
Static games with incomplete information�

1 Introduction

The next step in games is to consider a case where one (or both) of the players has incomplete information.
Recall that imperfect information deals with not knowing which node of a game a player is at. With
incomplete information, there is some uncertainty over the other player�s payo¤ function. A classic example
is an auction. In a fairly standard auction setting each bidder knows his own private value but not the value
of the other bidders. All bidders have the same payo¤ function, which is their value minus the price they
pay for the object (this payo¤ is simply a calculation of consumer surplus), but because bidders only know
their own value they have incomplete information about the other bidder�s actual payo¤. Contrast this with
the case of Cournot competition we recently considered. All �rms knew the demand conditions as well as
the cost conditions for all �rms. Thus, for any strategy choices by the �rms both �rms knew exactly what
the payo¤ would be to the other �rm. In an incomplete information setting this knowledge of the payo¤
function is removed.
It is easiest in this setting to talk about the players having a possibility of having di¤erent types. A type

simply represents the possible state of the world that a particular player could be. In an auction setting,
there might be 100 di¤erent values that a bidder could have for an item. Thus, there are 100 possible types
that the bidder could have. In a Cournot competition setting there might be 2 di¤erent cost functions a �rm
could have, which yields 2 types. These types will be assigned by some probability distribution, which we
will treat as known to the players.1 In an auction setting a bidder�s value might be drawn from the uniform
distribution between 0 and 100, while in the Cournot competition game a �rm may have a probability of �
of having a high cost and a probability of 1� � of having a low cost. Because each player has multiple types
that he could be we will need a new solution concept.

2 Bayes-Nash equilibrium

In our simultaneous game of complete information we speci�ed a normal form game as �N = [I; fSig ; fuig],
where the game consisted of I players, a strategy space Si for each player, and a payo¤ function ui for each
player where the payo¤ is contingent upon the strategies chosen by all of the players (the strategy pro�le).
Now we have two additional features to incorporate, one of which is a player�s type space, Ti, as well as a
player�s belief space, which we denote by pi. In the games we will initially consider, a speci�c player�s type
will yield no information about the other player�s type �thus, players�types are independent of one another.
Thus, the belief space for these initial game is simply the exogenously given probability distribution of player
types. Also, because these games are simultaneous there are no observed actions that a player can use to
update his belief about another player�s type.2 A static game of incomplete information is then represented
by �BN = [I; fSig ; fTig ; fpig ; fuig], where fTig represents the type space of all I players and fpig represents
the belief space of all players.
The question now becomes what constitutes an equilibrium in games of incomplete information? Like

the other games, an equilibrium will be a set of strategies such that neither player can unilaterally change

�Based on Chapter 3 of Gibbons (1992).
1 It is possble that there are multiple probability distributions from which a player�s type could arise and that the other

player is uncertain about which of these probability distributions is the correct one. This simply adds an additional layer of
complexity to the problem.

2We cover dynamic games of incomplete information shortly.
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his strategy and make himself better o¤. However, now a strategy consists of actions that must be speci�ed
for every possible type a player could have. One might ask why a player has to specify an action for every
possible type because the player knows his own type. The answer is that while player A knows his own
type the other player B does not, so player A has to consider that player B only knows the probability that
player A has a certain type, and not the speci�c type. This concept is similar to players having to specify
their actions in an extensive form game for nodes that are not going to be reached when the game is actually
played. The players still need to specify which actions they will take at those nodes because those decisions
can impact the game. The same is true for types that are �never reached�. The actions taken by a player
for a type that he is not could a¤ect the action choices of the other player. Thus, we now de�ne a strategy
for a player i in game �N in terms of the possible types player i could be.

De�nition 1 A strategy in game �BN is a function si (ti), where for each type ti in Ti, si (ti) speci�es the
action from the feasible set of actions Ai that type ti would choose if drawn by nature.

Now that a strategy is completely characterized we can de�ne a Bayes-Nash equilibrium for static games
of incomplete information. The solution is called �Bayes-Nash�because of the method that the players are
to use when updating their beliefs after observing information. As I mentioned earlier, we are currently
assuming that when a player is told his type this does not alter the exogenously given probability distribution
about the other player�s types. However, it could, and if it did the player would use Bayes�rule to update
his beliefs about the type of the other player. For instance, it is plausible that in an art auction a bidder�s
own value provides some information about the other bidders�values. If one bidder�s value is high, then
it is likely that all bidders�values are high. Thus, a player�s observation of his own value would cause his
belief about the types of the other bidders to change. Again, because we assume that players update using
Bayes�rule we call this a Bayes-Nash equilibrium. We will discuss Bayes�rule in more detail in the next
section.

De�nition 2 (Bayes-Nash equilibrium) In the game �BN , a set of strategies s� = (s�1; :::; s
�
I) are a Bayes

Nash equilibrium if for each player i and for each of i�s types ti in Ti, s�i (ti) solves:

max
ai2Ai

X
t�i2Ti

ui
�
s�1 (t1) ; :::; s

�
i�1 (ti�1) ; ai; s

�
i+1 (ti+1) ; :::; s

�
n (tn) ; t

�
pi (t�ijti) .

2.1 Normal form game example

Consider the following game of incomplete information between Wyatt Earp and a stranger in town. With
probability 0:75, Earp believes the stranger is a gunslinger (i.e. a fast draw). With probability 0:25, Earp
believes the stranger is a cowpoke (i.e. a slow draw). Earp only knows the probability of each type before
taking an action, and does not observe the stranger�s type. This means that Earp believes he is in the
matrix on the left 75% of the time, and in the one on the right 25% of the time. The stranger knows his
own type, and also knows exactly who Wyatt Earp is. The payo¤s to this simultaneous game of incomplete
information are as follows:

Stranger (gunslinger)
Draw Wait

Earp Draw 2; 3 3; 1
Wait 1; 4 8; 2

Stranger (cowpoke)
Draw Wait

Earp Draw 5; 2 4; 1
Wait 6; 3 8; 4

1. How many types does each player have?

2. Does any player (or any player type) have a dominant strategy?

3. Find all pure strategy Bayes-Nash equilibria to this game.

To answer the �rst question, there is only one Wyatt Earp and no uncertainty over who he is. Thus,
Wyatt Earp has 1 type. However, there is uncertainty over who the stranger is �the stranger could be a
(1) gunslinger or a (2) cowpoke. Thus, the stranger has two types, gunslinger and cowpoke.
In this game, notice that regardless of what Wyatt Earp does the gunslinger type has a strictly domi-

nant strategy of choosing "Draw". Regardless of what strategy Wyatt Earp chooses (Draw or Wait), the
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gunslinger type will always choose Draw. So any equilibrium to this game should have the gunslinger type
choosing "Draw". Note that no other player has a strictly dominant strategy �for Wyatt Earp, choosing
"Wait" is almost better than every other strategy, except that when the gunslinger type chooses "Draw"
Earp would also choose "Draw".
Now, �nding equilibria in this game. Suppose that Wyatt Earp chooses Draw. The gunslinger type�s

best response is to choose Draw (since the gunslinger has a strictly dominant strategy). Also, the cowpoke
type�s best response is to choose Draw, since 2 > 1. So we have just found the stranger�s best response
when Earp chooses Draw. Now we need to check: Is Earp�s strategy choice of Draw a best response to the
stranger�s strategy of choosing: Draw if gunslinger, Draw if cowpoke? To do this we need to determine the
expected value of Earp choosing Draw and the expected value of Earp choosing Wait. If Earp chooses Draw
he receives:

E [DrawjDraw if GS;Draw if CP ] = 2 � 3
4
+ 5 � 1

4

E [DrawjDraw if GS;Draw if CP ] =
11

4

The 2 is from Earp�s payo¤ in the upper left corner of the gunslinger matrix, the 3
4 is the probability Earp

believes he is facing a gunslinger, the 5 is from the upper left corner of the cowpoke matrix, and the 1
4 is

the probability that Earp believes he is facing a cowpoke. So, if both types Draw, Earp expects to receive
a payo¤ of 114 from choosing Draw. Now, what if Earp choose to Wait?

E [WaitjDraw if GS;Draw if CP ] = 1 � 3
4
+ 6 � 1

4

E [WaitjDraw if GS;Draw if CP ] =
9

4

So, Earp�s strategy of choosing Draw is a best response to (Draw if gunslinger, Draw if cowpoke). Thus,
one Bayes Nash equilibrium is: Earp Draw, Stranger Draw if gunslinger, Stranger Draw if cowpoke.
In essence, we have proposed an equilibrium (Earp Draw, Stranger Draw if gunslinger, Stranger Draw if

cowpoke) and veri�ed that it is, indeed, a Bayes-Nash equilibrium. For some games that we will see, this
process of "propose equilibrium strategies, then verify that proposed equilibrium is in fact an equilibrium"
will be the best process to use in determining equilibria. We have used this process earlier in class. Recall
that when studying in�nitely repeated games, we proposed a set of strategies that would lead to the players
receiving a certain set of payo¤s over time, and then veri�ed that it was indeed an equilibrium provided the
discount factor � was high enough.
Now suppose that Wyatt Earp chooses Wait. The gunslinger�s best response is still to choose Draw. But

the cowpoke�s best response if Earp chooses Wait is also to choose Wait. Now we need to determine if Earp
choosing Wait is a best response to the stranger�s strategy, which is Draw if gunslinger, Wait if cowpoke. If
Earp chooses Wait he receives:

E [WaitjDraw if GS;Wait if CP ] = 1 � 3
4
+ 8 � 1

4

E [WaitjDraw if GS;Wait if CP ] =
11

4

The 1 is from the lower left corner of the �rst matrix (Earp Wait, gunslinger Draw) while the 8 is from the
lower right corner of the second matrix (Earp Wait, cowpoke Wait). If Earp chooses to Draw, he receives:

E [DrawjDraw if GS;Wait if CP ] = 2 � 3
4
+ 4 � 1

4

E [DrawjDraw if GS;Wait if CP ] =
10

4

Because 11
4 >

10
4 , Earp will choose to Wait rather than Draw. Thus, a second Bayes Nash equilibrium is:

Earp Wait, Stranger Draw if gunslinger, Stranger Wait if cowpoke.3

3That Earp has an expected payo¤ of 11
4
in each equilibrium is simply a coincidence.
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3 Cournot competition with multiple types

Consider now a modi�ed version of Cournot competition. In this game, Firm 1 has a known cost of c.
Thus, we could say that Firm 2 has a belief that Firm 1�s cost is c with probability 1. However, Firm 2
may have either a high cost, cH , or a low cost, cL. Firm 2 has cost of cH with probability � and cost of cL
with probability 1 � �. Before beginning to �nd the Bayes-Nash equilibrium, it is important to note that
the Bayes-Nash equilibrium will consist of 1 set of actions for Firm 1 (since Firm 1 has 1 type) and 2 sets of
actions for Firm 2 (since Firm 2 has 2 types). Using the structure from the previous Cournot games, Firm
2 will solve:

max
q2�0

[a� q�1 � q2 � cH ] q2

if its cost is cH and:
max
q2�0

[a� q�1 � q2 � cL] q2

if its cost is cL. Firm 1 will solve the following problem:

max
q1�0

� [a� q1 � q�2 (cH)� c] q1 + (1� �) [a� q1 � q�2 (cL)� c] q1

Solving these problems yields the following �rst-order conditions:

q�2 (cH) =
a� q�1 � cH

2

q�2 (cL) =
a� q�1 � cL

2
:

q�1 =
� [a� q�2 (cH)� c] + (1� �) [a� q�2 (cL)� c]

2

Again, these are almost the best response functions for the �rms, but recall that if either �rm is to produce so
much as to make the other �rm desire to produce a negative quantity then the �rm will choose to produce 0
because it cannot produce a negative quantity. There are 3 equations and 3 unknowns so solving (assuming
the restrictions on cH , cL, and c are such that all �rms produce a positive output) we have:

q�2 (cH) =
a� 2cH + c

3
+
1� �
6

(cH � cL)

q�2 (cL) =
a� 2cL + c

3
� �
6
(cH � cL) .

q�1 =
a� 2c+ �cH + (1� �) cL

3

Recall that in the case where both �rms had identical marginal costs of c that q�1 = q
�
2 =

a�c
3 . Note that if

cH = cL = c, then both �rms would produce a�c
3 . So imposing our prior assumptions brings us right back

to our prior solution, which is a good thing. Also note that if � = 0 then Firm 2 has the low cost with
probability 1, so that q�2 (cL) =

a�2cL+c
3 and q�1 =

a�2c+cL
3 . These are just the quantity choices when the

two �rms have di¤erent, but known to all, costs.

4 Auctions

The following discussion concerns setting up the auction environment and determining equilibrium bidding
strategies under a few standard auction designs. For now the goal is to demonstrate how the Bayes-Nash
equilibrium concept applies to auctions. Later in the course we will relate this section on auctions to the
concept of mechanism design and provide a few additional common results.

4.1 General Environment

Before discussing the auction formats and the equilibrium strategies we need to set up the general envi-
ronment. This suggests that if the environment (or pieces of it) change, the NE bidding strategies will
change.
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The general name for the environment is the Symmetric Independent Private Values environment (SIPV)
with risk-neutral bidders. We will also assume that we are auctioning o¤ a single, indivisible unit of the
good.

1. There needs to be a probability distribution for player values, denoted vi. We will assume that all
player values are drawn from the uniform distribution on the unit interval. This means that all values
are drawn from the interval [0; 1] with equal probability. More importantly, if you draw a value of 0:7,
then the probability that someone else drew a value less than you is also 0:7. Because probabilities
must add up to 1, and because the other player�s value draw must either be greater than your value or
less than your value. We will not allow for the fact that someone else could draw the exact same value
(theoretically, ties cannot occur with positive probability in a continuous probability distribution).
This means that the probability that the other player has a value greater than yours is 1� 0:7 = 0:3.

2. The setting is symmetric in the sense that all players know that the other player�s value(s) is drawn
from the same probability distribution.

3. The setting is independent in the sense that one player�s draw has NO impact on the value draw of
the other player(s).

4. The setting is private in the sense that only the speci�c player knows his own value �thus, it is private
information.

5. We add the fact that our bidders are risk-neutral,4 as risk aversion will alter some results. Thus, our
utility function will be:

u (x) =

�
x if win the auction
0 if don0t win

The term x in the utility function can typically that of as vi � p, where vi is the player i�s value and p is
the price paid by player i. Note that a player�s expected utility in these auctions can be noted as:

ui = Pr (win) � (vi � p) + Pr (lose) � 0

where Pr (win) is the probability that bidder i wins the auction and Pr (lose) is the probability that bidder
i loses the auction. If the bidder wins he receives his value minus the price paid, or (vi � p) and if he loses
he receives 0. Thus, for many, but not all, auctions, the expected utility of a bidder is:

ui = Pr (win) � (vi � p)

Note that the di¢ culty in deriving the theoretical results lies in establishing the probability of winning,
Pr (win) and, in some cases, the price paid, p, particularly when the price paid depends upon another
bidder�s bid.

4.2 Auction formats

In this section I will describe four basic auction formats that we will discuss. The description will include
the process by which bids are submitted and the assignment rule for the winner. For now, consider only the
cases where we have a single, indivisible unit for sale. One format noticeably missing from below is the one
many people think of when they hear the term "auction" �the type where there is an auctioneer present who
moves the bidding process along. A bidder makes a bid to become the standing high bidder, the auctioneer
recognizes the bid and then attempts to get someone to submit a new, higher bid. The auction ends when
the auctioneer says "Going once, going twice ... sold!" This auction format is similar to the ascending clock
auction that is discussed below.

4Recall that a risk-neutral individual is indi¤erent between receiving $5 with certainty and a gamble that pays $5 on average
(like one that has a 50% chance at $0 and a 50% chance at $10). A risk averse individual would prefer the certain $5 over the
expected $5 and a risk loving individual would prefer the expected $5 over the certain $5.
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4.2.1 1st-price sealed bid auction

Process All bidders submit a bid on a piece of paper to the auctioneer.

Assignment rule The highest bidder is awarded the object. The price that the high bidder pays is equal
to his bid.

Examples Many procurement auctions are 1st-price sealed bid. Procurement auctions are typically run
by the government to auction o¤ a construction job (such as paving a stretch of highway).

4.2.2 Dutch Auction

Process There is a countdown clock that starts at the top of the value distribution and counts backwards.
Thus, the price comes down as seconds tick o¤ the clock. When a bidder wishes to stop the auction he or
she yells, �stop�.

Assignment rule The bidder who called out stop wins the auction, and the bidder pays the price on the
clock.

Examples The Aalsmeer �ower auction, in the Netherlands, is an example of this type of auction. Hmmm,
wonder where the phrase �Dutch�auction comes from ...
By the way, the eBay dutch auctions are NOT Dutch auctions as we have described them. They are

multi-unit ascending k + 1 price auctions.

4.2.3 2nd-price sealed bid auction

Process Bidders submit their bids on a piece of paper to the auctioneer.

Assignment rule The highest bidder wins, but the price that the highest bidder pays is equal to the 2nd

highest bid. Hence the term 2nd-price auction.

Examples eBay is kind of a warped 2nd-price auction. If you think about the very last seconds of an
eBay auction (or if you consider that every person only submits one bid), think about what happens. You
are sending in a bid. If you have the highest bid you will win. You will pay an amount equal to the 2nd

highest bid plus some small increment. Thus if you submit a bid of $10 and the second highest bid is $4,
you pay $4 plus whatever the minimum is (I think it�s a quarter). So you would pay $4.25.
There are other reasons to think that eBay is not actually a 2nd-price auction but those can be discussed

later.

4.2.4 Ascending clock auction

Process A clock starts at the bottom of the value distribution. As the clock ticks upward, the price of the
item rises with the clock. This is truly supposed to be a continuous process, but it is very di¢ cult to count
continuously, so we will focus on one tick of the clock moving the price up one unit. The idea is that this
is the smallest amount that anyone could possibly bid �that is how the ticks on the clock move the price
up. All bidders are considered in the auction (either they are all standing or they all have their hands on a
button �some mechanism to show that they are in). When the price reaches a level at which the bidder no
longer wishes to purchase the object, the bidder drops out of the auction (sits down or releases the button).
Bidders cannot reenter the auction. Eventually only two bidders will remain. When the next to last bidder
drops out, the last bidder wins.

Assignment rule The winning bidder is the last bidder left in the auction. The bidder pays a price equal
to the last price on the clock.
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Examples The typical example given is Japanese �sh markets, though those may be an urban legend.
Thus, the English clock auction may only be a theoretical construct.

4.3 Bidding strategies

Bidding strategies for the four auctions formats are described below. They are ordered in terms of deriving
the simplest equilibrium bidding strategy to the most di¢ cult.

4.3.1 Ascending clock auction �bidding strategy

Consider the following example. Assume vi = 10. The clock begins at 0 and ticks upward: 0, 1, 2, 3, ..., 9,
10, 11, 12, 13, ... The question is, when should you sit down (or drop out of the auction)? Consider three
possible cases:

1. The clock reaches 11:

In this case you should drop out. While you increase your chances of winning the item by staying in,
note that you will end up paying more than the item is worth to you. You can do better than this
by dropping out of the auction and receiving a surplus of zero. So, as soon as the price on the clock
exceeds your value you should drop out.

2. The clock is at some price less than 10:

In this case you should remain in the auction. If you drop out you will receive 0 surplus. However, if
you remain in the auction then you could win a positive surplus. If you drop out before your value is
reached you are essentially giving up the chance to earn a positive surplus. Since this positive surplus
is greater than the 0 surplus you would receive if you dropped out, you should stay in the auction.

3. The clock is at 10:

What happens when the price on the clock reaches your value? Well, if you win the auction you get 0
surplus and if you drop out you get 0 surplus, so regardless of what you do you get 0 surplus. We will
say that you stay in at 10, and drop out at 11. For one thing, it makes the NE bidding strategy simple
�stay in until your value is reached, then drop out. Another way to motivate this is to consider that
peoples values are drawn from the range of numbers [0:01; 1:01; 2:01; 3:01; :::] instead of [0; 1; 2; 3; :::].
However, assume the prices increase as [0; 1; 2; 3; :::]. It is clear that if you have a value of 3.01 you
should be in at 3, while if you have a value of 3.01 you should be out at 4. This is the �add a small
amount to your value�approach that I mentioned in class.

So what is the NE strategy? Stay in until your value is reached and drop out as soon as it is passed by
the clock. Or, if we let bi (vi) represent player i�s bid as a function of his value, we have bi (vi) = vi. Note
that for an action is speci�ed for every value a bidder could have.

4.3.2 2nd-price sealed bid auction �bidding strategy

There is a good for which players have a value, vi, drawn from a probability distribution F (�). Thus, there
are multiple types, each represented by one of the vi value draws from F (�). All player values are drawn
from the same distribution F (�) and the actual value draws are only known to the individual players. The
draws are independent so that a draw of a value for one player provides no information as to the value of
the other players. All players know these assumptions.
First, note that an action needs to be speci�ed for every type. Thus, it will be easiest to have some

function bi (vi) represent the player�s bid based upon his observed value. Now, consider the following
candidate for a best response function:

bi (vi) = vi.

This function states that the each bidder should simply bid his value. Is this a Bayes-Nash equilibrium for
this game? Suppose that a player bids his value. The player either wins the auction or loses the auction.
If the player wins the auction does he want to change his strategy? No, because he won. If he submits
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a bid higher than his value then this does not alter his payo¤ because his payment is tied to the second
highest bid (which he has no control over). If he lowers his bid then he runs the risk of losing the auction
and receiving 0 and lowering his bid also does not alter his payo¤. So, if the player wins, this strategy is
at least as good as some other strategy. If he loses by submitting a bid equal to his value then he cannot
increase his payo¤ by lowering his bid because he still loses. He could raise his bid in an attempt to win
the good, but this choice would lead to a negative payo¤ due to the fact that the winning bid must have
been greater than his value, so in order to win he would need to submit a winning bid greater than his value
AND he would pay an amount greater than his value. Note that this choice yields a negative payo¤. The
following example may make this a little clearer.
To further illustrate the point consider the following table when there are two bidders. Suppose that

bidder 1 has a value of 12.
Bidder 1�s bid (v1 = 12)

Other bidder�s bid b1 = 10 b1 = 12 b1 = 14
b2 < 10 12� b2 12� b2 12� b2
10 < b2 < 12 0 12� b2 12� b2
12 < b2 < 14 0 0 (12� b2)
b2 > 14 0 0 0
Note that (12� b2) is NEGATIVE. We have now determined that submitting a bid equal to our value is

at least as good as submitting a bid greater than or lower than the value in some cases, and strictly better
in other cases. Therefore, submitting a bid equal to your value is a weakly dominant strategy. Thus,
the Bayes-Nash equilibrium for a 2nd-price auction: Submit a bid equal to your value, or bi (vi) = vi. One
way to ��nd�Nash equilibria in games of this type is to propose that a particular strategy is a Bayes-Nash
equilibrium and then determine whether or not it actually is.

4.3.3 1st-price sealed bid and descending clock auction �bidding strategies

This �rst part relaxes some assumptions to show that bidders will bid below value.
A bidder�s expected utility in the 1st-price auction consists of two parts: (1) his utility of money income

from winning and (2) the probability that he gains that income. Let (vi � bi) be bidder i�s money income
if his bid is the highest, and 0 be his money income if not. Let Fi (bi) be bidder i�s subjective probability
that he will win with a bid of bi. Bidder i�s expected utility is then:

Ui (bi) = Fi (bi)ui (vi � bi) . (1)

Note that this equation is simply the probability with which bidder i believes he will win with a bid of bi
multiplied by the utility of his money income if he wins with a bid of bi. Now, we make 4 assumptions:

1. Amount bid is a continuous variable (for mathematical tractability)

2. Interval [xi; xi] is the support of the probability distribution

3. Ui is a quasiconcave function

4. There exists a unique positive expected utility maximizing bid b0i

Now, b0i satis�es:
@Ui (bi)

@bi
= F 0i

�
b0i
�
ui
�
vi � b0i

�
� Fi

�
b0i
�
u0i (vi � bi) = 0. (2)

Assume b0i satis�es the 2
nd-order condition for a maximum (0 > U 00i

�
b0i
�
). The �rst and second order

conditions and implicit function theorem imply that there exists a di¤erentiable function 	i such that
b0i = 	i (vi). Thus, the function 	i takes any value that bidder i could have and transforms it into the
expected utility maximizing bid. The function 	i is called the bid function. From the �rst-order condition,
it is known that:

b0i = vi � u�1i
�
u0i
�
vi � b0i

�
Fi
�
b0i
�
=F 0i

�
b0i
��
, (3)

where u�1i is the inverse of the utility of money income function. This relationship is important because it
shows that the expected utility maximizing bid is less than the bidder�s value. Thus, the 1st-price sealed bid

8



auction is not demand revealing (alternatively we could say that the bidder is not truthfully revealing his
value). The amount by which vi exceeds b0i depends on ui and Fi, which represent bidder i�s risk preferences
and subjective probability of winning. Because these factors may di¤er among bidders, the 1st-price sealed
bid auction may not be Pareto e¢ cient, in that the item may not be awarded to the bidder with the highest
value in equilibrium. If all bidders have the same risk preferences and subjective probability of winning
functions then the 1st-price sealed bid auction will be Pareto e¢ cient.

Imposing some simplifying assumptions We �know� the 2nd-price auction has a weakly dominant
strategy where each player bids his own value, and this strategy is weakly dominant regardless of risk
preferences or subjective probabilities of winning (as long as it is in the SIPV framework). We have also
seen that the 1st-price auction bids depend on risk preferences and subjective probabilities. To derive
Nash equilibrium bidding functions for these auctions we will impose that risk preferences and subjective
probabilities of winning are the same for all individuals, and we will speci�cally impose that all bidders are
risk neutral.
Our goal is to �nd a strategy function b� (v), such that for every value v 2 [v; v] an individual speci�es

a bid. This is a Bayes-Nash equilibrium. For simplicity, assume that values are distributed uniformly on
the unit interval [0; 1] so that we are looking for a b� : [0; 1] ! R+. Also, there is an inverse bid function,
b�

�1
(b), which speci�es the value an individual has if he makes a speci�c bid. Assume that values are drawn

from a continuous distribution and that b� (v) is strictly monotone increasing, meaning that if v1 > v2 then
b� (v1) > b

� (v2). Those 2 assumptions imply that ties have zero probability.
In order to specify a Nash equilibrium we will look at one bidder�s strategy choice assuming all other

bidders are using the same strategy. Think about it this way � if all bidders are identical, and the N th

bidder�s best response to N � 1 bidders using a particular strategy is the same strategy, then solving this
problem for all N bidders becomes redundant as the strategies they are using will be best responses to one
another. The �rst thing we must determine is a bidder�s probability of winning when bidding b against
rivals who use b� (v):

p (b) = Pr fb� (vj) < b;8j 6= ig
= Pr fvj < � (b) ;8j 6= ig , where � := b�

�1
.

= F (� (b))
N�1

Essentially, an individual�s probability of winning is equal to the probability that the individual has a higher
value than the other N � 1 individuals.
In a Nash equilibrium, an individual must be using his best response, which means he must be maximizing

his expected utility (well, we will use expected utility as the objective function). So an individual must
maximize:

Ui (b; v) = p (b) � (v � b) .

Again, this individual is risk-neutral, so we can specify ui (v � b) = v � b. Maximizing expected utility we
�nd:

@Ui
@b

= p0 (b) � (v � b)� p (b) = 0.

Now, we must have v = � (b) because this is what � (b) speci�es and we also know that someone with a value
of 0 must bid 0, so � (0) = 0. Using p (b) = F (� (b))N�1 and v = � (b) we have:

@Ui
@b

= (N � 1)F (� (b))N�2 F 0 (� (b)) � (� (b)� b)� F (� (b))N�1 = 0
or

@Ui
@b

= (N � 1)F 0 (� (b)) � (� (b)� b)� F (� (b)) = 0.

Because values are drawn from the uniform distribution on [0; 1], F (� (b)) = � (b) and thus F 0 (� (b)) = �0 (b),
so that:

@Ui
@b

= (N � 1)�0 (b) � (� (b)� b)� � (b) = 0.
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We now have a di¤erential equation, which has the solution:

� (b) =

�
N

N � 1

�
b.

Thus, � (b) is a best response by bidder i if all other bidders are using � (b). We should check to see if this
is actually a solution:

(N � 1)
�

N

N � 1

�
�
��

N

N � 1

�
b� b

�
�
�

N

N � 1

�
b = 0

N �
�
Nb�Nb+ b
N � 1

�
�N �

�
b

N � 1

�
= 0

N �
�

b

N � 1

�
�N �

�
b

N � 1

�
= 0.

Solving � (b) for b we �nd:

b� =
N � 1
N

� (b)

or

b� =
N � 1
N

v.

A useful extension of this result modi�es the range of values from [0; 1] to [v; v]. If values are uniformly
distributed along [v; v], then b� is:

b� (vi) =
N � 1
N

(vi � v) + v.

All we are doing is placing the minimum bid at v (if v = v then b = v, just like when values were distributed
from [0; 1] if v = 0 then b� = 0) and then taking a proportion of the di¤erence between v and v.

4.4 Which auction is "best"?

An auctioneer might like to know if an auction type is e¢ cient, and would certainly like to know which
auction type leads to the highest expected revenue. One might wonder why the auctioneer would be worried
about e¢ ciency properties, but if the auctioneer is the government then it may care about whether or not
the highest valued user receives the good. Imposing the very strong assumptions we imposed when deriving
the equilibrium for the 1st-price sealed bid auction and descending clock auctions, all of the auctions are
e¢ cient (in equilibrium) because the highest valued user always receives the good.
To compare expected revenue between the 1st and 2nd-price sealed bid auctions we need to compare the

2nd-highest value drawn in a 2nd-price sealed bid auction (this amount is what the bidder with the highest
value will pay in equilibrium) with the BID by the bidder with the highest value in the 1st-price auction.
Please keep in mind that we are using the results from the SIPV-RN environment. We are also assuming
uniformly distributed values in this example.
Before beginning the discussion of revenue equivalence we need to determine the amount of revenue

a seller of an item expects to receive from a particular auction design. Consider the 2nd-price sealed bid
auction. If players follow equilibrium (why shouldn�t they?), then the seller can expect to receive an amount
equal to the expected value of the 2nd highest value drawn. In a 2nd-price auction of N bidders, the implied
probability distribution of revenue is that of the (N � 1) th order statistic.
What is an order statistic? Suppose we draw from some probability distribution F (X) N times (so there

are N value draws). We rank the realizations in increasing order, so:

xv1 � xv2 � ::: � xvk � ::: � xvN .

The kth order statistic is the function X(k) that assigns to each realization for the series (X1; :::; XN ) the kth

smallest value xvk . Order statistics are random variables and have means and variances. For the uniform
distribution over [v; v], the expected value of the (N � 1) th order statistic is:

(N � 1) (v � v)
N + 1

+ v.
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Thus, this is the expected revenue in the 2nd-price sealed bid auction, as well as the expected value of the
2nd highest value draw. If N = 2, v = 1; and v = 0 then the expected value of the second highest value is 13 .
If N = 4, then the expected value of the second highest value is 3

5 . Note that as N increases the expected
value of the second highest value increases. Also, we can let N remain a variable and let v = 1; and v = 0.
Then the expected revenue is N�1

N+1 if we assume that values are uniformly distributed on [0; 1].
Now, we need to compare this revenue with that from the 1st-price sealed bid auction. Simply for

expositional ease, continue with the assumption that values are distributed uniformly. We know N�1
N+1 is the

expected value of the (N � 1)th order statistic. In a 1st-price auction we need the expected value of the N th

order statistic (the highest draw). This is just N
N+1 . To �nd the expected revenue, simply �nd the bid that

would be made by the highest draw in a 1st-price auction. This bid is just N�1
N � N

N+1 , and we have that
expected revenue from the 1st-price auction is N�1

N+1 . Thus, in the SIPV-RN environment, we have at least
one example (uniformly distributed values) where expected revenue is equivalent across auction institutions.
This result holds generally for auction institutions in the SIPV-RN environment, as long as any bidder who
draws the lowest possible value (v) receives an expected surplus of zero and the auction is Pareto e¢ cient
(it awards the object(s) to the highest valued user(s) �at least theoretically). Be aware that this result is
ONLY for the SIPV-RN environment �if values are not independent, or bidders are risk averse (even if they
have the same level of risk aversion) the revenue equivalence result will not necessarily hold.
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