
Simultaneous Move Games

These notes essentially correspond to parts of chapters 7 and 8 of Mas-Colell, Whinston, and Green.

1 Introduction

Up to now in the Micro Theory sequence you have typically been concerned with some type of optimization.
Either a maximization problem (UMP and PMP) or a minimization problem (EMP and CMP), or an
economy where consumers and producers solve optimization problems. Further, the decision made by a
particular consumer did not a¤ect the outcomes � if the economy was in equilibrium, and the prices set,
then each individual simply made their choices and received their utility from those choices. There was no
consideration of �what the other person was doing�and how this might a¤ect my outcome or payo¤. While
we will still have consumers and producers optimizing, now we examine decisions where the outcomes that
occur are a function of both the individual�s decision and some other individual�s (or multiple individuals)
decision.
To solve problems of this type we will use game theory or the theory of games. �Game Theory�is kind

of an oxymoron, like �Jumbo Shrimp�, or, if you are John Kerry trying to make a poor joke, like �Military
Intelligence�. The word �game�evokes images of fun while the word �theory�evokes images of something
a little more abstract or di¢ cult. The most prominent early game theorists were John von Neumann and
Oskar Morgenstern (we have already talked about vNM utility functions). von Neumann was the driving
force behind the mathematics, but Morgenstern was instrumental in getting the book, Theory of Games
and Economic Behavior, published in the mid-40s. John Nash is probably the most famous game theorist
(that�s what happens when you are portrayed by Russell Crowe in a movie), and we will discuss his solution
concept at length. But game theory provides structure for solving games where there are interdependencies
among the participants in the game. It can be used to analyze actual games (Chess; Baseball; Candy Land;
whatever) as well as things you may not think are games (such as an oligopoly market or committee voting).
Eventually we will study oligopoly markets, but for now we will just discuss the basics of games. Each game
consists of 4 components. We can use Chess as an example:

1. Players �Who actually plays the game? There are two players in Chess, one who controls the White
pieces and one who controls the Black pieces. Note that players refer to those people who actually
make decisions in the game.

2. Rules �Who makes what decisions or moves? When do they make the moves? What are they allowed
to do at each move? What information do they know? In a standard Chess game, White moves �rst
and there are 20 moves that White can make (8 pawns that can move either one or two spaces ahead,
and 2 knights that can move to one of 2 di¤erent spots on the board). Players alternate turns, so that
Black also has 20 moves that can be made on his �rst turn. Furthermore, there are restrictions on how
the pieces can move, how pieces are removed and returned to the board, how a winner is determined,
how long a player has to make a move �in short, there are a lot of rules to Chess.

3. Outcomes �What occurs as a result of the rules and the decisions players make? At the end of a
Chess match one of three things occurs �White wins, Black wins, or there is a draw. Those are the
end results of the game. Much simpler than the rules.

4. Payo¤s �What utility is assigned to each of the outcomes? Essentially each player has a utility
function over outcomes and acts in a manner to best maximize utility, taking into consideration that
the other player is doing the same. It does not have to be the case that �winning� has a higher
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utility than �losing�. It may be that one�s payo¤ is tied to who the other players are. If the Chess
match is a professional or amateur match and you can win money (or fame) by winning the match,
then typically winning will have a higher payo¤ than losing. However, if you are playing a game with
your child or sibling and you are attempting to build their self-esteem then perhaps losing has a higher
payo¤. Basically, there is a utility function that is a function of all the relevant variables and this
utility function determines the players payo¤s. In most cases we will simply assume the payo¤s are
interchangeable with the outcomes, so that specifying a payo¤ speci�es an outcome.

If there is only one player then it is not a game but a decision. Decisions are easy to solve �simply make
a list of available actions to the player and then choose the action that gives the player the highest payo¤.
This is like our consumer maximization problem, although there are many, many decisions a consumer could
make in an economy with L goods. But the consumer lists all those combinations available to him or her
(the budget constraint acts as a rule or restriction on what is available) and then makes a choice about which
available bundle maximizes utility. Note that there can be one-player games if there is some uncertainty
involved. Take Solitaire as an example. There is only one player making an active decision, but there is a
second �player�, which we would call �nature�or �random chance�. The player makes an active decision
to make a particular move, and then nature makes a move regarding the next card to be shown. But we
are getting ahead of ourselves.
Games are slightly more complicated than decisions because the other player�s decisions must be taken

into consideration as they a¤ect the outcomes and payo¤s to all players. We will begin by considering
simultaneous move games and then move to a discussion of sequential games. For now, we consider games
with no uncertainty over payo¤s or randomness due to nature and we assume common knowledge. Common
knowledge means that player 1 knows what player 2 knows, and player 2 knows that player 1 knows what
player 2 knows, and the player 1 knows that player 2 knows that player 1 knows what player 2 knows, ad
in�nitum. Now, a few formalities:

De�nition 1 Let Hi denote the collection of player i�s information sets, Ã the set of possible actions in the
game, and C (H) �Ã the set of actions possible at information set H. A strategy for player i is a function
si :Hi !Ã such that si (H) 2 C (H) for all H 2Hi.

First of all, what is an information set? An information set is what a player knows about the moves that
the other player has made in the game. Thus, if there are 2 players and they make moves simultaneously
then player i knows nothing about the move made by player j and player i�s information is only the structure
of the game. If the players are playing a sequential game such as Chess, then when the Black player makes
his �rst move he knows which of the 20 moves the White player made. So, his information set is that White
moved piece X to square Y, and he can now disregard the other 19 moves that White could have made
initially. He still knows that White could have made these moves, and maybe that tells Black something
about the strategy White is using, but the simple fact is that White made a move, Black saw it, and now
Black must make a move based on a Chess board that looks a particular way after White makes his move.
Now, about strategies. In a very simple game, which we will get to shortly, it may be that both players

only make one move, the players move simultaneously, and then the game ends. In this case a strategy
is just one �decision�or move for a player. In that case, the decision made speci�es what the player will
do in every possible contingency that might arise in the game. However, consider Chess. A strategy for
Chess is much more complex. Consider the Black player�s �rst move. White can make 20 di¤erent opening
moves. Black must provide an action for each of these potential opening moves. Thus, there are 20 actions
that must be speci�ed by Black, and that is just for his �rst move!!! After White and Black both make
their initial moves, White now has to specify 400 actions for his second move (20 potential opening moves
by White times 20 potential opening moves by Black). And now we are only at the third move of the entire
game. This is why Chess has not yet been solved. Thus, a strategy for a player is a complete contingent
plan for that player.
We will begin by considering games in which players move at the same time. These games could be truly

simultaneous, or it could be that the players make actions at di¤erent times but that neither player knows
of the actions taken by the other.
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2 Pure strategies

Consider the following story:
You and someone else in the class have been charged with petty theft. You are strictly interested in your

own well-being, and you prefer less jail time to more. The two of you are isolated in di¤erent holding cells
where you will be questioned by the DA. The DA comes in and makes you an o¤er. The DA says that if you
confess and your partner confesses that you will both be sentenced to 8 months in jail. However, if neither
one of you confess, then both of you will do the minimum amount of time and be out in 2 months. But if
you confess and your partner does not confess then you can go home free (spend zero months in jail) and
your partner gets to spend 12 months in jail (where 12 months is the maximum amount of time for this
crime). The DA also tells you that your partner is o¤ered the same plea bargain and that if he/she confesses
and you don�t, then you will be sentenced to 12 months in jail and your partner will go home free. Do you
confess or not confess?
This is the classic prisoner�s dilemma story. We will use a matrix representation of the game (it is a

game �there are players, actions, outcomes, and payo¤s) to analyze it. Matrix representation of the game
is also known as the normal form or strategic form of the game.

De�nition 2 For a game with I players, the normal form representation �N speci�es for each player i a set
of strategies Si (with si 2 Si) and a payo¤ function ui (s1; :::; sI) giving the vNM utility levels associated with
the (possibly random) outcome arising from strategies (s1; :::; sI). Formally, we write �N = [I; fSig ; fui (�)g].

Basically, Si is the set of all strategies available to player i, and si is a particular strategy chosen from
Si by player i. The payo¤ function ui (�) is a function of the strategies chosen by all I players. This is
why the normal form representation is also known as the strategic form �there is no mention of the order of
moves, just a list of strategies that each player can take. When we discuss sequential games we will discuss
how any sequential game can be represented in strategic or normal form. For now, consider the matrix in
Figure 1 for the prisoner�s dilemma game described above.
In a two-player game we have one player who is labeled the �row player� and another player who is

labeled the �column player�. In this case, Prisoner 1 is the row player and Prisoner 2 is the column player.
The row player�s strategies are listed along the rows, while the column player�s strategies are listed across
the columns. Each player has 2 strategies, confess or don�t confess. In the cells of the matrix we put the
payo¤s from the choice of these strategies �by convention, the row player�s payo¤ is listed as the payo¤ on
the left and the column player�s payo¤ is the one on the right. If both prisoners confess then they each
spend 8 months in prison. If both players do not confess then they each spend 2 months in prison. If
Prisoner 1 confesses and Prisoner 2 does not, then Prisoner 1 spends 0 months in prison and Prisoner 2
spends 12 months in prison. The opposite is true if Prisoner 1 does not confess and Prisoner 2 does confess.
The matrix form lists all the strategies available to each player and the payo¤s associated with the player�s
choice of strategies. Formally, Si = fConfess;Don0t Confessg for i = 1; 2, with s1 and s2 either Confess or
Don�t Confess (the speci�c strategy, not the set of strategies). The payo¤ u1 (confess; don0t confess) = 0,
the payo¤ u1 (confess; confess) = �8, the payo¤ u1 (don0t confess; don0t confess) = �2, and the payo¤
u1 (don

0t confess; confess) = �12. All of the elements of a normal form game are represented in the
matrix.
Now, how do we solve the game? We are looking for a Nash Equilibrium (NE) of the game. A Nash

Equilibrium of the game is a set of strategies such that no player can unilaterally deviate from his chosen
strategy and obtain a higher payo¤. There are a few things to note here. First, a Nash Equilibrium is a set

of STRATEGIES, and not payo¤s. Thus, a NE of the game may be fConfess;Don0t Confessg
or it may be fConfess; Confessg or you might write that Prisoner 1 chooses Don�t Confess and Prisoner
2 chooses Don�t Confess if you are not into the whole brevity thing. I am not particular about notation
for these simple games, but if you write down the NE is something like f�2;�2g, and f�2;�2g represents
a payo¤ and not a strategy, it is very likely that I will not look at the rest of the answer. Now, if the
strategy is actually a number, then it is �ne to write down a number, such as Firm 1 chooses a quantity
of 35 and Firm 2 chooses a quantity of 26, but please remember that NE are STRATEGIES, not payo¤s.
Second, when we consider NE we look at whether or not one player can unilaterally deviate from the chosen
strategies of all the players to increase his payo¤. It is possible that multiple players would deviate and this
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Figure 1: Matrix representation for the prisoner�s dilemma.
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would increase their payo¤s, but we are going to hold the chosen strategies of the other players constant and
see if a particular player would deviate. Formally, we de�ne a Nash Equilibrium as:

De�nition 3 A strategy pro�le s = (s1; :::; sI) constitutes a Nash Equilibrium of game �N = [I; fSig ; fui (�)g]
if for every i = 1; :::; I,

ui (si; s�i) � ui (s0i; s�i)
for all s0i 2 Si.

Now, how to solve the simple game of the Prisoner�s Dilemma. If Prisoner 1 was to choose Confess,
and Prisoner 2 knew this, what would Prisoner 2 choose? Prisoner 2 would choose Confess. If Prisoner 1
was to choose Don�t Confess, and Prisoner 2 knew this, what would Prisoner 2 choose? Prisoner 2 would
still choose Confess. We can show the same result for Prisoner 1 holding Prisoner 2�s choice of strategy
constant. Thus, the NE of the Prisoner�s Dilemma is Prisoner 1 chooses Confess and Prisoner 2 chooses
Confess. When there is a simple matrix, it is easy enough to circle the payo¤s as we did in class.
There are a few things to note here. One is that both players choice of strategy does not depend on

what the other does. Regardless of what Prisoner 1 does Prisoner 2 should choose Confess, and the same is
true for Prisoner 1. Thus, both players have a strictly dominant strategy in this game.

De�nition 4 A strategy si 2 Si is a strictly dominant strategy for player i in game �N = [I; fSig ; fui (�)g]
if for all s0i 6= si we have:

ui (si; s�i) > ui (s
0
i; s�i) for all s�i 2 S�i.

The strategy is weakly dominant if ui (si; s�i) � ui (s0i; s�i) for all s�i 2 S�i (note that the di¤erence is that
the inequality is not strictly greater than, but greater than or equal to).

Thus, one of the �rst things to look for is a strictly dominant strategy for any players. If a player has
a strictly dominant strategy, then that simpli�es the solution of the game tremendously, because all of the
other players SHOULD know that the player with the strictly dominant strategy will not choose anything
other than that strategy.1

A related concept is that of a strictly dominated strategy (note the di¤erence between dominant and
dominated).

De�nition 5 A strategy si 2 Si is strictly dominated for player i in game �N = [I; fSig ; fui (�)g] if there
exists another strategy s0i 2 Si such that for all s�i 2 S�i

ui (s
0
i; s�i) > ui (si; s�i) :

The strategy si is weakly dominated if ui (s0i; s�i) � ui (si; s�i).

Thus, a strictly dominated strategy is one that a player would not choose regardless of the strategies
chosen by the other players. In the Prisoner�s Dilemma game, the strategy �Do not confess� is strictly
dominated by the strategy �Confess�.

2.1 Finding Nash equilibria �IEDS

Now that we have a de�nition of Nash equilibrium, how do we determine which sets of strategies constitute
Nash equilibria? One method, which could be very time consuming (particularly if done by hand �possibly
less so if done by computer), would be to determine every possible combination of strategies in a game
and then determine if they satisfy the de�nition we have of Nash equilibrium. Fortunately, there are some
shortcuts. Here is an example:

Player 2
Left Center Right

Top 7; 4 6; 3 4; 11
Player 1 Middle 8; 8 10; 4 6; 7

Bottom 18; 7 11; 9 4; 6

1Whether people actually realize this or act in a manner that suggests they realize this is debateable.
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In the Prisoner�s Dilemma both players had a strictly dominant strategy of Confess, which made �nding
the Nash equilibrium relatively easy. The easiest way to determine if a player has a strictly dominant
strategy is to �nd the strategy the player could use that would lead to his or her highest payo¤. For Player
1 the highest possible payo¤ is 18, which occurs when Bottom is used. However, when Player 2 plays Right,
Bottom is worse than Middle, and no better than Top, so Bottom is not a strictly dominant strategy. For
Player 2 the highest possible payo¤ is 11, which occurs when Right is used. However, when Player 1 plays
Middle, Right is worse than Left, and when Player 1 plays Bottom, Right is worse than either Left of Center.
So neither play has a strictly dominant strategy. But does either player have a strategy that would

never be used, or, in the terminology we have, does either player have a strictly dominated strategy? If so,
we could "remove" it from the game because (1) the player who has a strictly dominated strategy knows
that he will never use it and (2) because all players observe all strategies and payo¤s, the other player in
the game also knows that a strictly dominated strategy will not be used. In this game, �Top� is strictly
dominated by �Middle�for Player 1 (8 > 7, 10 > 6, 6 > 4). So we know (more importantly, Players 1 and
2 know) that Player 1 will never choose top and so we can eliminate it from the game. The game is now:

Player 2
Left Center Right

Player 1 Middle 8; 8 10; 4 6; 7
Bottom 18; 7 11; 9 4; 6

Once �Top� is removed the strategy �Right� is strictly dominated by the strategy �Left� for Player 2.
Note that this was not the case when �Top�was still considered by Player 1. So now we eliminate �Right�
and get:

Player 2
Left Center

Player 1 Middle 8; 8 10; 4
Bottom 18; 7 11; 9

We can now see that �Bottom� is a strictly dominant strategy for Player 1, and Player 1 will use this
strategy. Also, we can say that �Middle�is strictly dominated by �Bottom�and eliminate �Middle�. This
leaves:

Player 2
Left Center

Player 1 Bottom 18; 7 11; 9
It is quite obvious that Player 2 will choose �Center� because 9 > 7. Thus, the solution, or Nash

equilibrium, to this game is Player 2 chooses �Bottom� and Player 1 chooses �Center�. This method
of eliminating strictly dominated strategies is known as iterated elimination of strictly dominated
strategies (IEDS).

3 Incorporating Mixed Strategies

It is possible that a player chooses not to play a pure strategy from the set fSig, but to randomize over
available strategies in fSig. Thus, a player may assign a probability to each strategy, adhering to the
common laws of probability (all probabilities sum to 1, no probabilities greater than 1 or less than 0). Note
that the idea is to randomize, which we will discuss a little more in depth momentarily.

De�nition 6 Given player i0s (�nite) pure strategy set Si, a mixed strategy for player i, �i : Si ! [0; 1],
assigns to each pure strategy si 2 Si a probability �i (si) � 0 that it will be played, where

P
si2Si �i (si) = 1.

Suppose player i has M pure strategies in set Si = fs1i; :::; sMig. Player i0s set of possible mixed
strategies can therefore be associated with the points of the following simplex:

�(Si) = f�1i; :::; �Mig 2 RM : �mi � 0
for all m = 1; :::;M and

PM
m=1 �mi = 1

Hence, �(Si) is simply a mixed extension of Si, where pure strategies are the degenerate probability distri-
butions where �ji = 1 for some strategy j.
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When players randomize over strategies the induced outcome is random. In the normal form game
the payo¤ function for i is ui (s). This payo¤ function is a vNM type, so that player i0s expected utility
from a mixed strategy pro�le � = (�1; :::; �I) is E� [ui (s)], with the expectation taken with respect to the
probabilities induced by � on pure strategy pro�les s = (s1; :::; sI). Denote the normal form representation
as �N = [I; f�(Si)g ; fui (�)g], which includes mixed and pure strategies.
Now that we have discussed the concept of mixed strategies, let us formalize the concepts of best response

and Nash Equilibrium.

De�nition 7 In game �N = [I; f�(Si)g ; fui (�)g], strategy �i is a best response for player i to his rivals�
strategies ��i if

ui (�i; ��i) � ui (�0i; ��i) for all �0i 2 �(Si)

Strategy �i is never a best response if there is no ��i for which �i is a best response.

Essentially, a mixed strategy �i is a best response to some choice of mixed strategies for the other players
��i if the utility from �i is at least as large as the utility from any other available mixed strategy �0i. We
can also think about best responses in terms of a best response correspondence (this will prove useful when
studying the Cournot model and discussing existence of pure strategy Nash Equilibria). We will focus on
pure strategies here, rather than mixed, for reasons which will be made clear later.

De�nition 8 A player�s best response correspondence bi : S�i ! Si in the game �N = [I; fSig ; fui (�)g], is
the correspondence that assigns to each s�i 2 S�i the set

bi (s�i) = fsi 2 Si : ui (si; s�i) � ui (s0i; s�i) for all s0i 2 Sig .

Thus, a player�s best response correspondence will tell us which strategy (strategies) do best against the
other player�s strategies. Now, a formal de�nition of Nash Equilibrium:

De�nition 9 (Nash Equilibrium allowing mixed strategies) A mixed strategy pro�le � = (�1; :::; �I) consti-
tutes a Nash Equilibrium of game �N = [I; f�(Si)g ; fui (�)g] if for every i = 1; :::; I,

ui (�i; ��i) � ui (�0i; ��i) for all �0i 2 �(Si)

All this says is that all I players are playing a best response to each other. Note that this encompasses
pure strategies since they are simply degenerate mixed strategies. However, pure strategies tend to be more
interesting than mixed strategies, so we will restate the de�nition in terms of pure strategies. We will also
use the concept of a best response correspondence (or function in some speci�c games we will discuss later).

De�nition 10 (Nash Equilibrium in pure strategies) A strategy pro�le (s1; :::; sI) is a Nash Equilibrium of
game �N = [I; fSig ; fui (�)g] if and only if si 2 bi (s�i) for i = 1; :::; I.

Thus, a set of pure strategies is a Nash Equilibrium if and only if the strategies are best responses to one
another.

3.1 Finding PSNE �best responses

Before moving on to a game with mixed strategies, let us now reconsider a game we have already seen:
Player 2
Left Center Right

Top 7; 4 6; 3 4; 11
Player 1 Middle 8; 8 10; 4 6; 7

Bottom 18; 7 11; 9 4; 6
We just de�ned a Nash equilibrium in pure strategies (or a "pure strategy Nash equilibrium �PSNE)

as a set of strategies such that all players are playing best responses to each other. It is quite easy in
these 2-player games with a small number of strategies to determine a player�s best response correspon-
dence. Simply �x a strategy for one player and determine what the other player would choose if he knew
the other player was using the �xed strategy. If Player 1 chooses Top, Player 2�s best response is to
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choose Right because 11 is the highest payo¤. If Player 1 chooses Middle, Player 2 would choose Left,
and if Player 1 chooses Bottom Player 2 would choose Center. Thus, Player 2�s best response corre-
spondence is b2 (Top;Middle;Bottom) = fRight; Left; Centerg. Player 1�s best response correspondence is
b1 (Left; Center;Right) = fBottom;Bottom;Middleg. We already know from IEDS that (Bottom;Center)
is the Nash equilibrium, but �nding the best responses also bears this out. From these best responses we
also see that Top is *never* a best response by Player 1, and when we used IEDS we eliminated Top.
An easier method of determining the Nash equilibrium using best responses is to simply "mark" the

payo¤s that correspond to the best responses, as I have done in the matrix below:
Player 2
Left Center Right

Top 7; 4 6; 3 4; 11

Player 1 Middle 8; 8 10; 4 6 ; 7

Bottom 18 ; 7 11 ; 9 4; 6
Again, notice that no payo¤s for Player 1 are marked for the strategy Top, and that the only outcome

cell with both payo¤s marked is (Bottom;Center). That is the same Nash equilibrium we found using IEDS.
While it is unlikely that you will be building formal models of this type (or, if you are, you will likely not be
publishing them in top journals), the goal is to understand the intuition for these simple games.

3.2 Finding MSNE

Let�s discuss a particular game, Matching Pennies. There are two players who move simultaneously in this
game. Each player places a penny on the table. If the pennies match (both heads or both tails) then
Player 1 receives a payo¤ of 1 and Player 2 receives a payo¤ of (�1). If the pennies do not match (one
heads and one tails), then Player 1 receives a payo¤ of (�1) and player 2 receives a payo¤ of 1. The matrix
representation of the game is here:

Player 2
Heads Tails

Player 1 Heads 1;�1 �1; 1
Tails �1; 1 1;�1

Note that there is no pure strategy Nash Equilibrium to this game. However, there may be a mixed
strategy Nash Equilibrium to the game. For now, suppose that Player 1 chooses Heads 50% of the time
and Tails 50% of the time. Player 2�s expected payo¤ from ANY strategy (mixed OR pure) is 0. If Player
2 chooses Heads with probability 1, then Player 2�s payo¤ is 1 � 50% + (�1) � 50% = 0. It is the same if
Player 2 chooses Tails with probability 1, or if Player 2 chooses a 50/50 mix, or a 75/25 mix, or a 25/75 mix.
Thus, Player 1�s choice of Heads 50% of the time and Tails 50% of the time has made Player 2 indi¤erent
over any of his strategies. Now, is Player 1 choosing Heads 50% of the time and Tails 50% of the time and
Player 2 choosing Tails 100% of the time a Nash Equilibrium of this game? No, because if Player 2 were
to choose Tails 100% of the time then Player 1 would wish to choose Tails 100% of the time (or at least
shift the probabilities so that choosing Tails is weighted more heavily than choosing Heads). Thus, for a set
of mixed strategies to be a Nash Equilibrium BOTH (or all) players must be making each other indi¤erent
to all strategies (almost �all pure strategies that the player includes in the mixing distribution). Even if
Player 2 chose Tails 51% of the time and Heads 49% of the time Player 1 could still do better by choosing
Tails 100% of the time. These best response functions are shown in Figure 2. This idea is formalized below:

Proposition 11 Let S+i � Si denote the set of pure strategies that player i plays with positive probabil-
ity in mixed strategy pro�le � = (�1; :::; �I). Strategy pro�le � is a Nash Equilibrium in game �N =
[I; f�(Si)g ; fui (�)g] if and only if for all i = 1; :::; I

1. ui (si; ��i) = ui (s0i; ��i) for all si; s
0
i 2 S+i

2. ui (si; ��i) � ui (s0i; ��i) for all si 2 S+i and all s0i =2 S+i

Proof. It is the �rst proof that we are discussing in this class. Recall that "if and only if" means that the
conditions are necessary and su¢ cient.
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Figure 2: Best response correspondences for the Matching Pennies game.
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For necessity, if 1 or 2 do not hold for some player i, then there must be some si 2 S+i and s0i 2 Si such
that player i could switch from si to s0i and receive a strictly higher payo¤.
For su¢ ciency, we use proof by contradiction. Suppose that 1 and 2 hold but � is not a Nash equilibrium.

Because � is not a Nash equilibrium, that means some player i has some �0i such that ui (�
0
i; ��i) > ui (�; ��i).

If that is true, then player i must have some s0i 2 S+i played in �0i such that ui (s0i; ��i) > ui (�i; ��i). But
ui (�i; ��i) = ui (si; ��i) for si 2 S+i , which contradicts 1 and 2.
In words, this proposition states that all players must be indi¤erent between all of their pure strategies

over which they assign positive probability, and that the utility from those pure strategies to which a zero
probability is assigned must be equal to or less than the utility from a pure strategy played with positive
probability. Let Si = fA;B;Cg and S+i = fA;Bg. Then the utilities from the pure strategies A and B
when played against the mixed strategy ��i must be equal, but the utility from pure strategy C may be less
than or equal to that of pure strategy A or B. Because of this proposition, we need only check indi¤erence
among pure strategies and not all possible mixed strategies. If no player can improve by switching from the
mixed strategy �i to a pure strategy si then the strategy pro�le � is a mixed strategy Nash Equilibrium.
How to actually go about �nding these mixing probabilities when there is a small number of pure strate-

gies. Consider the Matching Pennies game. Let �1H be the probability that Player 1 assigns to Heads with
�1T = (1� �1H) be the probability that Player 1 assigns to Tails. In order to make Player 2 indi¤erent
among his pure strategies, we need E2 [Heads] = E2 [Tails]. The expected values for Player 2 of playing
Heads and Tails are:

E2 [Heads] = �1H � (�1) + (1� �1H) � 1
E2 [Tails] = �1H � 1 + (1� �1H) � (�1)

Now, set these 2 equal and solve for �1H .

�1H � (�1) + (1� �1H) � 1 = �1H � 1 + (1� �1H) � (�1)
��1H + 1� �1H = �1H � 1 + �1H

1� 2�1H = 2�1H � 1
2 = 4�1H
2

4
= �1H

We can then show that �1T = 2
4 as well. A similar process will provide �2H = �2T =

1
2 . So the Nash

Equilibrium to the Matching Pennies game is Player 1 chooses Heads with probability 1
2 and Tails with

probability 1
2 and Player 2 chooses Heads with probability

1
2 and Tails with probability

1
2 . It does not have

to be the case that the mixed strategy Nash Equilibrium is symmetric, nor is it the case that the existence
of pure strategy Nash Equilibrium will eliminate the possibility of a mixed strategy Nash Equilibrium.
Consider the coordination game. Player 1 and Player 2 have 2 locations at which they can meet, the boxing
match (Boxing) or the opera (Opera). However, they are unable to communicate on where to meet (you
have to realize that this game was created prior to the popularity of cell phones). They prefer meeting to
not meeting, but Player 1 prefers meeting at Boxing to meeting at Opera and Player 2 prefers meeting at
Opera to meeting at Boxing. The matrix representation is below:

Player 2
Boxing Opera

Player 1 Boxing 3; 2 0; 0
Opera 0; 0 2; 3

In this game it is easy to see that there are two pure strategy Nash Equilibria. One is Player 1 chooses
Boxing and Player 2 chooses Boxing and the other is Player 1 chooses Opera and Player 2 chooses Opera.
However, there is also a mixed strategy Nash Equilibrium to this game, where Player 1 chooses Boxing 60%
of the time and Opera 40% of the time and Player 2 chooses Boxing 40% of the time and Opera 60% of the
time. The graph of the best response correspondences is here, with the green line being the best response
of P1 and the red line being the best response of P2.:
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Notice that there are three intersection points that correspond to the three equilibria (2 PSNE, 1 MSNE).

3.3 Existence

In standard consumer and producer optimization problems you may have determined properties under which
an equilibrium exists and under which it is unique. It is no di¤erent with Nash Equilibrium. How do we
know that a solution to the game actually exists?

Proposition 12 Every game �N = [I; f�(Si)g ; fui (�)g] in which the sets S1; :::; SI have a �nite number
of elements has a mixed strategy Nash Equilibrium (note that it could be degenerate, like the Prisoner�s
Dilemma).

Note the underlying assumptions in the proposition. First, the number of players is �nite (I). Second,
the pure strategy spaces of the players are all �nite, though they need not have the same amount of potential
strategies (one player might have 3 strategies, another player 103). Third, we need to allow for mixed
strategies. We have already seen that Matching Pennies, a 2-player game where each player has 2 pure
strategies, does not have a pure strategy Nash equilibrium. So, if we allow for mixed strategies and the
�nite number of players has a �nite number of pure strategies to choose from then we are guaranteed to have
at least one Nash equilibrium. Figure 2 provides an illustration of this concept. Nash (1950) provides the
proof in about one page.
Perhaps the most di¢ cult thing to understand in the basic game is the continuity of the payo¤ functions.

Recall that the argument of ui (�) is the strategy pro�le, (�1; :::; �I). Small changes in Player 1�s strategy
should not cause large changes in Player 1�s payo¤s given other players� strategies. Consider Matching
Pennies, and �x Player 2�s strategy at Heads. A "small change" in Player 1�s strategy would be moving
from choosing Heads 50% of the time to choosing Heads 50.01% of the time (perhaps that is too large of a
change - we can make it 50.0000001% of the time). By moving from 50% Heads, 50% Tails to 50.01% Heads,
49.99% Tails, Player 1�s expected payo¤ increases from 0 to 0.0002. Smaller changes in strategy would lead
to smaller changes in payo¤s.

Proposition 13 A Nash Equilibrium exists in game �N = [I; fSig ; fui (�)g] if for all i = 1; :::; I

1. Si is a nonempty, convex, and compact subset of some Euclidean space RM

2. ui (s1; :::; sI) is continuous in (s1; :::; sI) and quasiconcave in si
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If we make some restrictions about the strategy set Si then we can show that an equilibrium in pure
strategies exists (note the subtle di¤erence in the statement of this proposition with the statement of the
prior one). Footnote 5 on page 253 of MWG is helpful here. We will come back to this second proposition
when we discuss games with a continuum of strategies.
These results hinge on �xed-point theorems. The particular �xed-point theorem (Brouwer, Kakutani,

etc.) used depends on the assumptions one makes about the strategy sets and payo¤ functions. A �xed-point
theorem basically says that there is a point in the set that maps back to itself. In the case of the games we are
playing, there are points in the best response correspondences of players that map back into themselves. We
will not go through the formal proofs in class though they are in Appendix 8.A in MWG or section 1.3 of FT
(or Nash�s 1950 paper). The �rst proposition is essentially a special case of the second. An important point
to remember is that a Nash equilibrium will exist for any game that meets these assumptions. However,
there are games which do not meet these assumptions in which a NE exists, it is just that you cannot use
these propositions to show existence.
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