
Mechanism Design

1 Introduction

The fundamental problem in economics is how to allocate scarce resources. Many di¤erent allocation
systems or mechanisms could be used. A very simple allocation system is dictatorship �a single individual
(or perhaps a committee of individuals) determines the resource allocation for all individuals. Another
simple allocation system is that of "�rst come, �rst serve" which simply means that the �rst person to arrive
gets the resource. Typically, economists like to consider how markets or prices allocate resources. The
"�rst come, �rst serve" allocation system might be coupled with a payment system, like campus parking.
The parking fee allows one to park on campus, but does not guarantee the consumer a particular parking
space. Many posted-price markets have an element of "�rst come, �rst serve" present as well � if there is
only one item remaining on the shelf (if we consider a brick and mortar location) or one item remaining in
an online store (if we consider virtual locations), then the �rst person willing to pay the price for that item
receives the item. Negotiations, or bargaining, are also systems by which resources are allocated.
While those are all interesting allocation systems, we will focus on a particular type of allocation system,

which we will call a "mechanism." Consider a game of incomplete information, where one party (the principal
or seller) in a transaction does not know some information (perhaps the willingness to pay) the other party
(the agent or buyer) has.1 Mechanism design can generally be thought of in three steps:

1. A seller designs a mechanism/contract/incentive scheme in which buyers send "messages" and allo-
cations are made based upon the messages sent. An "allocation" here refers not only to the actual
good(s) being transferred, but also any transfer payments that are made between buyer(s) and seller.
For now our focus will be on simultaneous messages.

2. Buyers choose whether or not they want to participate in the game, or, alternatively one could think
about this step as the buyers accepting or rejecting the seller�s proposed mechanism. If buyers choose
not to participate in the game they would typically have some reservation level of utility. This step
requires consideration of the buyer�s participation constraint (PC) when the buyer determines whether
or not to participate.2 There are some instances in which the "seller" can force the "buyer" to par-
ticipate, thus removing the need for a participation constraint. Consider the government imposing a
tax scheme on individuals or corporations. These economic agents must participate, even if "partic-
ipating" means "not �ling taxes properly and su¤ering the consequences." That scenario is di¤erent
than eBay, which has no authority to force individuals to bid in its auctions or punish them for failing
to bid in its auctions.

3. The �nal step is that buyers who choose to participate in the game submit their messages, and then
an allocation is made based upon the submitted messages and the mechanism design.

Another key constraint that the seller must consider when designing the mechanism is the buyer�s in-
centive compatibility (IC) constraint. Sellers want buyers to behave in a certain manner, and a properly
designed mechanism can elicit certain types of responses from buyers. Alternatively, in a principal-agent
framework, the principal would like to structure a contract to align the incentives of the agent with those of
the principal.

1 It may be helpful to have a particular example in mind. If so, consider the auctions we have discussed, as we will discuss
them in more detail throughout this section of notes.

2Some texts refer to this constraint as the individual rationality (IR) constraint.
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As a speci�c example of a mechanism consider the �rst-price sealed bid auction we discussed. The
allocation rule is that the bidder who submits the highest bid receives the item and pays an amount equal to
his or her submitted bid, while all other bidders make no payment. The "messages" in this mechanism are
the bids submitted by the bidders. All messages are used in determining the �nal allocation and payment
because they must all be compared to each other to determine which is the highest bid.

2 Two bidder, two type auction example3

Consider a seller with a single good for sale and two bidders who are ex ante identical. Bidder values can
be one of two possibilities: � with probability p and � with probability p. Let s1 and s2 be the realizations
of the bidder strategies., Xi (s1; s2) be the probability the good is transferred to bidder i, and Ti (s1; s2) be
the transfer payment of bidder i to the seller. Comparing the 1st-price and 2nd-price sealed bid auctions:

1st-price 2nd-price
Xi (s1; s2) = 1 Xi (s1; s2) = 1

if si > sj Tj (s1; s2) = 0 Tj (s1; s2) = 0
Ti (s1; s2) = si Ti (s1; s2) = sj

We will restrict our discussion to truth telling mechanisms, the reason for which will be discussed shortly.
A truth telling mechanism means that the bidders will reveal their true type (as in the equilibrium of a 2nd-
price sealed bid auction). Let X be the probability of receiving the good and T be the expected payment
when the value is �. Let X be the probability of receiving the good and T be the expected payment when
the value is �. The seller will structure the mechanism to determine those four parameters based on the
submitted signals. We have the following constraints:

PC1 : �X � T � 0
PC2 : �X � T � 0

IC1 : �X � T � �X � T
IC2 : �X � T � �X � T

Consider what each of these constraints implies. The participation constraints mean that the expected
payo¤ for each type must be at least zero, otherwise they would not participate. The incentive compatibility
constraints mean that each type (represented by � and �) must be better o¤ submitting a message that reveals
his or her type. If PC1 are IC2 are satis�ed, then:

�X � T

�X � T � �X � T

�X � T � �X � T � (�X � T ) � �X � �X�
� � �

�
X � 0

�X � T � 0

The next to last step follows because X � 0 and � > �. Thus, PC2 is also satis�ed and will not be binding
unless the seller does not sell to the low type. Now we will show that PC1 and IC2 are binding constraints.
Recall that if the constraints are binding that they can be set to equalities (like the budget constraint in
a standard consumer optimization problem). If PC1 is not binding, then the seller could increase T and
T by the same amount, make more money, and not violate any constraints. So �X = T and a low value
bidder does not expect to earn any surplus in equilibrium. Now consider IC2. If IC2 were not binding
then the seller could increase T , earn more money, and not violate any constraints. We can now determine

3Straightforward adaption from Fudenberg and Tirole, pgs. 246-253. Also see Wolfstetter (1999), pgs. 218-221.

2



the expected payments from PC1 and IC2:

�X = T

�X � T = �X � T
�X � T = �X � �X

�X � �X + �X = T

�
�
X �X

�
+ �X = T

So we have found the payments made, at least in terms of the probabilities. Now we need to �nd the
probabilities.
Now consider the seller�s problem. Letting E�0 be the seller�s expected utility from the mechanism, then:

E�0 = pT + pT .

Note that E�0 is just the payment the seller expects to receive based upon the exogenous probabilities of �
and � and the expected payments. Substituting for the payments:

E�0 = p�X + p�
�
X �X

�
+ �X

E�0 = (1� p) �X + p
�
�
�
X �X

�
+ �X

�
E�0 = �X + p�

�
X �X

�
E�0 =

�
� � p�

�
X + p�X

The last part of the problem involves putting constraints on the bidders�probabilities X and X. Note
that if one bidder receives the good then the other bidder does not, so ex ante:

pX + pX � 1

2

This equation should probably be explained a little more. Recall that p and p are exogenous, and that
p+ p = 1. Consider that p = 1, so that both bidders have value �. If that is the case, then, if the item is
awarded when � is revealed, we have X � 1

2 . Now, � will always be revealed, and there are two bidders, so
X = 1

2 . A similar argument could be made for p. Now assume p = p =
1
2 . We then have

1
2X + 1

2X � 1
2 ,

or X +X � 1. Again, X and X are probabilities, but note that the seller does not have to award the item
to a bidder, so the sum could be less than 1 (but never, of course, more than 1).
However there is more to specify. Considering

E�0 =
�
� � p�

�
X + p�X

there are two potential cases based upon the exogenous parameters �, p, and �. It is possible that � � p�
or � > p�. This relationship will determine the optimal probabilities X and X. If � � p� then E�0 is
decreasing in X and the seller wants to set X = 0. In that case:

E�0 = p�X

The constraint in this scenario is that if both bidders have type � then they each must win with probability
1
2 . Recall that X is the probability of receiving the item if the bidder reveals �. Thus, the bidder will
always win if the other bidder reveals the low type or will win one-half of the time when the other bidder
reveals the high type. So X = p+ p=2 because the seller wants to maximize the payment T . The optimal
mechanism in this scenario awards the item to no one if both announce �, to the bidder who reveals � if one
reveals the low type and the other the high type, and to each bidder with probability 1

2 if they both reveal
�.
When � > p� then E�0 is strictly increasing in X and X. Then pX + pX = 1

2 and

E�0 =
1

2p

�
� � p�

�
+
p

p

�
� � �

�
X:
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While more complicated than E�0 = p�X, the form is the same, so X = p+ p=2. Using pX + pX = 1
2 we

can see that X = p=2. In this scenario, if both announce the low type then they each receive the item with
probability 1

2 , if one bidder announces the high type and the other bidder announces the low type then the
bidder who announces the high type receives the item, and if both announce the high type then they each
receive the item with probability 1

2 .

3 General Results

Among the many results for Bayesian games there are two that are used quite a bit. The �rst result is the
Revelation Principle and the second result is the Revenue Equivalence Theorem.

3.1 Revelation Principle

Suppose that a seller wishes to sell an object using some mechanism �the precise mechanism is left unspeci�ed
as long as the following conditions are met:

1. The buyers simultaneously make claims about their types. Buyer i can claim to be any type from his
feasible set of types.

2. Given the buyers� claims, buyer i pays an amount that is a function of all the reported types and
receives the good with some probability based upon the reported types (in an auction the bidder with
the highest reported type receives the good with probability 1).

Games that satisfy these criteria are known as direct mechanisms, because the only action is to submit a
claim about a type. A 1st-price sealed bid auction and a 2nd-price sealed bid auction are direct mechanisms;
the all-pay auction example/experiment we did in class is a direct mechanism; the ascending and descending
clock auctions, as well as the oral outcry example we did, are not direct mechanisms. I am going to state a
variety of forms of the revelation principle from multiple sources to give you all an idea of how it has been
used:

Proposition 1 (MWG pg. 493) Denote the set of possible states by �. In searching for an optimal contract,
the owner can without loss restrict himself to contracts of the following form:

1. After the state � is realized, the manager is required to announce which state has occurred.

2. The contract speci�es an outcome
h
w
�b�� ; e�b��i for each possible announcement b� 2 �. (Note that

w and e are just wages and e¤orts.)

3. in every state � 2 �, the manager �nds it optimal to report the state truthfully.

Proposition 2 (MWG pg. 884) Suppose that there exists a mechanism � = (S1; :::; SI ; g (�)) that implements
social choice function f (�) in Bayesian Nash equilibrium. Then f (�) is truthfully implementable in Bayesian
Nash equilibrium.

Proposition 3 (Fudenberg and Tirole, pg. 255) The principal can content herself with "direct" mechanisms,
in which the message spaces are the type spaces, all agents accept the mechanism in step 2 regardless of their
types, and the agents simultaneously and truthfully announce their types in step 3.

Proposition 4 (Gibbons, 1992, pg. 165) Any Bayesian Nash equilibrium of any Bayesian game can be
represented by an incentive-compatible direct mechanism.

Proposition 5 (Wolfstetter, 1999, pg. 214) For any equilibrium of any auction game, there exists an
equivalent incentive-compatible direct auction that leads to the same probabilities of winning and expected
payments.
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Alternatively, one could consult Myerson (1979). Incentive Compatibility and the Bargaining Problem.
Econometrica 47, 61-73. You may want to read it just to see the simplest theorem ever. Theorem 2:
F �� = F �.
Those are just �ve statements of the revelation principles, some of which are a little general. I highly

suggest reading the text surrounding the statement of the theorems to understand what assumptions are
being made (for example, in Wolfstetter, what constitutes an "auction game"). Why is the revelation
principle useful and important? It is useful because it might be di¢ cult to determine the equilibrium in
one game, but we know that if an equilibrium exists in that game then we can �nd a direct, truth-telling
mechanism that has the same general properties. In the next section results we examine the 1st-price sealed
bid auction (direct mechanism, not truth-telling) and the 2nd-price sealed bid auction (direct mechanism,
truth-telling) in more detail.

3.2 Revenue Equivalence

In a previous set of notes I provided a comparison between the expected revenue of a 1st-price sealed bid
auction and a 2nd-price sealed bid auction. That comparison was made under a speci�c set of assumptions.
A more general statement about the expected revenue from auctions follows:

Proposition 6 23.D.3 (Revenue Equivalence Theorem) Consider an auction setting with I risk-neutral
buyers, in which buyer i�s valuation is drawn from an interval

�
�i; �i

�
with �i 6= �i and a strictly positive

density �i (�) > 0, and in which buyer�s types are statistically independent. Suppose that a given pair of
Bayesian Nash equilibria of two di¤erent auction procedures are such that for every buyer i : (i) For each
possible realization of (�i; :::; �I), Buyer i has an identical probability of getting the good in the two auctions;
and (ii) Buyer i has the same expected utility level in the two auctions when his valuation for the object is
at its lowest possible level. Then these equilibria of the two auctions generate the same expected revenue for
the seller.

This result relies upon the previous result (revelation principle). The general idea is that there are direct
mechanisms that are not truth-telling mechanisms, but they have the same Bayes-Nash equilibrium as a
truth-telling mechanism by the revelation principle. We can then compare the expected revenue from the
truth-telling mechanisms because the expected revenue relies on the underlying probability distribution of
values.
It is important to consider the assumptions that are embedded in that proposition beyond the two that

are explicitly enumerated (a buyer who has a speci�c type in each mechanism has the same probability of
winning in each auction and buyers with the lowest possible value have the same expected utility in each
auctions). Buyers are risk-neutral. Values are drawn from the same probability distribution. Value draws
are statistically independent. Those assumptions are just the SIPV-RN environment mentioned earlier.
While these assumptions are restrictive, they establish a benchmark for comparing more realistic settings.

What happens if buyers are not risk-neutral? What happens if the distribution is not symmetric? What
happens if value draws are not independent? What happens if value draws are not private?

3.3 Common Value Auctions

Suppose that I am auctioning o¤ a jar of coins. The jar is see-through, so that you all can see there are
coins in the jar. I tell you they are all U.S. coins from 1965-present (prior to 1965 some U.S. coins, notably
dimes and quarters, are made of silver and are worth more than their monetary denomination) and you
can see various coins (pennies, nickels, dimes, and quarters) in the jar. However, no one is allowed to look
insider the jar or take the coins out of the jar. I conduct a 1st-price sealed bid auction for the jar of coins,
where the winner gets the coins. Clearly, the monetary amount that each individual would receive is the
same because the coins do not depend on the winning bidder. Bidders may have di¤erent utility for the
coins because perhaps they do not want to carry around coins to spend, but let us assume that they are all
students who will happily take money in coin form. Alternatively, we can consider that the bidders have no
disutility from the monetary unit and only care about the value of the money. How are individuals�values
formed for this jar of coins?

5



This auction is di¤erent than the ones we have discussed previously. In the prior auctions bidders had
di¤erent values for the same item. It is fairly simple to motivate that example - there are plenty of goods for
which you and your friends would pay di¤erent amounts. However, in the jar of coins example, all bidders
have the same value for the same item, but they likely have di¤erent estimates of the item�s value. They
will not know if their estimate is correct unless they win the item and take possession of it. The jar of coins
example seems a bit contrived �after all, who would auction o¤ a jar of coins? But there are plenty of
examples that �t this particular type of value determination. Consider a seller who has discovered that there
is oil on her property. The seller wants to sell because she does not know much about extracting oil and
re�ning it, but the bidders will not know exactly how much oil is in the deposit until they own the property
and can begin to extract it. Perhaps more relevant to �nance students, consider a target �rm that is for
sale. Other �rms would like to buy this target �rm, and they have an estimate of the target �rm�s value
based on observable information, but they will not truly know the target �rm�s value until it is acquired.
Auctions of this type are known as "common value auctions." They are di¤erent than "private value

auctions" because bidders now have a signal about the items value, but do not know the true value until it
is purchased. Making the concept slightly more formal:4

1. There is a common value V for the item, which is drawn from some underlying probability distribution
with support (v; v).

2. Bidders receive a signal Si of V prior to bidding. The signal Si is drawn from some probability
distribution (V � "; V + "). Thus, each bidder�s signal is dependent on the common value V , but they
all have (potentially) di¤erent signals.

Consider an example assuming a 1st-price sealed bid auction. If we assume a symmetric equilibrium,
then the bidder with the highest signal will win. However, bidders who win know that they have the highest
signal and, the more bidders in the auction or the larger " is, the more likely that signal is an overestimate
of V . Thus, they need to shade their bid not only to receive a surplus (as they would in a private value
1st-price sealed bid auction) but also because they realize their signal, if they win, is likely an overestimate
of V . In equilibrium, bidders in a common value auction make positive pro�t. However, bidders who are not
familiar with the common value auction may (likely) end up bidding too much for the item, and ultimately
lose money because the pay some price P > V . Overbidding in a common value auction and losing money is
know as the winner�s curse. The phrase "winner�s curse" appears in �nance journals and you all should be
familiar with it. The term really applies to common value auctions, though some individuals use it (likely
incorrectly) with private value auctions. In a private value auction individuals know their values, and can
avoid the winner�s curse by making sure they do not submit bids that would lead to payments greater than
their value, whereas in common value auctions bidders will likely be submitting a bid below their signal, but
that bid might still be above the common value V .5

3.3.1 Wallet Game

Consider that it is the 1990s, when students in class had physical money (cash) in their wallets or purses.
The game is as follows: two students are asked to bid in an ascending clock auction for the combined cash
contents of the two wallets/purses. The common value V is the sum of the two amounts of cash v1 and v2,
so V = v1 + v2. Each student has their own private signal, Si, and part of that signal is that they know
how much money they have themselves. The winner pays the amount on the clock, p, and receives V from
the auctioneer and the loser receives a payo¤ of zero. We want to �nd a symmetric equilibrium so that both
players are using the same strategy. Speci�cally, we want to �nd some bi (vi) for all i that is an equilibrium.
In the private value auction we know that each bidder i should stop bidding when p = vi. In this common

value auction, should both bidders drop out if p < vi, where vi is the amount they have themselves? To
take a more speci�c example, should they drop out when p = vi

2 or bi (vi) =
vi
2 ? I would argue that both

players using bi = vi
2 (and really any symmetric strategy where both players bid below their own vi) is not

an equilibrium because each player knows that the minimum amount of V is their own vi. If I have $10 in
my wallet, and I choose to drop out at $5, and the other player is using the same strategy then I know they

4See Wolfstetter (1999), pgs. 226-229 for more information.
5Wilson (1977) provides a discussion of equilibrium derivation in common value auctions.
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have at least $10 if p = $5 so I know V is at least $20. Using the strategy bi (vi) = vi
2 means that I would

only be willing to pay up to $5 to win $20, so I should probably adjust my strategy because I am leaving
some surplus on the table. If the other player uses bj (vj) =

vj
2 , I can use bi (vi) = vi and be better o¤. I

am not claiming that bi (vi) = vi is a best response to bj (vj) =
vj
2 , just that bi (vi) = vi is a better response

to bj (vj) =
vj
2 than bi (vi) =

vi
2 . As long as we can �nd some strategy that is better for one player then the

proposed set of strategies cannot be an equilibrium.
Should both players use bi = vi as they do in the private value ascending auction? Again, if my value is

$10 and I choose to drop out at $10 and the other player is using the same strategy then I know they have
at least $10 so if p = $10, then I know V is at least $20. Again, I am only paying $10 for a prize that I know
is at least $20, so I am leaving some surplus on the table with this strategy.
In both of these two scenarios, if I have $10 and both players use the same bi � vi strategy I know that

V is at least $20 if the price reaches my drop out price and my strategy states that I am willing to pay less
than $20 for $20 when I should be willing to pay $20 (or at least $19:99). Well, $20 = 2 � $10, which is 2vi,
so perhaps bi = 2vi is an equilibrium. Now if my value is $10 and I choose to drop out at $20 and the other
player is using the same strategy, bj (vj) = 2vj , then I know that there is at least $20 because the other
player must have at least $10 to be willing to bid $20. I certainly do not want to bid less than 2vi because of
the reasons already discussed. Do I want to bid more than 2vi? Suppose I use bi (vi) = 3vi when the other
player uses bj (vj) = 2vj . Suppose the other player has a value of $11; that player will drop out at $22 but I
will remain in at $22 and win the item. I now pay $22 but receive only $10 + $11 = $21, meaning I lose one
dollar. That is not an improvement when the other player has a value between $10:01 and $15 and makes no
di¤erence when vj � $10 or vj > $15. For bi (vi) = �vi, the same result occurs for any � > 2. The unique
symmetric equilibrium is b�i (vi) = 2vi for i = 1; 2. Essentially, all bidders bid as if the other bidder has an
amount of money equal to their own.
The wallet game is from Klemperer (1998) and discussed in Wolfstetter (1999). The strategy b�i (vi) = 2vi

is proposed as an equilibrium and then shown to be an equilibrium as follows. If both players use b�i (vi) =
p = 2vi, then the actual value is:

V = vi + vj

V = vi +
1

2
p

It follows that vj = 1
2p because p = 2vj . Now we want to �nd the p such that bidder i is not losing money:

V � p � 0

V � p

vi +
1

2
p � p

vi � 1

2
p

2vi � p

As long as p � 2vi, bidder i is earning a positive pro�t; if p > 2vi, then bidder i earns a loss, as shown above
in the example. Note that the bidders also avoid the winner�s curse.
The analysis to show b�i (vi) = 2vi is a symmetric equilibrium is fairly straightforward, but neither

Klemperer nor Wolfstetter discuss the thought process to arrive at that equilibrium. There is no optimization
problem provided to solve through, the equilibrium is just proposed. I went through the thought process
(which may or may not be what Klemperer used) to give you an idea of how working from an example might
lead to some intuition about what the equilibrium might be.6

Klemperer and Wolfstetter also both show that there are asymmetric equilibria (which is why I speci�cally
focused on the symmetric equilibrium) to the two player game where b�i (vi) = �vi and b

�
j (vj) =

�
��1vj for

� � 2. When � = 2 we have the symmetric equilibrium.
6 I have not checked, but based on the thought process I would guess that if there were k bidders in the wallet game that the

symmetric equilibrium is b�i (vi) = kvi for k = 1; :::; k.
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3.3.2 Takeover bids

The wallet game may seem to be a bit of a contrived example to provide an introduction to common value
auctions, but it does hint at some useful results. Of more relevance, particularly for �nance students, would
be takeover auctions or mergers. It is possible that takeover auctions have some common value components
(which apply to any �rm that attempts to acquire the target �rm) as well as private value components
(which may be speci�c to which �rm acquires the target �rm) and we will discuss that possibility shortly.
But �rst a brief, and certainly not comprehensive, discussion of some early work on takeover auctions.
Grossman and Hart (1980a, 1980b, 1981) provide some seminal discussion and formulation of the takeover

auction using game theoretic and mechanism design approaches. Grossman and Hart (1980b) analyze how
exclusionary devices can be built into the corporate charter to overcome the free-rider problem that occurs
among shareholders due to the shareholders having limited power (due to holding a small number of shares)
and thus little to no individual incentive to attempt to push managers to act in the shareholders�interest.
The corporate charter or �rm constitution is where the choice of mechanism can be put in place to avoid
the free-rider problem. Grossman and Hart (1980a) examine the role of disclosure laws in takeover bids, and
reference their model in 1980b. Grossman and Hart (1981) focus on the case of asymmetric information,
where only one bidder has speci�c information about the value of the target �rm. These papers tend to
be a response to popular arguments at the time to limit takeover auctions. While there have been many
critiques and extensions of these articles (they have been cited about 6,000 times combined), I point out two
papers here to compare approaches in criticizing mathematical models. Bebchuk (1989) shows that a key
proposition in Grossman and Hart (1980b), �that successful bids must be made at or above the expected
value of minority shareholders�, does not always hold once the assumption that �the only successful bids
are those whose success could have been predicted with certainty�is dropped. Deman (1994) also critiques
Grossman and Hart (1980b). A key di¤erence between Bebchuk and Deman is that Bebchuk is much clearer
about which key assumption is being changed and how that a¤ects the Grossman and Hart result.
Giammarino and Heinkel (1986) develop a model of takeovers with three players: a target �rm, an

informed bidder, and an uninformed bidder. A target �rm may provide synergies with the acquiring �rm;
if so, there are two possible synergy levels, G1 and G3, with G3 > G1 > 0. Only the informed bidder can
determine whether there are synergies, but once the informed bidder determines that there are synergies and
makes a bid both the target �rm and uninformed bidder know that there are synergies. The synergy is the
same for either �rm, but the informed bidder only receives a signal about the synergy. The signal may or
may not perfectly reveal the synergy. The key mechanism design aspect is that the target �rm should �nd
restricted bidding preferred to unrestricted bidding. In particular, restrictive bidding allows the informed
bidder to make its initial (and only) bid, the target �rm accepts or rejects the bid, and then the uniformed
bidder can choose to make a bid but any bid that �rm makes would have to be strictly greater than the
bid by the informed bidder. The rationale for this mechanism is that if unrestricted bidding is allowed then
the informed bidder will always have an advantage over the uninformed bidder, the uninformed bidder will
never bid because they will only win if they overbid (bid as if there is a high synergy when there is actually
a low synergy) and that the informed bidder, knowing the uninformed bidder will never bid, will always
submit the lowest possible bid. Even though restrictive bidding at times results in the takeover bid failing,
the target �rm still �nds restrictive bidding more pro�table. Stein (1988) has a similar model though the
focus of that paper is on managerial myopia, which is that managers tend to favor short-term pro�ts over
long-term goals.
Eckbo, Malenko, and Thorburn (2020) provide a review of more recent developments about strategic

decisions in takeover auctions. They provide a discussion of the basic auction framework (which we will
discuss), auctions vs. negotiations, strategic concerns in deal initiation, toehold decisions, jump (preemptive)
bidding and markup pricing, and choice of payment method. They also provide some empirical evidence
that, depending upon the theoretical model, may be consistent or inconsistent with theoretical predictions.
Hirshleifer and Titman (1990) have a section in their paper discussing empirical implications of their model.
While they do not test those implications in that paper, that section does provide a framework for future
empirical researchers. Gilberto and Varaiya (1989) provide an empirical test of the winner�s curse from failed
bank auctions. They �nd that bids decrease when there is more uncertainty and increase when there are
more bidders, and those �ndings are consistent with other studies (primarily laboratory experiments at the
time). However, they also �nd that bidders do not su¢ ciently adjust their bids to account for potential
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overvaluing when they receive a high signal, which seems unlikely to occur with experienced bidders, so they
advise caution in interpreting their results. Boone and Mulherin (2008) also provide an empirical test of
the winner�s curse in the corporate takeover market. They �nd that it is competitive pressure, and not the
winner�s curse, that leads to breakeven returns. Eckbo (2009) provides a review of empirical �ndings up to
that time.
Eckbo, Malenko, and Thorburn (2020) provide a general framework that allows for private value compo-

nents and common value components. Assume two bidders, indexed by i, and one target �rm. Each bidder
knows there own private signal si, which is relevant for their private value and possibly for the common
value. This structure is similar to the wallet game discussed earlier. Each si is an independent random draw
from the uniform distribution over [0; 1]. In this model, the value of the target �rm to bidder i is given by:

v (si; s�i) = �si + (1� �) s�i

for � 2
�
1
2 ; 1
�
. When � = 1 then this model is the independent private value model; when � = 1

2 , the
bidder�s have the same value for the item so the auction is a common value auction. Note that this structure
is slightly di¤erent than the general structure we discussed earlier. The general structure had some unknown
value V and signals of that value were randomly distributed around that value. In this structure, the signals
themselves determine the value, which is similar to the wallet game. The di¤erence is subtle because in the
case where the value is not the average of the signals both players may receive a signal that is above or below
the true value; when the value is the average of the signals (� = 1

2 ), if the signals are not the same, then one
bidder must receive a signal that is higher than the true value and the other a signal that is lower than the
true value.
For an English (ascending) auction setting, we have seen that if we are in the private value setting (� = 1)

that bi (si) = si because bidders can do no better than dropping out when the price reaches their value.
In this model structure, where the value is a weighted average of the signals, there is still a symmetric
equilibrium where both players remain in the auction until the price reaches their signal. The logic is similar
to that of the wallet auction �if both bidders are using the strategy b (si) = si, if the price reaches bidder
i�s value, then bidder i knows that bidder j has a value of at least si.
For a �rst-price sealed bid auction, let b (s) denote the equilibrium bid of a bidder. Let b (s0) be the

bidder�s strategy for some signal s0. Assume a symmetric monotone increasing equilibrium (so that bidders
use the same strategy and bidders with higher signals place higher bids). The bidder�s expected payo¤ is:

Pr (win) � Payoff

s0
�
�s+ (1� �) s

0

2
� b (s0)

�
The probability of winning is s0 because the signals are distributed uniformly on the unit interval. The value
of the item, conditional on winning, is �s+(1� �) s02 . The term �s is from the bidder�s own signal s, and the
expectation of the portion of the value determined by the other bidder�s signal is (1� �) s02 because the other
bidder�s signal will be distributed uniformly between [0; s0]. The payment made is b (s0). Di¤erentiating with
respect to s0 yields:

�s+ (1� �) s
0

2
� b (s0) + s0

�
1� �
2

� b0 (s0)
�

= 0

�s+ (1� �) s
0

2
� b (s0) + s0 1� �

2
� s0b0 (s0) = 0

�s+ (1� �) s0 � b (s0)� s0b0 (s0) = 0

Imposing that s0 = s because the maximum must be reached there, we have:

�s+ (1� �) s� b (s)� sb0 (s) = 0

s� b (s)� sb0 (s) = 0

s� b (s)
s

= b0 (s)
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The initial condition is b (0) = 0 because otherwise a bidder with the lowest possible signal would receive a
negative payo¤, leading to the following solution:

b (s) =
s

2
:

Note that bidding one-half of the signal is the same general form of the equilibrium that we had for a �rst-
price private value auction (bidders bid one-half of their value in that case in a two bidder auction). As with
the English auction, this result assumes that the true value of the item is the weighted average of the signals.
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