
Notes on sequential and repeated games

1 Sequential Move Games

Thus far we have examined games in which players make moves simultaneously (or without observing what
the other player has done). Using the normal (strategic) form representation of a game we can identify sets
of strategies that are best responses to each other (Nash Equilibria). We now focus on sequential games
of complete information. We can still use the normal form representation to identify NE but sequential
games provide more information than what is present in the normal form because some players observe other
players�decisions before they take action. The fact that some actions are observable may cause some NE
of the normal form representation to be inconsistent with what one might think a player would do.
Here�s a simple game between an Entrant and an Incumbent. The Entrant moves �rst and the Incumbent

observes the Entrant�s action and then gets to make a choice. The Entrant has to decide whether or not
he will enter a market or not. Thus, the Entrant�s two strategies are �Enter� or �Stay Out�. If the
Entrant chooses �Stay Out� then the game ends. The payo¤s for the Entrant and Incumbent will be 0
and 2 respectively. If the Entrant chooses �Enter� then the Incumbent gets to choose whether or not he
will �Fight�or �Accommodate�entry. If the Incumbent chooses �Fight�then the Entrant receives �3 and
the Incumbent receives �1. If the Incumbent chooses �Accommodate�then the Entrant receives 2 and the
Incumbent receives 1. This game in normal form is

Incumbent
Fight if Enter Accommodate if Enter

Entrant Enter �3;�1 2; 1
Stay Out 0; 2 0; 2

.

Note that there are two pure strategy Nash Equilibria (PSNE) to this game. One is that the Entrant
chooses Enter and the Incumbent chooses Accommodate and the other is that the Entrant chooses Stay Out
and the Incumbent chooses Fight.1 Of these two PSNE, which seems more �believable�? The NE where
the Entrant chooses Stay Out and the Incumbent chooses Fight is only a NE if the Entrant thinks that the
Incumbent�s choice of Fight is credible. But what does the Entrant know? The Entrant knows that if
he chooses Enter that the Incumbent will not choose Fight but will choose Accommodate. If you are the
Entrant, are you worried about the Incumbent choosing Fight (as this game is structured)? No, because
if you choose Enter, the best thing for the Incumbent to do for himself at that point would be to choose
Accommodate. Thus, we can rule out the NE of Stay Out, Fight because the choice of Fight is not credible
(Note: this does NOT mean that Stay Out, Fight is NOT a NE, it just means that it relies on a noncredible
threat).

1.1 Extensive Form Representation

We can represent the sequential game using the extensive form representation or game tree. The extensive
form representation, �E , has more components than the normal form representation. Recall that the normal
form representation required that we only need to know how many players there were, which strategies were
available to each player, and which payo¤s occurred as a result of the players� strategy choices. With
an extensive form game we also need to consider the fact that players move at di¤erent points in time.
An extensive form game will consist of the following basic items: players, decision nodes, information sets,
strategies, and payo¤s.2 Note that the components of a normal form game are all here, so that any extensive

1To be complete, there is also a mixed strategy Nash Equilibrium (MSNE) where the Entrant chooses Stay Out with
probability 1 and the Incumbent chooses Fight with probability 2

5
and Accommodate with probability 3

5
.

2There is a much more formal de�nition on page 227 of MWG.
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form game may also be represented as a normal form game. The additional items are decision nodes and
information sets. A decision node is a point where a player makes a decision. An information set is what
the player knows at a certain node. The game begins with a single decision node, called the initial node.
The player who makes a decision at a node is listed and the strategies available to that player are then drawn
as lines from that node (the branches of the game tree). If the game ends after a player makes a decision,
then the players reach a terminal node and payo¤s are listed. The payo¤s correspond to the path played
out by the strategy choices that lead to the terminal node. If the game continues after a player makes a
decision then the players reach another decision node. A di¤erent player will be able to take an action, and
his strategies will be represented as branches extending from that node. This process continues until the
game reaches a terminal node after strategy choices are made. The game tree representation of the Entrant,
Incumbent game is in Figure 1.1. Note that an actual game tree does not include all the labels, but I have
included them for reference.

Entrant

Incumbent

Stay Out
Enter

Fight Accommodate

0

2

­3

­1

2

1

Initial Node

Branches

Decision Node

Information
sets

Terminal Nodes
Game tree with its components labeled.

The actual game tree, without the labels, would look like Figure 1.1.
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Entrant

Incumbent

Stay Out
Enter

Fight Accommodate

0

2

­3

­1

2

1

Game tree without the components labeled.

Much simpler, but note that the players, strategies, and payo¤s are still listed. You might ask why we circle
the node and label it an information set. It is possible that players do not know which node they are at,
so that the player�s information set contains multiple nodes. Thus, the information set would be a circle
around both nodes. Consider the simultaneous move Prisoner�s Dilemma game. Prisoner 2 does not know
which choice is made by Prisoner 1, so his information set contains both nodes, as in Figure 1.Contrast this
with the sequential version of the Prisoner�s Dilemma game where Prisoner 2 knows what Prisoner 1 has
chosen in Figure 2.The games look similar, but they are slightly di¤erent as we will discuss shortly.
There is one other small detail in extensive form games. It may be that one or more players has an

in�nite number of strategies. Consider a game in which players may choose to produce any quantity of
an item greater than or equal to 0 or less than or equal to the quantity consumers would purchase when
price equals 0. The strategy space is then any real number in the interval [0; Q0], where Q0 is the quantity
consumers would purchase when price equals 0. As we cannot represent the strategies with a �nite number
of branches, we would use a dashed line between two branches to represent an interval. The branches
would be labeled 0 and Q0. If the other player does not know the choice of the �rst player (the game is
simultaneous) then both nodes extending from the two branches as well as all the nodes represented by the
dashed line are in the information set, so we circle both nodes and the dashed line. If the second player
does observe the �rst player�s choice, then we simply draw a circle around some elements of the dashed line
but not the two nodes drawn from the branches.

Representing an extensive form game in normal form We know that with a normal form game we
only need to know the players, strategies, and payo¤s. Representing Entry, Incumbent in normal form is
easy: because there are only 2 players and 2 strategies we only need a 2x2 matrix. We have already seen
the representation of the simultaneous Prisoner�s Dilemma. But what does the normal form representation
of the sequential Prisoner�s Dilemma look like? There are 2 players, Prisoner 1 and Prisoner 2. Prisoner 1
has 2 strategies Confess and Not Confess. So far everything looks the same. But Prisoner 2 now has four
strategies. How can that be? Prisoner 2 only chooses Confess or Not Confess, doesn�t he? While that is
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Prisoner 1

Prisoner 2

Confess
Not Confess

Confess
Not Confess

0

­12
­12

0

­2

­2

Confess Not Confess

­8

­8

Figure 1: Simultaneous move Prisoner�s Dilemma game.
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Prisoner 1

Prisoner 2

Confess
Not Confess

Confess
Not Confess

0

­12
­12

0

­2

­2

Confess Not Confess

­8

­8

Prisoner 2

Figure 2: Sequential move Prisoner�s Dilemma game.
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true, Prisoner 2 now has two information sets �he needs to specify an action at EVERY information set.
So Prisoner 2�s four strategies are:

1. Confess if Prisoner 1 confesses, Confess if Prisoner 1 does not confess (essentially Always Confess)

2. Confess if Prisoner 1 confesses, Not Confess if Prisoner 1 does not confess (essentially play the same
as Prisoner 1)

3. Not Confess if Prisoner 1 confesses, Confess if Prisoner 1 does not confess (essentially play the opposite
of Prisoner 1)

4. Not Confess if Prisoner 1 confesses, Not Confess if Prisoner 1 does not confess (essentially Always Not
Confess)

Given that Prisoner 2 has four strategies, we now have a 2x4 (or a 4x2) matrix representation of the
sequential Prisoner�s Dilemma.

Prisoner 1
Confess (C) Not Confess (NC)

Confess if P1 C, Confess if P1 NC �8;�8 0;�12
Prisoner 2 Confess if P1 C, Not Confess if P1 NC �8;�8 �2;�2

Not Confess if P1 C, Confess if P1 NC �12; 0 0;�12
Not Confess if P1 C, Not Confess if P1 NC �12; 0 �2;�2

This normal form representation illustrates what a strategy is for a player in a sequential game. Finding
the NE, we see that the only pure strategy NE to the sequential game is that Prisoner 1 chooses Confess
and Prisoner 2 chooses �Confess if P1 C, Confess if P1 NC�or �Always Confess�. Thus, there are no NE
that rely on noncredible threats in this game, so there is no di¤erence in the OUTCOME in the sequential
and the simultaneous Prisoner�s Dilemma games. But the NE are NOT the same because Prisoner 2 has a
di¤erent strategy set in the two games.

1.2 Finding �credible�NE in an extensive form game

Because we can represent any extensive form game in strategic form, why bother with the game tree? The
game tree allows us to use a concept called backward induction to �nd those NE which are sequentially
rational and eliminate those NE which are not. In the Entrant, Incumbent game the NE of Stay Out, Fight
is NOT sequentially rational while the NE of Enter, Accommodate is. Sequentially rational means that
all players are choosing optimally at any point in the tree. Backward induction says that to �nd theses
sequentially rational NE one starts at the end of the tree (the terminal nodes) and works backwards, choosing
optimally at each decision node and �eliminating� the branches of the tree that are not chosen. The NE
found by this method is known as the subgame perfect Nash Equilibrium (SPNE �do not confuse with pure
strategy Nash Equilibrium, PSNE). What is a subgame?

De�nition 1 A subgame of an extensive form game �E is a subset of the game having the following prop-
erties

1. it begins with an information set containing a single decision node, contains all the decision nodes that
are successor nodes of this node, and contains only those nodes

2. If decision node x is in the subgame, then every x0 2 H (x) is also, where H (x) is the information set
that contains x (there are no broken information sets)

Now that we know what a subgame is, we can de�ne a SPNE. Note that the entire game tree is a
subgame.

De�nition 2 A pro�le of strategies � = (�1; :::; �I) in an I-player extensive form game �E is a subgame
perfect Nash Equilibrium if it induces a Nash Equilibrium in every subgame of �E
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Figure 3: Illustration of SPNE of the Entrant, Incumbent game.

Basically, if we look at each of the subgames in a game tree we want players to be playing a NE in each
of those subgames. This is why backward induction works as a solution technique. We start at the smallest
subgames and work towards the largest subgame (the entire game) �nding optimal choices at each of the
smaller subgames. Consider the Entrant, Incumbent game again. We already know that there are 3 NE (2
PSNE and 1 MSNE). However, there is only 1 subgame perfect NE (SPNE), which is the Entrant Enters
and the Incumbent Accommodates. To see this, start at the smallest subgame, which is the Incumbent�s
decision node and the two branches extending from it. A rational Incumbent would choose to Accommodate
in this subgame because 1 > �1. Knowing this, the Entrant can now eliminate the "Fight" branch from the
tree, because a rational Incumbent will not play this strategy if the game gets to this point. The Entrant
now has to choose between Stay Out, which has a payo¤ of 0 for the Entrant, and Enter, which results in a
payo¤ of 2 for the Entrant. Because 2 > 0, the Entrant will choose Enter.The di¤erence between Figure 3
and Figure 1.1 is that the subgame perfect choices made by the players now have red arrows indicating the
choices the players would make. This is standard notation for indicating choices in an extensive form game
(the arrows at least, not necessarily the red color). We can also �nd the SPNE of the sequential prisoner�s
dilemma game using the same techniques, and it will show that Prisoner 1 Confesses, Prisoner 2 Always
Confesses is the SPNE of that game. Note that all SPNE are NE, but not that all NE are SPNE. As for
existence of NE and SPNE in sequential games, we have two propositions.

Proposition 3 (Zermelo�s Theorem) Every �nite game of perfect information �E has a pure strategy Nash
Equilibrium that can be derived through backward induction. Moreover, if no player has the same payo¤s at
any two terminal nodes, then there is a unique Nash Equilibrium that can be derived in this manner.

Proposition 4 Every �nite game of perfect information �E has a pure strategy subgame perfect Nash Equi-
librium that can be derived through backward induction. Moreover, if no player has the same payo¤s at
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any two terminal nodes, then there is a unique subgame perfect Nash Equilibrium that can be derived in this
manner.

Note that we need perfect information in order to have these propositions hold, not just common knowl-
edge. Perfect information requires that all information sets contain a single decision node. Thus, the
simultaneous move Matching Pennies game and the simultaneous move Prisoner�s Dilemma game do not
have perfect information, so there is no guarantee that there is a PSNE to either of those games (there might
be though).

2 Repeated Interactions

We have studied simultaneous and sequential games, and those games have essentially been one-shot games
in nature. One-shot games are a starting point for the discussion of games, but many �games�are played
repeatedly between players. Consider the following game:

Player 2
Defect Cooperate

Player 1 Defect 8; 8 32; 4
Cooperate 4; 32 25; 25

Note that Defect is a dominant strategy for both players, but that if they could agree to Cooperate they
would earn more. Note that this game is simply a Prisoner�s Dilemma without the negative payo¤s and the
underlying story. What if the players played this game multiple, but �nite, times? What would the SPNE
of the repeated game be? Consider two repetitions of the game, and recall that a SPNE must induce NE in
every subgame. Start with the ending subgames. Since these are simply Prisoner�s Dilemmas the players
must both choose Defect in order to induce NE of the subgame. Now the players have a choice of receiving
either 16 and 40 (if they choose Defect) or 12 and 25 (if they choose Cooperate). Since 16 > 12 and 40 > 25
the players will both choose Defect in the initial play of the game. Thus, the SPNE of this twice repeated
Prisoner�s Dilemma is for Player 1 to always choose Defect at any decision node and for Player 2 to always
choose Defect at any decision node. Regardless of how many times this game is �nitely repeated, the only
SPNE of this game will be for both of the players to choose Defect at any decision node. Thus, any attempt
at cooperation in a �nitely repeated Prisoner�s Dilemma should unravel according to SPNE.
One might think that the players should be able to cooperate if they are playing this game repeatedly.

After all, if the game is played 1000 times it is a lot better to receive 25 each period than it is to receive 8
each period. But SPNE is what it is for this game. However, what if the game was repeated in�nitely? The
�rst question to ask is if in�nite repetition even makes sense given that the lives of humans are �nite (at least
to the best of our knowledge). Consider an �economic agent�that is a corporation. The corporation may
be in�nitely lived as it passes from one owner to the next. Second, while human lives may be �nite there is
(usually) some uncertainty as to when one�s life will end. We can show that having an uncertain endpoint is
consistent with in�nite repetition of a game. Finally, and this answers the question of why in�nite repetition
before discussing the concept, people DO cooperate with one another on a daily basis. In�nite repetition of a
one-shot game like the Prisoner�s Dilemma will allow the (Cooperate, Cooperate) outcome to occur at every
repetition of the game as part of a viable SPNE of the game. Be warned, however, that in�nite repetition
of the one-shot Prisoner�s Dilemma also allows the (Defect, Defect) outcome to occur at every repetition
of the game as part of a viable SPNE of the game. Thus, while in�nite repetition will allow cooperation
as part of the SPNE, in�nite repetition also allows for a multiplicity of equilibria. This result is what is
known as the �embarrassment of riches�of in�nitely repeated games. Recall from earlier discussions that
economists like to answer two questions when discussing the concept of equilibrium: Does an equilibrium
exist and is it unique? We focus on showing the su¢ cient conditions for equilibrium to exist and skip the
uniqueness question when discussing in�nitely repeated games. There is a third question which some of
you may be interested in: Among the multiple equilibria that exist, how do the players choose one of them?
This question is essentially the basic one of evolutionary economics, which attempts to move economics from
a physics framework to a biological one. While this approach seems novel, it has roots dating back at least
to Alfred Marshall, who wrote the primary economics text (Principles of Economics �not a very clever title,
but to the point) around the turn of the century �the 20th century (published in 1890).
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2.1 Evaluating strategies in in�nite games

In order to evaluate strategies in in�nite games it will be necessary to add a particular parameter to the
discussion. The parameter added will be the player�s discount factor, �. It is assumed that � 2 [0; 1),
and that players have exponential discounting. All that exponential discounting means is that a payo¤ one
time period from today is discounted at � and a payo¤ two time periods from today is discounted at �2, etc.
Thus, a player�s payo¤ stream from the in�nite game would look like:

�0�0 + �
1�1 + �

2�2 + �
3�3 + :::

where �k denotes the player�s payo¤ in each period k. The � 2 [0; 1) assumption will be justi�ed shortly.3
It is typically assumed that players (and people in general) prefer $1 today to $1 tomorrow, and $1 tomorrow
to $1 two days from now. Thus, the sooner a player receives a payo¤ the less the payo¤ is discounted. Why
add this discount factor? Well, if we do not have a discount factor then the players�payo¤s from following
ANY strategy (assuming that there are no negative payo¤s that the player could incur) of an in�nite game
would be in�nite, which is not very interesting. This possibility of an in�nite payo¤ is also why we assume
that � < 1 rather than � � 1. If � = 1, then a player weights all payo¤s equally regardless of the time period,
and this leads to an in�nite payo¤. If � = 0, then the player will only care about the current period. As �
moves closer to 1, the player places more weight on future periods. It is possible to motivate this discount
factor from a present value context, which should make � = 1

1+r , where r is �the interest rate.� Thus, if
r = 0:05, then � � 0:95. All this says is that getting $1 one period from today is like getting 95 cents
today, and getting $1 two periods from today is like getting 90.7 cents today. While this interpretation of
the discount factor is the most closely linked to economic behavior, we will not assume that the discount
factor is directly related to the interest rate, but that it is simply a parameter that states how players value
payo¤s over time.
Now, suppose that players 1 and 2 use the following strategies:
Player 1 chooses Cooperate in the initial period (at time t = 0) and continues to choose Cooperate at

every decision node unless he observes that Player 2 has chosen Defect. If Player 1 ever observes Player
2 choosing Defect then Player 1 will choose Defect at every decision node after that defection. Player
2�s strategy is the same. These strategies call for Cooperation at every decision node until a Defection is
observed and then Defection at every decision node after Defection is observed. Note that this is a potential
SPNE because it is a set of strategies that speci�es an action at every decision node of the game. The
question then becomes whether or not this set of strategies is an SPNE of the game. Recall that a strategy
pro�le is an SPNE if and only if it speci�es a NE at every subgame. Although each subgame of this game has
a distinct history of play, all subgames have an identical structure. Each subgame is an in�nite Prisoner�s
Dilemma exactly like the game as a whole. To show that these strategies are SPNE, we must show that
after any previous history of play the strategies speci�ed for the remainder of the game are NE.
Consider the following two possibilities:

1. A subgame that contains a deviation from the Cooperate, Cooperate outcome somewhere prior to the
play of the subgame

2. A subgame that does not contain a deviation from the Cooperate, Cooperate outcome

If a subgame contains a deviation then the players will both choose Defect, Defect for the remainder of
the game. Because this set of actions is the NE to the one-shot version (or stage game) of the Prisoner�s
Dilemma, it induces a NE at every subgame. Thus, the �Defect if defection has been observed�portion of
the suggested strategy induces NE at every subgame.
Now, for the more di¢ cult part. Suppose that the players are at a subgame where no previous defection

has occurred. Consider the potential of deviation from the proposed strategy in period � � t, where t
is the current period. If Player 2 chooses Defect in period � he will earn ���Deviate + ��

P1
i=1 �

i�D for
the remainder of the game, where �Deviate is Player 2�s payo¤ from deviating and �D is his payo¤ each
period from the (Defect, Defect) outcome. If Player 2 chooses to follow the proposed strategy, then he

3The exponential discounting assumption is used because it allows for time consistent preferences. Hyperbolic discounting
is another type of discounting that has been suggested as consistent with choices made by individuals in experiments, although
hyperbolic discounting does not necessarily lead to time consistent preferences.
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will earn ��
P1

i=0 �
i�C , where �C is his payo¤ from the (Cooperate, Cooperate) outcome. The question

then becomes under what conditions will the payo¤ from deviating be greater than that from the payo¤ of
following the proposed strategy. To �nd the condition simply set up the inequality:

���Deviate + ��
P1

i=1 �
i�D � ��

P1
i=0 �

i�C

We can cancel out the �� terms to obtain:4

�Deviate +
P1

i=1 �
i�D �

P1
i=0 �

i�C

Now, using results on series from calculus, we have:

�Deviate +
�

1� ��
D � 1

1� ��
C

Now, we can substitute in for �Deviate;�D; and �C from our game to �nd:

32 + 8
�

1� � � 25
1

1� �

Or:

32� 32� + 8� � 25

7� 24� � 0

7 � 24�
7

24
� �

Thus, choosing to deviate from the proposed strategy only provides a higher payo¤ if � � 7
24 , so that

continuing to cooperate is a best response if � � 7
24 . The discount factor will be a key factor in determining

whether or not a proposed equilibrium is an SPNE. In fact, when looking at in�nitely repeated games, it is
best to have a particular strategy in mind and then check to see what the necessary conditions are for it to
be a SPNE, given the multiplicity of equilibria.
Are there other SPNE to the game? Consider a modi�ed version of the game:

Player 2
Defect Cooperate

Player 1 Defect 8; 8 80; 4
Cooperate 4; 80 25; 25

The only change in this game is that the payo¤ of 32 that the player received from Defecting when
the other player Cooperates has been changed to 80. We can show that both players using a strategy of
cooperating until a defection occurs (the same proposed strategy from before) is a SPNE if:

80 + 8
�

1� � � 25
1

1� �

or � � 55
72 . Thus, if both players are su¢ ciently patient then the proposed strategy is still an SPNE. Note

that the discount factor increased in this example because the payo¤ to deviating increased. But, is there
a strategy that yields higher payo¤s? What if the following strategies were used by players 1 and 2:
If no deviation has occurred, Player 1 chooses Defect in all even time periods and chooses Cooperate in

all odd time periods. If a deviation occurs Player 1 always chooses Defect.
If no deviation has occurred, Player 2 chooses Cooperate in all even time periods and chooses Defect in

all odd time periods. If a deviation occurs Player 2 always chooses Defect.
A deviation (from player 1�s perspective) occurs when Player 2 chooses Defect in an even time period.

A deviation (from player 2�s perspective) occurs when Player 1 chooses Defect in an odd time period. Note
that we start the game at time t = 0, so that Player 1 receives 80 �rst.

4This canceling out of the �� terms typically leads to the assumption that if deviation is going to occur in an in�nitely
repeated game it will occur in the �rst time period. I proceed under this assumption in later examples.
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Look at what this strategy would do. It would cause the outcome of the game to alternate between the
(Defect; Cooperate) and (Cooperate;Defect) outcomes, giving the players alternating periods of payo¤s of
80 and 4, as opposed to 25 each period using the �cooperate until defect is observed, then always defect�
strategy. On average (and ignoring discounting for a moment), each player would receive 42 per period
under this new strategy and only 25 per period under the old. Is the new strategy a SPNE? We should
check for both players now that they are receiving di¤erent amounts of payo¤s in di¤erent periods.
For Player 1:

�Deviate = 80 +
P1

i=1 �
i8

�C =
P1

i=0 �
2i80 +

P1
i=0 �

2i+14

If �C � �Deviate then Player 1 will choose NOT to deviate:

80
1

1� �2
+ 4

�

1� �2
� 80 + 8

�

1� �
80 + 4� � 80

�
1� �2

�
+ 8� (1 + �)

4� � �80�2 + 8� + 8�2

72�2 � 4� � 0

18� � 1 � 0

� � 1

18

This is true, for any � � 1
18 .

For Player 2:

�Deviate =
P1

i=0 �
i8

�C =
P1

i=0 �
2i4 +

P1
i=0 �

2i+180

If �C � �Deviate then Player 2 will choose NOT to deviate:

4
1

1� �2
+ 80

�

1� �2
� 8

1

1� �
4 + 80� � 8 + 8�

72� � 4

� � 1

18

Thus, both players need to have a discount factor greater than or equal to 1
18 to support this strategy.

Note that this discount factor is much lower than the one needed to support the �cooperate until defect
is observed, then always defect� strategy. However, it also illustrates the �embarrassment of riches� of
in�nitely repeated games.

2.2 Some formalities

We will now formalize some of these concepts. The focus is on 2-player games. In the one-period stage
game, each player i has a compact strategy set Si, where qi 2 Si is a particular feasible action for player i.
Let q = (q1; q2) and S = S1xS2.
Let �i (qi; qj) be player i�s payo¤ function.
Let b�i (qj) =Maxq2Si�i (qi; qj) be player i�s one period best response payo¤ given that his rival chooses

qj .
Let q� = (q�1 ; q

�
1) denote the unique PSNE to the one-period stage game (a simplifying assumption).

A pure strategy in this game for player i, si, is a sequence of functions, fsit (�)g1t=1 mapping from the
history of previous action choices (denoted Ht�1) to a player�s action choice in period t, sit (Ht�1) 2 Si.
The set of all pure strategies for player i is denoted �i, and s = (s1; s2) 2 �1x�2 is a pro�le of pure

strategies for the players.
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Any pure strategy pro�le s = (s1; s2) induces an outcome path Q (s), which is an in�nite sequence of
actions fqt = (q1t; q2t)g1t=1 that will actually be played when the players follow strategies s1 and s2.
Player i�s discounted payo¤ from outcome path Q is denoted by vi (Q) =

P1
t=0 �

t�i (q1+t).
Player i�s average payo¤ from outcome path Q is (1� �) vi (Q).
Player i�s discounted continuation payo¤ from some point t onward is vi (Q; t) =

P1
�=0 �

��i (qt+� ).
We already know that the strategies that call for player i to play the stage game NE q�i in every period,

regardless of the prior history, constitute an SPNE for any � < 1.

2.2.1 Nash reversion and the Nash reversion Folk Theorem

Nash reversion is essentially the "punishment" we have been discussing �if one player fails to "cooperate",
the other player "punishes" by reverting to the stage game NE. It was well-known that this was a solution
to the in�nitely repeated game before someone decided to write it down, hence the term "Folk Theorem".

De�nition 5 A strategy pro�le s = (s1; s2) in an in�nitely repeated game is one of Nash reversion if each
player�s strategy calls for playing some outcome path Q until someone deviates and playing the stage game
NE q� = (q�1 ; q

�
2) thereafter.

Lemma 6 A Nash reversion strategy pro�le that calls for playing outcome path Q = fq1t; q2tg1t=1 prior to
any deviation is a SPNE if and only if

b�i (qjt) + �

1� � �i
�
q�i ; q

�
j

�
� vi (Q; t)

where j 6= i for all t and i = 1; 2.

This formalizes what we have already been discussing in the context of the Prisoner�s Dilemma game.

Proposition 7 Consider an in�nitely repeated game with � > 0 and Si � R for i = 1; 2. Suppose also that
�i (q) is di¤erentiable at q� = (q�1 ; q

�
2) with @�i (q

�
1 ; q

�
2) =@qj 6= 0 for j 6= i and i = 1; 2. Then there is some

q0 = (q01; q
0
2) with [�1 (q

0
1; q

0
2) ; �2 (q

0
1; q

0
2)] >> [�1 (q

�
1 ; q

�
2) ; �2 (q

�
1 ; q

�
2)] whose in�nite repetition is the outcome

path of an SPNE that uses Nash reversion.

This proposition states that with continuous strategy sets and di¤erentiable payo¤ functions, as long as
there is some possibility for joint improvement in payo¤s around the stage game NE some cooperation can
be sustained.

Proposition 8 Suppose that outcome path Q can be sustained as an SPNE outcome path using Nash rever-
sion when the discount factor is �. Then it can be so sustained for any �0 � �.

Hopefully that proposition is self-explanatory ...

Proposition 9 For any pair of actions q = (q1; q2) such that �i (q1; q2) > �i (q�1 ; q
�
2) for i = 1; 2 there exists

a � < 1 such that, for all � > �, in�nite repetition of q = (q1; q2) is the outcome path of an SPNE using Nash
reversion strategies.

This proposition is the most important one as it states that any stationary outcome path that gives each
player a discounted payo¤ that exceeds the payo¤ arising from in�nite repetition of the stage game NE can
be sustained as an SPNE if � is su¢ ciently close to 1. Note that this proposition only applies to stationary
paths. It is possible to extend the argument to include non-stationary paths with average payo¤ vectors
greater than the stage game NE.
The text also discusses some other propositions which show that payo¤ vectors LESS than the stage

game NE payo¤ vector can be supported using punishment strategies that are harsher than Nash reversion.
Essentially, Player 1 threatens to punish Player 2 by forcing Player 2 to accept the minimum amount he
possibly could be forced to accept. In the simple Prisoner�s Dilemma we have been discussing this is the
same as Nash reversion because Player 2 could not be forced to accept anything less than the stage game
NE.
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