with plotting the actual tangent line, but I plotted them for reference purposes.
A function f is di¤erentiable if it is continuous and "smooth" with no breaks or kinks; in economics we

generally structure our models by assuming that the functions have these properties. A derivative, f 0 (x),
gives the slope or instantaneous rate of change in f (x) at x.2 Table 1 provides some common rules of
di¤erentiation for functions, and combinations of functions, of single variables. Note that a in Table 1 is a
constant. I think the use of letters to represent both constants, such as a, and choice variables, such as x,
causes confusion at times but it is necessary to have that �exibility.
For the function y = 3x2 + 7x� 4, the derivative is f 0 (x) = 6x+ 7. The function 3x2 + 7x� 4 is really

three "separate" functions, 3x2, 7x, and �4, added together. We are using the Sums rule, the Power rule,
and the Constants rule in determining its derivative. By the power rule the derivative of 3x2 is 6x. By the
power rule the derivative of 7x is 7. By the constants rule the derivative of �4 is 0. By the sums rule we
can add those three derivatives together to get 6x+ 7 + 0 or 6x+ 7. With the parabola we wanted to �nd

1There is a more mathematical set of background notes available at: https://belkcollegeofbusiness.charlotte.edu/azillant/wp-
content/uploads/sites/846/2014/12/ECON6202_msmicroI_math2.pdf

2 If you have taken calculus, there is a discussion about using limits to determine the derivative of a function. We will not
go through those details, but if you are extremely curious, the formal de�nition of the derivative function is:

f 0 (x) = lim
t!x

f (t)� f (x)
t� x

While this may look a little complicated, remember that f (�) is really just y. So essentially it is just the formula for a slope,
(y1 � y0) = (x1 � x0), where we want the di¤erence between x1 and x0 to be essentially zero.
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Figure 1: The plot of the parabola given by the equation y = 3x2 + 7x� 4: The lines tangent to the points
(2; 22) and (�4; 16) are given in magenta and red, respectively.

Constants, � d
dx (�) = 0

Sums d
dx (f (x)� g (x)) = f

0 (x)� g0 (x)
Power rule d

dx (�x
n) = n�xn�1

Product rule d
dx (f (x) g (x)) = f (x) g

0 (x) + f 0 (x) g (x)

Quotient rule d
dx

�
f(x)
g(x)

�
= g(x)f 0(x)�f(x)g0(x)

(g(x))2

Chain rule d
dx (f (g (x))) = f

0 (g (x)) g0 (x)

ln rule d(� ln x)
dx = �

x

Table 1: Common rules of di¤erentiation
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the slope when x = 2 and when x = �4. Using the derivative function the slope when x = 2 is 19 and the
slope when x = �4 is �17, which are the slopes of the respective tangent lines in Figure 1.

2 Functions of several variables

The previous section examined a function of a single variable, x. For some problems in economics, such as
a �rm choosing its quantity to maximize pro�t, a function of a single variable is su¢ cient. However, there
are times when we want to examine functions of multiple variables. In consumer theory individuals have
utility functions which are functions of the quantities consumed of various goods; in producer theory �rms
have cost functions which are functions of the quantities of inputs used to produce a good. When there are
multiple variables, it is at times convenient to think in terms of the slope of one particular variable, holding
the other variables constant. One of the key starting phrases in an economist�s vocabulary is "holding all
else constant" because we want to examine the e¤ect of one variable changing.
The partial derivative of a function is the derivative of the function with respect to one variable while

holding all other variables constant.3 If there is a consumer who has the utility function f (q1; q2) = q21 +
3q1q2+4q

2
2 , where q1 and q2 represent quantities of the goods chosen, we may want to understand the e¤ect

of changing the quantity consumed of q1 while holding q2 constant. When taking the partial derivative with
respect to q1 we simply apply the Constants rule to q2 and treat it like a number. Similarly, when taking
the partial derivative with respect to q2, we treat q1 like a constant.

@f

@q1
= 2q1 + 3q2

@f

@q2
= 3q1 + 8q2

When taking the partial derivative with respect to q1, the entire term 4q22 is treated like a constant because
it does not contain q1 so it drops out of the derivative as if it was just a number like 9 or �232. As we
are essentially treating our function of several variables as a single variable, the same rules of di¤erentiation
apply when taking partial derivatives. So for @f

@q1
, we can use the power rule to �nd that the partial derivative

of the �rst term, q21 , is 2q1; the power rule to �nd that the partial derivative of the second term, 3q1q2, is
3q2 (we retain the q2 because this term has a q1 and so we treat q2 exactly like we would the number 3); and
the constants rule to �nd that the partial derivative of the third term, 4q22 , is 0. Then using the sums rule
we have 2q1 + 3q2 + 0 = 2q1 + 3q2.

3 Optimization

Finding derivatives is an intermediary step on the path to �nding an equilibrium in our models, albeit an
intermediate step that yields some important results. Ultimately we would like to use the derivatives to �nd
a solution, which will be an optimal point. That optimal point may be a maximum (if we are maximizing
utility or pro�t) or it may be a minimum (if we are minimizing costs). There are methods of using the second
derivative of the original function to determine whether one is �nding a local maximum, local minimum,
or in�ection point. There are also methods for determining whether a maximum or minimum is local or
global. We can think of a local maximum as Mount Mitchell, which is the highest point in the state of North
Carolina, but not the highest point in the U.S. or the world. The same is true for functions: sometimes they
have a local maximum or minimum within a speci�ed domain of the function, and sometimes they have a
global maximum or minimum for the entire domain of the function. Economists tend to structure problems
in a way such that these concerns are handled with the model assumptions to ensure we are �nding the
relevant optimal point.
Consider our initial function, f (x) = 3x2 + 7x � 4, in Figure 1, We know that parabolas are U-shaped

and we can see the (global) minimum in the picture. How do we determine the exact point at which the
function is at the minimum? We still want to �nd the slope of the tangent line but at the speci�c minimum
point. Intuitively, if we are looking for a tangent line at the top of a hill (or bottom of a valley), the line

3The standard is to use the symbol @ to denote a partial derivative where using the letter d denotes the derivative.
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Figure 2: The plot of the parabola given by the equation y = 3x2+7x�4: The tangent line at the minimum
is also plotted.

should be �at or perfectly horizontal. A perfectly horizontal line has a slope of 0 because there is no "rise"
to the function �the y values are always the same. If the derivative represents the slope of the function at
any point, we want to set the slope equal to 0 and then we can solve for the x-coordinate of the minimum
point using that equation. In this case we know the slope but want to �nd the speci�c point. We know that
f 0 (x) = 6x+ 7. Setting that equal to 0 we have:

6x+ 7 = 0

6x = �7

x =
�7
6

Using the function itself, when x = �7
6 we have:

f (x) = 3x2 + 7x� 4

f

�
�7
6

�
= 3

�
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6

�2
+ 7

�
�7
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�
� 4
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The point at which our parabola given by the equation f (x) = 3x2+7x�4 reaches its minimum is
��7
6 ;

�97
12

�
.

Figure 2 shows the function and the tangent line at the minimum point. Note that the tangent line is given
by the equation y = �97

12 because it is a horizontal line.
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Figure 3: Plot of q21 + 3q1q2 + 4q
2
2 .

3.1 Optima for functions of multiple variables

Suppose that we have a function of n variables. To �nd the local minimum or maximum we follow similar
steps as we did with a function of a similar variable. First �nd the partial derivative with respect to all n
variables. Next set those partial derivatives equal to zero. Finally, there will be a system of n equations and
n unknowns �solve that system of equations to �nd the critical values.
Figure 3 shows the plot of function f (q1; q2) = q21 + 3q1q2 + 4q

2
2 . We know that the partial derivatives

are

@f

@q1
= 2q1 + 3q2

@f

@q2
= 3q1 + 8q2

Setting those equal to zero and solving we �nd:

2q1 + 3q2 = 0

2q1 = �3q2

q1 = �3
2
q2

Now:

@f

@q2
= 3q1 + 8q2

0 = 3q1 + 8q2

0 = 3

�
�3
2
q2

�
+ 8q2

0 = �9
2
q2 + 8q2

0 = q2

�
�9
2
+ 8

�
0 = q2
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Now substituting into q1 = � 3
2q2 we have that q1 = �

3
2 � 0 = 0. To �nd the third coordinate we �nd f (0; 0)

which is also zero. In this case, the minimum point is at the coordinate (0; 0; 0), which seems consistent with
the picture. Note that there are three coordinates in this ordered pair because we have a q1 axis, a q2 axis,
and an f (q1; q2) axis (the vertical axis).

3.2 Constrained optimization

Thus far we have focused on unconstrained optimization. However, in many problems there are constraints
which must be met. In our study of consumer choice, we assume that consumers receive some additional
utility for each unit of a good they consume, so if they were not constrained in some manner they would
choose an in�nite amount of every good. If we set up a model like that it would be a poor predictor of
behavior.

They may be equality constraints, such that we are optimizing a particular function f (x1; x2) subject
to the equality constraint g (x1; x2) = 0. They may be constraints as simple as nonnegativity constraints,
so that x1 � 0 and x2 � 0. They may be more complex inequality constraints, such that we are optimizing
the function f (x1; x2) subject to g (x1; x2) � 0. The function g (x1; x2) may be linear or nonlinear.

3.2.1 Equality constraints

Formally, an optimization with an equality constraint is set up as:

max
x1;x2

f (x1; x2) s.t. g (x1; x2) = 0

The function which we are optimizing, f in this instance, is called the objective function. The variables
that are being chosen, x1 and x2 in this problem, are the choice variables. The function g (x1; x2) is called
the constraint function.
With equality constrained optimization problems the problem can be solved by substitution. If we solve

for one of the variables in the constraint function, say x2, we would have a new function:

x2 = eg (x1)
Substitute this directly into the objective function and the problem becomes:

max
x1

f (x1; eg (x1))
and then we are maximizing a function of a single variable. We then set the �rst derivative equal to zero
and �nd the critical value for x1. This �rst order condition is:

@f (x�1; eg (x�1))
@x1

+
@f (x�1; eg (x�1))

@x2

deg (x�1)
dx1

= 0

Once x�1 is known we �nd x
�
2 by using x

�
2 = eg (x�1). For simple problems this substitution method works well;

when the constraint functions are complex or there are multiple choice variables (or constraints) this method
becomes tedious. While a straightforward method of �nding a solution, this method of direct substitution
does not lend itself to building intuition about the problem being solved.

3.2.2 Lagrange�s method

Solving unconstrained optimization problems is (relatively) easy. The idea that Lagrange had was to turn
constrained optimization problems into unconstrained optimization problems. Our problem from before is:

max
x1;x2

f (x1; x2) s.t. g (x1; x2) = 0

Now, multiply the constraint by the variable � (why? that will be explained later in the inequality constraints
section). Add that product to the objective function and we have created a new function called the
Lagrangian function (or Lagrangian). The Lagrangian is:

L (x1; x2; �) = f (x1; x2) + �g (x1; x2)
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Note that there are now three choice variables: x1, x2, and �. The �rst-order necessary conditions for
optimizing the Lagrangian are the set of partial derivatives set equal to zero:

@L
@x1

=
@f (x�1; x

�
2)

@x1
+ ��

@g (x�1; x
�
2)

@x1
= 0

@L
@x2

=
@f (x�1; x

�
2)

@x2
+ ��

@g (x�1; x
�
2)

@x2
= 0

@L
@�

= g (x�1; x
�
2) = 0

The idea of Lagrange�s method is that if we solve these three equations simultaneously for x�1, x
�
2, and

�� we will have found a critical point of f (x1; x2) along the constraint g (x1; x2) = 0. Note that while
the function f (x1; x2) and the Lagrangian L (x1; x2; �) are di¤erent (the latter has the constraint tacked
on to it), because g (x1; x2) = 0, we know that �g (x1; x2) so we are essentially adding zero to the original
function. Intuitively, we are maximizing f (x1; x2) + 0 which is like maximizing f (x1; x2). We will not go
through all of the details to prove why this method works; there are plenty of math books that provide a
nice discussion. Also, as of now we do not know whether or not these critical values are maxima or minima,
but some comments on this topic will be made shortly.
Note that Lagrange�s method can be used for any number of variables (n) and any number of constraints

(m) so long as the number of constraints is less than the number of variables (m < n). There is still the
question of whether or not a solution actually exists for a problem and whether or not the � variable exists.
While these are important questions a general discussion of these concepts is more than is needed for our
purposes.

Inequality constraints In some problems we have inequality constraints with which we must contend.
There are many technical details that we will not cover because they are not that important for our purposes.
An inequality constrained problem is very similar to an equality constrained problem it is just that the
constraint may or may not hold with equality.

max
x1;x2

f (x1; x2) s.t. g (x1; x2) � 0

This problem is a nonlinear programming problem, as a linear programming problem we have a linear
function which is optimized subject to linear equality constraints. We make no such restrictions here. We
can construct the Lagrangian to �nd:

L (x1; x2; �) = f (x1; x2) + � [g (x1; x2)]

The necessary conditions to �nd a solution are similar to what we have seen earlier:

@f

@x1
+ �

@g

@x1
= 0

@f

@x2
+ �

@g

@x2
= 0

�g (x1; x2) = 0

� � 0; g (x1; x2) � 0

The �rst two equations are just the partial derivatives with respect to the choice variables x1 and x2. The
third equation ensures that we are not really "changing" the original objective function. That last row
with the two inequalities are technical conditions that need to be satis�ed. Focusing on the third equation,
either � = 0 and g (x1; x2) � 0 or � > 0 and g (x1; x2) = 0 or (in rare cases) both equal zero. If � = 0
and g (x1; x2) > 0, then that result would mean that the constraint does not hold with equality; in other
words, the constraint does not matter (typically we would say that the constraint does not bind) because
the objective function is maximized at some feasible point that is not along the constraint. If � > 0 and
g (x1; x2) = 0, then the constraint is binding (it is being set to equality). The purpose of � is to show the
marginal value of relaxing the constraint. If � = 0, then there is no value in relaxing the constraint because
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the constraint does not bind. But if � > 0 then the constraint does not bind and the solution would change.
Putting this concept into an economic model, when consumers are maximizing utility we assume that they
have limited income (a budget constraint). If � = 0, then it would be the case that the budget constraint
did not bind so it did not a¤ect their choices.4

Economists typically use this type of solution concept to solve consumer optimization problems; when
the only constraint is the budget constraint, economists assume it binds (people do not throw away money
that they could use to buy some good) and so equality constrained optimization methods could be used.
However, suppose there is a requirement that a certain amount of some good, such as some minimum level
of insurance, be consumed. For some consumers that constraint may be binding (they would have chosen
less than the required amount of insurance if they could) but for other consumers that constraint may not
be binding (they were going to choose more than the minimum required amount of insurance anyway). In
those types of problems whether or not the constraint binds is important.

4When g (x1; x2) = 0 and � = 0 we have the odd case that the optimal solution just happens to fall on the constraint. So
while the solution falls on the constraint, technically the constraint is not binding.
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