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1 Introduction

Empirical research on mean-variance portfolio optimization is typically conducted by substi-
tuting estimates of the mean vector and covariance matrix of asset returns into an expression
for the optimal portfolio weights. The portfolios constructed using this “plug-in” approach
are called sample mean-variance efficient portfolios. Although the plug-in approach is con-
ceptually straightforward, a number of implementation issues arise that fall outside the scope
of the optimization problem. These range from how to model changes in the investment op-
portunity set and estimate the model parameters, to how to account for transaction costs.
In this paper, we propose a methodology that encompasses the plug-in approach within a
broader empirical framework that fully accounts for the impact of such issues on the perfor-
mance of the plug-in weights. This allows us to optimize the out-of-sample performance of
sample mean-variance efficient portfolios with respect to specific investment objectives.

Our general empirical strategy is motivated by Skouras (2007). He suggests a decision-
theoretic approach for estimating the parameters of any sufficiently regular rule that maps
realizations of one or more random variables into decisions made by an economic agent. The
parameter estimates are obtained by maximizing an objective function that measures the
economic benefit to the agent of following the given rule. In other words, the approach is
designed to optimize the performance of the rule from an economic perspective. Brandt et
al. (2009) provide a nice example of this approach applied in a portfolio choice setting. They
investigate a parametric portfolio choice rule that restricts the portfolio weights to be linear
in a set of asset-specific variables, such as size and book-to-market measures. To implement
the rule, they find the coefficients on the asset-specific variables that deliver the highest
average utility for a specified historical sample period.

We use a similar methodology to optimize the performance of the plug-in approach. The
basic strategy is as follows. First, we note that Ferson and Siegel (2001) derive an analytic
expression for the weights that deliver an unconditionally mean-variance efficient (UMVE)
portfolio in settings with time-varying investment opportunities. This establishes the port-
folio rebalancing rule that is optimal in the absence of estimation risk and rebalancing costs.
Next, we use historical asset returns to construct plug-in weights that depend on a small
number of unknown parameters. This yields theoretically-motivated counterparts of the lin-
ear weight functions used by Brandt et al. (2009). Finally, we use the plug-in weights to
generate a series of out-of-sample portfolio returns and find the values of the parameters
that maximize the mean return subject to a constraint on the return variance. Thus we fully
account for the impact of estimation risk when choosing the parameter values, and we can
take turnover into account simply by using returns measured net of rebalancing costs.

Ferson and Siegel (2001) show that the weights that deliver an UMVE portfolio are a func-
tion of the conditional mean vector and conditional second-moment matrix of asset returns.
Consistent with most studies in the portfolio choice literature, we focus on the case in which
the conditioning information consists solely of past asset returns. For the empirical inves-
tigation, we estimate the conditional moments of returns via simple exponential-smoothing
models that emphasize parsimony and impose minimal assumptions about the data generat-
ing process. Of course, using estimates in place of the true conditional moments introduces
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estimation risk, i.e., uncertainty about portfolio returns that is incremental to the usual un-
certainty about the individual asset returns. The presence of estimation risk complicates the
portfolio choice problem because it affects the time-series properties of the plug-in weights
and, hence, the expected portfolio performance (see, e.g., Kan and Zhou, 2007).

To illustrate the nature of the complications, consider a scenario in which all investors form
conditional expectations via exponential smoothing and use the same smoothing constant.
Even if we use an exponential-smoothing model to estimate the conditional moments of asset
returns, the estimated optimal portfolio weights will generally deviate from the true weights
because the unknown value of the smoothing constant must either be specified a priori or
estimated from the data. In either case, the potential for choosing an incorrect smoothing
constant causes the expected performance of the sample mean-variance efficient portfolio to
fall short of the expected performance of the true optimal portfolio. Specification errors give
rise to similar issues. If the models used to estimate the conditional moments of returns are
misspecified, the plug-in weights are not consistent estimates of the true optimal weights.
The result is a decline in expected portfolio performance.

From an empirical point of view, the challenge is to minimize the adverse impact of estimation
risk and specification errors on portfolio performance. This argues for the use of specialized
econometric methods. Under a conventional econometric approach, choosing the smoothing
constants is a model-fitting problem. We might select the values that deliver the best forecasts
of the returns and squared returns under mean-squared-error (MSE) loss. It is clear, however,
that the model-fitting problem does not embody the same objective as the portfolio problem,
which is to maximize expected utility under mean-variance risk preferences. Expected utility
functions generally translate into asymmetric loss functions, and asymmetric loss favors
estimates that are biased in an appropriate direction (Patton and Timmermann, 2007). The
values of the smoothing constants that deliver the best-performing portfolio could be quite
different from the values that minimize the MSE of the forecasts.

This insight lies at the core of our methodology. In effect, we treat any unknown parameter
that influences the time-series properties of the plug-in weights as a tuning parameter, i.e., as
a parameter that can be freely changed to tailor portfolio performance to specific constraints
and objectives. In our framework, the goal is to maximize the unconditional expected return
on the portfolio subject to a constraint on the unconditional return variance. We therefore
select the model parameters based on the sample moments of the sequence of out-of-sample
portfolio returns that result from using historical data to construct a time series of plug-
in portfolio weights. Specifically, we find the parameter values that generate the highest
average realized utility under mean-variance risk preferences. This optimizes the out-of-
sample performance of the portfolio.

The proposed approach is not restrictive in terms of either modeling techniques or constraints
on portfolio holdings. For example, we consider sample UMVE portfolios constructed using
shrinkage estimators of the conditional moments of returns. The shrinkage factor is there-
fore included as an additional tuning parameter to be estimated in conjunction with other
model parameters. We also address issues of portfolio turnover and rebalancing costs by
explicitly accounting for the effect of turnover in the tuning-parameter optimization. This
is accomplished by using returns measured net of rebalancing costs to construct the sam-
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ple objective function. The approach can easily be extended to incorporate techniques for
reducing turnover and the attendant rebalancing costs.

For example, Leland (1999) argues that partial-adjustment strategies are the appropriate
way to deal with rebalancing costs. These strategies recognize that costly trading can make
it inefficient to fully adjust to the estimated optimal weights each period. We develop a
partial-adjustment strategy that defines a no-trade region around the estimated optimal
weights each period using an estimate of the conditional expected utility loss from leaving
the weights unchanged. If this loss is less than some cutoff, no adjustment is made; otherwise
the existing weights are adjusted to the no-trade boundary. We estimate the optimal size of
the no-trade region by including the cutoff in the set of tuning parameters.

We evaluate the effectiveness of the proposed methodology for three datasets that contain
monthly returns on equally-weighted U.S. equity portfolios. Using portfolios as assets instead
of individual stocks is common in research on mean-variance optimization. We do so because
it allows us to assess the potential for exploiting well-known empirical regularities such as
value, growth, and momentum effects. The first two datasets are the Fama-French 10 Industry
portfolios and 25 Size/Book-to-Market portfolios. To construct the third dataset, we sort
NYSE, AMEX, and NASDAQ firms into 30 Momentum/Volatility portfolios using their
past returns and average absolute returns. The sample period is January 1946 to December
2009. We reserve the first 360 months of data to construct the plug-in weights for the initial
investment period, leaving 408 months for performance evaluation.

To generate our empirical results, we maximize average realized utility under mean-variance
risk preferences using a relative risk aversion of 15. This level of risk aversion imposes a
substantial risk penalty, producing a relatively conservative investment style. The analysis
reveals that our methodology performs well along a number of dimensions. For instance, if
we estimate the optimal values of the tuning parameters and measure portfolio performance
assuming proportional transaction costs of 50 basis points (bp), then the sample UMVE
portfolio for the 10 Industry dataset has an estimated Sharpe ratio of 0.94. In comparison,
the S&P 500 index and the 1/N portfolio have estimated Sharpe ratios of 0.41 and 0.54. The
performance advantage of the sample UMVE portfolio is highly statistically significant and
points to substantial benefits from employing mean-variance optimization.

This finding is tempered, however, by the high level of turnover required to realize these
benefits. It averages over 380% per year. In an effort to reduce the turnover of the portfolio,
we explore the use of partial adjustment techniques. This meets with only modest success for
this dataset. Allowing for partial adjustment of the weights decreases the average turnover of
the sample UMVE portfolio by only about 45 percentage points per year. The high turnover
is probably related to the low cross-sectional dispersion in average returns for the 10 Industry
dataset — a characteristic not shared with the other two datasets. Because there is little
cross-sectional variation in the sample means, the performance gains may largely reflect the
success of the optimizer in exploiting, by what turns out to be aggressive rebalancing, the
time-series variation in conditional expected returns.

The results for the 25 Size/Book-to-Market and 30 Momentum/Volatility datasets are consis-
tent with this hypothesis in the sense that turnover is of less concern. Under the same 50 bp
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transaction costs assumption, the sample UMVE portfolios for these datasets have estimated
Sharpe ratios of 0.95 and 1.46, respectively. The average turnover for the 25 Size/Book-to-
Market dataset is 286% per year, which is still relatively high. But the average turnover is
considerably lower for the 30 Momentum/Volatility dataset: 158% per year. With partial
adjustment of the weights, these figures fall to 137% and 75%, respectively. This drop in
average turnover is accompanied by an increase in the estimated Sharpe ratios of the sample
UMVE portfolios to 1.03 and 1.54. In comparison, the 1/N portfolio generates an estimated
Sharpe ratio of about 0.57 for both datasets.

Taking the effort to reduce turnover a step further, we combine partial adjustment of the
weights with the use of shrinkage estimators while simultaneously imposing a long-only
constraint. We find that prohibiting short sales leads to a considerable reduction in the
estimated Sharpe ratios. For example, the long-only sample UMVE portfolio for the 30 Mo-
mentum/Volatility dataset has an estimated Sharpe ratio of 1.04. It is noteworthy, however,
that this portfolio outperforms all of the benchmarks at the 1% significance level, and it does
so despite having an average turnover of only 8% per year. Thus prohibiting short sales is an
effective strategy for sharply reducing turnover, and it allows the sample UMVE portfolios
to maintain a significant performance advantage over the benchmarks.

Overall the empirical evidence suggests that the proposed methodology leads to robust port-
folio selection rules. It achieves robustness by expanding the scope of the optimization prob-
lem to encompass the effects of estimation risk, specification errors, and transaction costs
on portfolio performance, and using an adaptive empirical strategy to select the values of
the unknown parameters that appear in the expression for the plug-in weights. This is in
contrast to the ad hoc strategies for selecting the values of these parameters considered else-
where in the literature. Although researchers have long recognized that the performance of
mean-variance optimization is sensitive to the choice of parameter values, there is a dearth
of research on choosing these values in a robust fashion. The empirical strategy developed
here represents a significant step forward in this regard.

2 Methodology for Optimizing the Performance of Sample UMVE Portfolios

The analysis is framed in terms of the portfolio problem of an investor who wants to rebalance
his portfolio on a regular basis to take advantage of time-varying investment opportunities.
We assume that the rebalancing process is accomplished using a formal rule that specifies
how the portfolio weights respond to changes in the investment opportunity set. To identify
the optimal rebalancing rule, we have to specify a well-defined investment objective. We
analyze the case in which the objective is to maximize the unconditional expected return
of the portfolio subject to a constraint on the unconditional portfolio variance. That is, we
assume the goal is to construct a UMVE portfolio.

Although it is somewhat unusual to specify an unconditional investment objective in a set-
ting with time-varying investment opportunities, this is consistent with the common practice
of unconditional performance evaluation. Mutual fund ratings, for example, are largely deter-
mined by fund performance over an extended interval such as three or five years. Portfolios
constructed using conditional objectives may fare poorly if their performance is evaluated
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from an unconditional perspective (Dybvig and Ross, 1985). Of course, unconditional op-
timization is a special case of conditional optimization in our framework, because every
UMVE portfolio is also conditionally mean-variance efficient (Hansen and Richard, 1987).
We emphasize the unconditional representation of the portfolio problem because uncondi-
tional optimization with respect to a set of tuning parameters plays a key role in the analysis.

2.1 UMVE portfolios with time-varying investment opportunities

Ferson and Siegel (2001) provide a general characterization of the set of active portfolio
strategies that deliver minimum-variance portfolios in the presence of time-varying invest-
ment opportunities. Suppose for illustration purposes that there are N risky assets. Let rt+1

denote the N × 1 vector of asset returns for period t + 1 and let rp,t+1 = w′
trt+1 denote the

portfolio return for period t+ 1, where wt is an N × 1 vector of weights selected in period t
that sum to 1. Ferson and Siegel (2001) show that the weights that produce the minimum
value of σ2

p = Var(rp,t+1) for a given value of µp = E[rp,t+1] are of the form

wt =
Ω−1

t ι

ι′Ω−1
t ι

+
µp − µp0

µp1 − µp0

(
Ω−1

t − Ω−1
t ιι′Ω−1

t

ι′Ω−1
t ι

)
µt ∀t, (1)

where µt = Et[rt+1] is the conditional mean vector of returns, Ωt = Et[rt+1r
′
t+1] is the

condition second moment matrix of returns,

µp0 = E

[
ι′Ω−1

t µt

ι′Ω−1
t ι

]
, (2)

µp1 = E

[
µ′tΩ

−1
t µt + (1− ι′Ω−1

t µt)
ι′Ω−1

t µt

ι′Ω−1
t ι

]
, (3)

and ι is an N × 1 vector of ones. The scalars µp0 and µp1 denote the expected returns of
two portfolios on the minimum-variance frontier: the portfolio with the minimum value of
Et[r

2
p,t+1] and the portfolio with the maximum value of Et[rp,t+1]− (1/2)Et[r

2
p,t+1].

Equation (1) implies that we can construct the minimum-variance portfolio for a target
expected return of µp by investing a fraction of wealth, xp = (µp − µp0)/(µp1 − µp0), in the
frontier portfolio with expected return µp1 and the remainder in the frontier portfolio with
expected return µp0 . This construction is not unique because any two frontier portfolios span
the entire minimum-variance frontier (Hansen and Richard, 1987). However, it is the only
construction for which the weights of the two spanning portfolios can be expressed in terms
of µt and Ωt alone, i.e., without the use of any scaling constants.

Setting µp ≥ µp0/(1 − µp1 + µp0) delivers a UMVE portfolio (Ferson and Siegel, 2001). To
see this, consider the problem of choosing wt to maximize the quadratic objective function

Qp(wt) = E[w′
trt+1]−

γ

2
Var(w′

trt+1), (4)

where γ > 0. The solution clearly delivers a UMVE portfolio because it maximizes E[rp,t+1]
for some value of Var(rp,t+1). Moreover, the solution must be of the form shown in equation
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(1) because maximizing Qp(wt) subject to E[rp,t+1] = µp also minimizes Var(rp,t+1) subject
to E[rp,t+1] = µp.

Substituting equation (1) into equation (4) and applying the law of iterated expectations
yields the concentrated objective function

Qp(µp) = µp −
γ

2

(
E[(ι′Ω−1

t ι)−1] +
(µp − µp0)

2

µp1 − µp0

− µ2
p

)
(5)

with µp as the choice variable. Using equation (5) we find that Qp(wt) is maximized for

µp =
µp0

1− µp1 + µp0

+
1

γ

(
µp1 − µp0

1− µp1 + µp0

)
. (6)

Hence, we have µp ≥ µp0/(1− µp1 + µp0) for a UMVE portfolio.

In the subsequent analysis we exploit the close connection between the problem of finding
a UMVE portfolio and the problem of maximizing expected utility under quadratic risk
preferences. To see the connection, suppose someone with utility of the form

U(wt) = w′
trt+1 −

ψ

2
(w′

trt+1)
2 (7)

wants to maximize E[U(wt)]. Because maximizing E[U(wt)] subject to E[rp,t+1] = µp is
equivalent to minimizing Var(rp,t+1) subject to E[rp,t+1] = µp, it again follows that the
solution must be of the form shown in equation (1).

Substituting equation (1) into equation (7) and applying the law of iterated expectations
yields the concentrated objective function

E[U(µp)] = µp −
ψ

2

(
E[(ι′Ω−1

t ι)−1] +
(µp − µp0)

2

µp1 − µp0

)
, (8)

which is maximized for µp = µp0 + (µp1 − µp0)/ψ. Hence, we obtain

wt =
Ω−1

t ι

ι′Ω−1
t ι

+
1

ψ

(
Ω−1

t − Ω−1
t ιι′Ω−1

t

ι′Ω−1
t ι

)
µt (9)

as the optimal vector of weights. This is the same vector of weights that maximizes

Et[U(wt)] = w′
tµt −

ψ

2
w′

tΩtwt (10)

subject to w′
tι = 1. Setting ψ = γ(1− µp1 + µp0)/(1 + γµp0) delivers the UMVE portfolio for

a given value of γ. Note that we have ψ < γ because µp1 > µp0 > 0.

2.2 Plug-in estimation of the optimal weights

Equation (1) is derived under the assumption that the values of µp0 , µp1 , µt, and Ωt are known.
Because this assumption is not satisfied in practice, we follow the related empirical literature
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by using the plug-in approach to implement the Ferson and Siegel (2001) methodology. That
is, we use historical data to estimate the unknown parameters, and substitute the parameter
estimates into the formula for the optimal portfolio weights. Using estimates in place of the
population parameters entails estimation risk: uncertainty about portfolio returns that is
incremental to the uncertainty about individual asset returns. 1 It is important, therefore,
to consider the impact of this risk on portfolio performance.

The empirical investigation focuses on the case in which the conditioning information consists
solely of historical returns. We refer to the sample of returns ending at T0 as the initial
“holdout” sample. To use this sample to construct plug-in weights for the interval T0 to
T0 + 1, we must first specify estimators for µT0 and ΩT0 . Many methods could be used
to model the conditional moments of returns. We employ a simple filtering technique that
emphasizes parsimony and imposes minimal assumptions about the data generating process.
In particular, we specify exponentially-weighted rolling estimators of the form

µ̂T0(φ) =

 T0∑
t=1

φT0−t

−1
T0∑
t=1

φT0−trt (11)

Ω̂T0(ϕ) =

 T0∑
t=1

ϕT0−t

−1
T0∑
t=1

ϕT0−trtr
′
t (12)

where the smoothing constants φ and ϕ satisfy 0 < φ,ϕ ≤ 1.

The use of rolling estimators is common in research on mean-variance portfolio selection.
A number of studies, for example, construct plug-in estimates of the portfolio weights by
using a fixed-width rolling data window to estimate the mean vector and covariance matrix
of asset returns. 2 This approach seeks to balance the benefits of increasing the sample size
against the costs of including more distant observations that are less likely to reflect current
market conditions. Although the use of a fixed-width window has some intuitive appeal, it is
typically less efficient than methods that exploit the full historical sample of asset returns.
The literature suggests that exponentially-weighted rolling estimators are preferred from an
efficiency perspective (see, e.g., Foster and Nelson, 1996).

Developing a robust method for choosing the smoothing constants is central to our investi-
gation. One possibility is to use a model-fitting approach. For instance, we might choose the

1 This motivates Paye (2010) to propose a methodology in which multiple plug-in estimates of the
weights are combined to obtain the final weights. He shows how to estimate the combination that
minimizes the investor’s expected loss, but finds that it is more robust to use a simple average of
the different plug-in estimates because this entails less estimation risk overall.
2 Some recent examples include DeMiguel et al. (2009), Paye (2010), Tu and Zhou (2011), and
Kirby and Ostdiek (2012).
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smoothing constants by minimizing sample criteria of the form

Ĝ(φ) = tr

 1

T0 − 1

T0−1∑
t=1

(rt+1 − µ̂t(φ))(rt+1 − µ̂t(φ))′

 , (13)

Ĥ(ϕ) = tr

 1

T0 − 1

T0−1∑
t=1

(rt+1r
′
t+1 − Ω̂t(ϕ))(rt+1r

′
t+1 − Ω̂t(ϕ))′

 , (14)

where tr{·} denotes the trace operator. This would deliver estimates of the values of φ and
ϕ that produce the best forecasts of the returns and their squares and cross products under
MSE loss. In general, however, we would not expect such an approach to be satisfactory,
because the values that minimize Ĝ(φ) and Ĥ(ϕ) are unlikely to coincide with the values
that optimize the performance of the portfolio. The same is true for any approach that relies
on an econometrically-motivated loss function. 3

We can see this more clearly by considering the implications of specifying risk preferences of
the form shown in equation (7). Under a model-fitting approach, we can express the vector
of plug-in weights for period T0 as

ŵT0(ψ, φ̂, ϕ̂) =
Ω̂−1

T0
(ϕ̂)ι

ι′Ω̂−1
T0

(ϕ̂)ι
+

1

ψ

Ω̂−1
T0

(ϕ̂)−
Ω̂−1

T0
(ϕ̂)ιι′Ω̂−1

T0
(ϕ̂)

ι′Ω̂−1
T0

(ϕ̂)ι

 µ̂T0(φ̂), (15)

where φ̂ = g(r1, r2, . . . , rT0) and ϕ̂ = h(r1, r2, . . . , rT0) for some model-specific functions g(·)
and h(·). The optimal vector of weights, on the other hand, can be expressed as

wT0(ψ) =
1

ψ
Ω−1

T0
(µT0 − κT0(ψ)ι), (16)

where κT0(ψ) = (ψ − ι′Ω−1
T0
µT0)/ι

′Ω−1
T0
ι.

If we substitute equation (15) into the utility function in equation (7) and take conditional
expectations, we obtain

ET0 [U(ŵT0(·))] = κT0(ψ) + ψŵT0(ψ)′ΩT0ŵT0(ψ, φ̂, ϕ̂)− ψ

2
ŵT0(ψ, φ̂, ϕ̂)′ΩT0ŵT0(ψ, φ̂, ϕ̂). (17)

In comparison, substituting equation (16) into the utility function in equation (7) and taking
conditional expectations yields

ET0 [U(wT0(·))] = κT0(ψ) +
ψ

2
wT0(ψ)′ΩT0wT0(ψ). (18)

Hence, under the utility-based loss function

L(wT0 , ŵT0) = U(wT0(·))− U(ŵT0(·)), (19)

3 If we consider the case in which rt ∼ i.i.d. N (µ,Σ), for example, using the maximum likelihood
estimators of µ and Σ to construct the plug-in weights does not maximize the expected out-of-
sample performance of the portfolio (Kan and Zhou, 2007).
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the conditional expected loss is

ET0 [L(wT0 , ŵT0)] =
ψ

2
(wT0(ψ)− ŵT0(ψ, φ̂, ϕ̂))′ΩT0(wT0(ψ)− ŵT0(ψ, φ̂, ϕ̂)) (20)

by using the plug-in weights in place of the optimal weights. The unconditional expected
loss follows immediately by the law of iterated expectations.

It is apparent from equation (20) that the magnitude of the expected loss from using the
plug-in weights depends on the nature of the functions g(·) and h(·). Under a model-fitting
approach these functions are defined implicitly by solving for the values of φ and ϕ that
maximize goodness-of-fit with respect to standard statistical criteria. In general, there is no
guarantee that the resulting estimators deliver a small expected utility loss. To develop a
decision-theoretic approach for choosing the smoothing constants, we treat them as tuning
parameters, i.e., as parameters that we can freely change to tailor the performance of the
plug-in weights to a particular investment objective.

2.3 Estimating the optimal values of the tuning parameters

Suppose we want to use the Ferson and Siegel (2001) framework to construct a sample UMVE
portfolio. Under these circumstances, the problem is to select an active portfolio strategy
from within the set of strategies that have weights of the form

ŵT0(ϑ) =
Ω̂−1

T0
(ϕ)ι

ι′Ω̂−1
T0

(ϕ)ι
+

1

ψ

Ω̂−1
T0

(ϕ)−
Ω̂−1

T0
(ϕ)ιι′Ω̂−1

T0
(ϕ)

ι′Ω̂−1
T0

(ϕ)ι

 µ̂T0(φ). (21)

where ϑ = (ψ, φ, ϕ)′ denotes the vector of tuning parameters. To identify the optimal active
strategy under unconditional mean-variance risk preferences, we have to find the value of ϑ
that maximizes the quadratic objective function

Qp(ϑ) = E[ŵT0(ϑ)′rT0+1]−
γ

2
Var(ŵT0(ϑ)′rT0+1), (22)

where γ measures relative risk aversion. If we assume that µ̂T0(φ) and Ω̂T0(ϕ) are correctly-
specified parametric models of the conditional mean vector and conditional second-moment
matrix, then Qp(ϑ) is maximized by setting ψ = γ(1− µp1 + µp0)/(1 + γµp0), and choosing

φ and ϕ such that µ̂T0(φ) = µT0 and Ω̂T0(ϕ) = ΩT0 . This yields the same vector of weights
as maximizing Qp(wt) in equation (4) for t = T0.

The value of ϑ that maximizes Qp(ϑ) is unknown in practice. However, we can use historical
returns to construct a sample version of the objective function and estimate this value in a
straightforward fashion. To implement our estimation methodology, we split the initial hold-
out sample into an “initialization window” that contains the first K0 ≥ N observations and
an “estimation window” that contains the remaining T0−K0 observations. 4 The returns in
the initialization window are used to initialize the rolling estimators of the conditional mean

4 The restriction K0 ≥ N is imposed to ensure that the estimate of Ωt is invertible for all t ≥ K0,
i.e., for all dates contained in the estimation window.
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vector and conditional second-moment matrix, and the returns in the estimation window are
used to construct the sample objective function and estimate the optimal value of ϑ.

The proposed estimator is obtained by applying the weights {ŵt(ϑ)}T0−1
t=K0

to the returns in
the estimation window. Note that ŵt(ϑ) depends only on the returns observed in periods 1
through t. It follows, therefore, that applying ŵt(ϑ) to rt+1 delivers an out-of-sample portfolio
return for period t + 1. For any choice of ϑ, the sample mean and sample variance of the
out-of-sample portfolio returns for the estimation window are given by

µ̂p(ϑ) =
1

T0 −K0

T0−1∑
t=K0

ŵt(ϑ)′rt+1, (23)

σ̂2
p(ϑ) =

1

T0 −K0

T0−1∑
t=K0

(ŵt(ϑ)′rt+1 − µ̂p(ϑ))2. (24)

These sample moments are analogs of the population moments that appear on the right side
of equation (22). Under suitable regularity conditions, therefore, the estimate of ϑ obtained
by maximizing the sample objective function

Q̂p(ϑ) = µ̂p(ϑ)− γ

2
σ̂2

p(ϑ) (25)

converges as T0 −K0 →∞ to the value of this vector that maximizes Qp(ϑ). 5

In general, we expect the sample objective function to be constructed using misspecified
econometric models. For example, the volatility modeling literature suggests that even for
small values of N we need a heavily-parameterized model to fully capture the dynamics of Ωt.
Such a model may not be practical in portfolio-choice applications. If we instead use a more
parsimonious specification, such as the rolling estimator considered here, the plug-in weights
will differ from the true weights for all possible values of the tuning parameters. In this case,
maximizing the sample objective function yields estimates of the values of tuning parameters
that deliver a portfolio that is UMVE with respect to the choice set established by using the
misspecified models to construct the plug-in weights. This yields the most efficient portfolio
possible given the choice of modeling techniques.

We also expect the estimates of φ and ϕ obtained by maximizing Q̂p(ϑ) to serve the un-
derlying investment objectives better than either ad hoc choices of the parameter values
or the estimates obtained from a model-fitting approach. To understand why, note that
our approach maximizes the average realized utility generated by the portfolio as opposed
to a statistical goodness-of-fit criterion. Because utility-based objective functions generally
translate into asymmetric loss functions, overestimating an expected return or variance will
typically produce a different loss than underestimating this quantity by the same amount.

5 Note that global identification is not a concern in this setting, because our objective is limited
to constructing an estimate of ϑ that converges to the value that maximizes Qp(ϑ) as T0 −K0 →
∞. There is no need to assume that the maximum of Qp(ϑ) corresponds to a unique parameter
configuration. For a detailed discussion of identification in the context of parameter estimation
using economic loss functions, see Skouras (2007).

10



As a consequence, the tuning-parameter optimization favors estimates of φ and ϕ that are
biased in an appropriate direction. 6

By estimating φ and ϕ jointly with ψ, we allow the optimizer to fully evaluate all of the
tradeoffs involved in choosing the tuning parameter values. For instance, reducing the value
of φmight produce more accurate estimates of conditional expected returns, but it might also
increase the time-series variation in the plug-in weights. In isolation this could be counterpro-
ductive. However, increasing the value of ψ might compensate for the increased variation in
the plug-in weights and ultimately produce a higher value of the sample objective function.
Assessing the potential for such tradeoffs is at the core of our strategy for identifying tuning
parameter values that optimize the out-of-sample performance of the portfolio. 7

Brandt et al. (2009) use a related estimation strategy to implement a parametric portfo-
lio rule in large-scale applications. Under their approach, each asset weight is restricted to
be linear in a set of asset-specific variables, such as market capitalization, book-to-market
value, and lagged returns. This linear-weight-function approach is a middle ground between
a fully-specified model of optimal portfolio choice and pure technical trading rules. Although
it is an approximation, it has the advantage of drastically reducing computational demands
when N is large by eliminating the need to estimate the optimal weights using the functional
form implied by theory. Because the values of coefficients in the linear weight functions are
unknown, Brandt et al. (2009) estimate them from the data. In particular, they find the coef-
ficient values that maximize average utility over their sample period under a specified utility
of wealth function. The proposed approach for optimizing the out-of-sample performance of
the plug-in weights is a theory-based alternative to their methodology.

2.4 Portfolio turnover and rebalancing costs

Portfolio turnover is always a concern if transaction costs are greater than zero. In this
situation, anything that increases turnover can decrease performance after accounting for
rebalancing costs. Turnover is usually defined as the fraction of invested wealth traded in a
given period to rebalance the portfolio. To see how to compute this measure, note that if one
dollar is invested in the portfolio in period t− 1, there are ŵi,t−1(ϑ)(1 + ri,t) dollars invested
in the ith asset of the portfolio in period t. Hence, the weight in asset i before the portfolio

6 Using asymmetric loss functions to evaluate forecast quality is an area of ongoing research. Under
asymmetric loss, many of the properties traditionally associated with forecast optimality need not
hold. Optimal forecasts can be biased, the forecast errors can display arbitrarily high orders of serial
correlation, and the variance of the forecast errors can decline as the forecast horizon increases
(Patton and Timmermann, 2007).
7 In our experience, the sample objective function in equation (25) tends to have a number of
local optima, so some care is needed to avoid termination of the optimization algorithm at these
points. We guard against this possibility by conducting multiple optimizations using a range of
starting values. Despite this precaution, there may be some cases in which we fail to find the global
optimum. Our analysis suggests, however, that the remaining improvement in the value of the
objective function that could be achieved in such cases is very small.
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is rebalanced is

w̃i,t(ϑ) =
ŵi,t−1(ϑ)(1 + ri,t)

1 +
∑N

i=1 ŵi,t−1(ϑ)ri,t

, (26)

and the turnover at time t is given by

τp,t(ϑ) =
1

2

N∑
i=1

|ŵi,t(ϑ)− w̃i,t(ϑ)|, (27)

where ŵi,t(ϑ) is the desired weight in asset i at time t. 8

One advantage of the proposed methodology is that we can take turnover and rebalancing
costs directly into account. To illustrate, let r̃p,t denote the portfolio return net of rebalancing
costs for period t. Now suppose that the cost of rebalancing the portfolio to the desired period
t weights is subtracted from the return for period t, and that the level of transaction costs
is constant both across assets and over time. Under these circumstances,

r̃p,t(ϑ) = (1 + ŵ′
t−1(ϑ)rt)(1− 2τp,t(ϑ)c)− 1, (28)

where c is the assumed level of proportional costs per transaction. 9 We can therefore estimate
the optimal values of the tuning parameters for a given c by using {r̃p,t(ϑ)}K0

t=1 to initialize
the rolling estimators and {r̃p,t(ϑ)}T0

t=K0+1 to construct the sample objective function. The
assumption that c is constant could easily be relaxed. For instance, evidence suggests that
the cost of trading U.S. equities has declined over time (Domowitz et al., 2001; Hasbrouck,
2009). This decline can be captured by specifying a linear time trend for trading costs of the
form ct = c0 + c1t with appropriate values of c0 and c1.

2.5 Shrinkage and partial-adjustment techniques

Shrinkage methods are a popular technique for improving the performance of the plug-in
approach to constructing portfolio weights. The basic idea of shrinkage estimators, as first
described by James and Stein (1961), is to reduce the extreme estimation errors that may
occur when estimating the cross-section of means, variances, and covariances of asset returns.
For example, we might shrink the sample mean for each asset towards the grand sample mean
for all the assets. This mitigates the largest estimation errors and may reduce the variance
of the estimators by enough to outweigh the biases introduced by the technique.

It is straightforward to apply shrinkage methods in the proposed framework. Consider esti-

8 Equation (27) is consistent with the measure of turnover used in the mutual fund industry, i.e.,
the lesser of the value of purchases and sales in the period divided by net asset value. Here the
value of purchases equals the value of sales because there are no fund inflows or outflows.
9 Note that τp,t(ϑ) is multiplied by 2 in equation (28) because turnover is the value of assets
purchased or, equivalently in our framework, the value of assets sold as a fraction of total wealth.
Both purchases and sales incur transaction costs, so rebalancing costs are given by 2τp,t(ϑ)c.

12



mators for µt and Ωt of the form

µ̂∗t (φ, ρ) = ρµ̄t + (1− ρ)µ̂t(φ), (29)

Ω̂∗
t (ϕ, ρ) = ρΩ̄t + (1− ρ)Ω̂t(ϕ), (30)

where µ̄t and Ω̄t are the shrinkage targets and the shrinkage factor ρ satisfies 0 < ρ ≤ 1. 10

Consistent with the general approach, we treat ρ as a tuning parameter. Thus the vector of
plug-in weights for period t becomes

ŵ∗
t (ϑ

∗) =
Ω̂∗−1

t (ϕ, ρ)ι

ι′Ω̂∗−1
t (ϕ, ρ)ι

+
1

ψ

(
Ω̂∗−1

t (ϕ, ρ)− Ω̂∗−1
t (ϕ, ρ)ιι′Ω̂∗−1

t (ϕ, ρ)

ι′Ω̂∗−1
t (ϕ, ρ)ι

)
µ̂∗t (φ, ρ), (31)

where ϑ∗ = (ϑ′, ρ)′ contains the original tuning parameters plus the shrinkage factor. The
shrinkage targets are obtained by averaging the sample means, sample second moments, and
sample second moments of the returns that are in the investor’s information set when the
weights are selected. Specifically, we set µ̄it = ι′µ̂t(1)/N for all i, Ω̄ii,t = tr{Ω̂t(1)}/N for all

i, and Ω̄ij,t = (ι′Ω̂t(1)ι− tr{Ω̂t(1)})/(N2 −N) for all i 6= j.

The empirical evidence suggests that shrinkage methods reduce the adverse impact of esti-
mation risk, but they may not be the most effective way to address the issue of rebalancing
costs. For this reason, we also consider partial-adjustment strategies. These strategies rec-
ognize that costly trading can make it inefficient to fully adjust to the estimated optimal
position each period because there is an inherent tradeoff between the benefits of incor-
porating information about changes in the investment opportunity set and the attendant
rebalancing costs. The idea behind partial-adjustment strategies is to strike an appropriate
balance between these costs and benefits.

Brandt et al. (2009) propose one such strategy. They use a function of the form

dt(δ) =
1

N

N∑
i=1

(ŵi,t − w̃∗
i,t(δ))

2 (32)

to measure the distance between the desired weights, ŵt, and weights before any rebalancing
occurs, w̃∗

t (δ), and specify that no adjustment of the weights takes place if dt(δ) ≤ δ. Thus
there is a no-trade region — a hypersphere of radius

√
δ — around ŵt. For cases in which

dt(δ) > δ, the weights are adjusted to the boundary of the no-trade region by setting

ŵ∗
t (δ) = %t(δ)w̃

∗
t (δ) + (1− %t(δ))ŵt, (33)

where %t(δ) = (δ/dt(δ))
1/2.

Although partial-adjustment strategies can be motivated by the theory of portfolio optimiza-
tion in the presence of transaction costs (see, e.g., Leland, 1999), there is no claim that the
optimal shape of the no-trade region is a hypersphere. Indeed, equation (20) suggests using a
different shape for an investor with quadratic risk preferences. It shows that the conditional

10 We investigated using different shrinkage factors for the first and second moments, but found
that this had little impact on our results.
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expected loss generated by errors in estimating the optimal weights is a quadratic form in the
conditional second moment matrix of returns. Accordingly, we propose a partial-adjustment
strategy based on the distance measure

dt(ϑ
∗) = (ŵt(ϑ)− w̃∗

t (ϑ
∗))′Ω̂t(ϕ)(ŵt(ϑ)− w̃∗

t (ϑ
∗)), (34)

where ϑ∗ = (ϑ′, δ)′ contains the original tuning parameters plus the no-trade distance. The
value of dt(ϑ

∗) approximates the conditional expected loss in utility from leaving the weights
unchanged. If the anticipated loss is less than δ, no adjustment takes place. Otherwise the
weights are adjusted to the no-trade boundary by setting

ŵ∗
t (ϑ

∗) = %t(ϑ
∗)w̃∗

t (ϑ
∗) + (1− %t(ϑ

∗))ŵt(ϑ), (35)

where %t(ϑ
∗) = (δ/dt(ϑ

∗))1/2.

3 Empirical Application

To investigate the effectiveness of the proposed methodology, we consider an empirical ap-
plication in which the goal is to create an optimal “fund-of-funds” strategy by investing in
a defined set of characteristic-based portfolios that contain NYSE, AMEX, and NASDAQ
firms. Using portfolios rather than individual stocks as assets has two advantages. First, it
allows us to assess the extent to which the cross-sectional and time-series variation in the
plug-in weights is related to well-known empirical regularities, such as value, growth, and
momentum effects. This provides insights on the features of the research design that influence
the performance of sample UMVE portfolios. Second, it allows us to directly relate our find-
ings to the literature, because most of the empirical research on mean-variance optimization
uses portfolios rather than individual stocks.

We use a number of equity benchmarks, such as the S&P 500 index, to draw inferences about
the observed performance of the sample UMVE portfolios. Treasury bills are excluded from
the set of assets to ensures that the observed differences in performance between the sample
UMVE portfolios and the benchmarks are not driven by allocations to the conditionally risk-
free security. As Brandt et al. (2009) point out, the first-order effect of including a risk-free
security in the portfolio is simply to change the leverage, not the relative weightings of the
risky assets. Thus, little is lost by excluding Treasury bills from consideration.

3.1 Datasets

The empirical investigation is conducted using monthly returns on three sets of equally-
weighted stock portfolios for the period from January 1946 to December 2009 (768 observa-
tions). 11 We employ equally-weighted portfolios for the analysis so that näıve diversification,
one of our benchmark strategies, corresponds to holding an equally-weighted portfolio of in-
dividual stocks. This allows us to attribute the observed differences in performance between

11 We exclude data prior to 1945 from the analysis because of the atypical conditions that prevailed
in U.S. equity markets during the Great Depression and World War II.
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the 1/N portfolio and the sample UMVE portfolios to the impact of grouping individual
firms on the basis of observed characteristics and using mean-variance optimization to take
advantage of the resulting cross-sectional and time-series variation in the conditional mo-
ments of returns. In general, we expect the sorting rule to play an important role in the
analysis because it affects key characteristics of the investment opportunity set.

Two of the three datasets are from a data library maintained by Ken French. 12 The first
dataset is constructed by sorting individual firms into 10 Industry portfolios using standard
industrial classification (SIC) codes. By using industry portfolios as assets, we potentially
encompass the type of sector rotation strategies popular among professional money managers.
The second dataset is constructed by sorting individual firms into 25 Size/Book-to-Market
portfolios using market capitalization and book-to-market values. Using these portfolios as
assets allows us to examine the interplay between value and growth effects. Both datasets
are representative of those used in prior research (see, e.g., DeMiguel et al., 2009).

The third dataset is constructed using a sorting scheme that is motivated by the results of
Kirby and Ostdiek (2012). They find that the cross-sectional dispersion in the sample means
and sample variances of the asset returns influences the performance of mean-variance meth-
ods of portfolio selection. Although this is not surprising, it suggests that a more comprehen-
sive approach to the mean-variance optimization problem might be beneficial. In particular,
grouping firms in a manner specifically designed to create a large dispersion in both means
and variances might lead to improved performance of the out-of-sample portfolio. To investi-
gate this possibility, we employ a dataset that is constructed using past returns and average
absolute returns to sort individual firms into 30 Momentum/Volatility portfolios. 13

Figure 1 plots the annualized values of the sample mean returns and sample return volatilities
for the three datasets. The patterns observed for the 10 Industry (panel A) and 25 Size/Book-
to-Market (panel B) portfolios are familiar from other studies. First, sorting firms on SIC
codes produces less dispersion in average returns than sorting firms on size and book-to-
market values. The sample means range from 12.8% to 20.2% for the industry portfolios and
from 10.6% to 23.4% for the size/book-to-market portfolios. Second, the choice of sorting
scheme has less effect on the dispersion in sample volatilities. The range is 11.8% to 30.3%
for the industries and 16.2% to 29.2% for size/book-to-market. In comparison, there is much
more dispersion in sample volatilities for the 30 Momentum/Volatility portfolios (panel C),
with a range of 9.5% to 47.4%. Moreover, the dispersion in sample means for these portfolios
is comparable to that for the 25 Size/Book-to-Market portfolios: 11.1% to 25.6%. Thus the
preliminary evidence suggests that including the choice of sorting scheme in the scope of the

12 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
13 The returns are drawn from the Center for Research in Security Prices monthly stock file. We
form the portfolios for each month t as follows. First, we use the average absolute monthly return
for months t−12 to t−2 to sort firms into volatility deciles. Next, we use the holding-period return
for the interval t− 12 to t− 2 to sort the firms within each volatility decile into three momentum
portfolios. Firms included in a portfolio for month t have a non-missing price for month t − 13, a
non-missing return for month t − 2, a non-missing price and non-missing shares outstanding for
month t− 1, and code −99.0 for any missing returns for months t− 12 to t− 3. These are the same
filters used to construct the momentum portfolio dataset in the Ken French data library.
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optimization problem is a promising strategy.

3.2 Rolling-sample strategy for computing the plug-in weights

We construct the sample UMVE portfolios using a rolling-sample approach in which the
optimal values of the tuning parameters are reestimated with each new data point that be-
comes available. First, we split the dataset into the initial holdout sample, which contains the
initial T0 observations, and a performance evaluation sample, which contains the remaining
T observations. The initial holdout sample is used to construct the initial estimates of the
optimal tuning parameter values, which are then used to compute the plug-in weights for
the interval T0 to T0 + 1. This delivers the portfolio return for period T0 + 1. Next, we form
an updated holdout sample that consists of the initial T0 observations plus the observation
for period T0 + 1. The updated holdout sample is used to construct updated estimates of
the optimal values of the tuning parameters, which are then used to compute the plug-in
weights for the interval T0 + 1 to T0 + 2. This delivers the portfolio return for the period
T0 + 2. We continue updating the parameter estimates and computing the plug-in weights
in this manner through the end of the performance evaluation sample.

To implement the rolling-sample approach, we have to choose a value for T0, the length of
the initial holdout sample, and a value for K0, the length of the initialization window for
the exponentially-weighted rolling estimators of the conditional moments of returns. These
choices entail tradeoffs between opposing considerations. Increasing T0 yields more precise
estimates of the optimal values of the tuning parameters, but it also shortens the perfor-
mance evaluation sample, making it more difficult to detect differences in performance across
portfolios. Similarly, increasing K0 makes the exponentially-weighted rolling estimators less
noisy, especially in the early part of the holdout sample, but it also reduces the number of
returns available to estimate the tuning parameters.

We look to prior research to guide the choice of K0, and choose T0 based on our assessment
of the amount of data needed for the initial tuning-parameter optimization. A number of
studies, such as Chan et al. (1999) and DeMiguel et al. (2009), use rolling estimators with
5- to 10-year windows to construct sample mean-variance efficient portfolios. This suggests
setting K0 in the 60 to 120 range. We opt for a 10-year initialization window (K0 = 120)
rather than a shorter window length because of the difficulties in obtaining accurate estimates
of expected returns (see Merton, 1980). To ensure that the initial estimates of the optimal
tuning parameter values display reasonable precision we use a 20-year sample of monthly
portfolio returns for the optimization, resulting in a 30-year initial holdout sample (T0 = 360).

To construct the sample objective function for the optimization, we have to specify values
for γ and c. Our choice of γ could have a significant impact on the findings, particularly
if transaction costs are high. In effect, we are choosing the aggressiveness of the strategy.
A low value of γ translates into an aggressive strategy, while a high value implies a more
conservative investment style. We use γ = 15, which imposes a large risk penalty, to generate
our results. This is consistent with an emphasis on low-turnover strategies. Plausible choices
for c could range from as low as 5 bp for large institutional investors to as high as 50 bp for
individual investors. To facilitate inference on the relationship between portfolio turnover
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and the level of assumed transaction costs, we consider both of these values.

3.3 Performance benchmarks and statistical inference

We use three equity benchmarks to evaluate the performance of the sample UMVE portfolios.
The first is the S&P 500 index. Monthly returns for this portfolio are drawn from the Center
for Research in Security Prices monthly stock file. The second is the 1/N portfolio, i.e., a
portfolio with equal weight in each of theN assets under consideration. This is the benchmark
advocated by DeMiguel et al. (2009). The third is a simple plug-in version of the global
minimum variance (GMV) portfolio. This is a useful benchmark because researchers often
report that it performs well in comparison to plug-in versions of other mean-variance efficient
portfolios. 14 Indeed, the GMV portfolio is the only portfolio that frequently outperforms
näıve diversification in the DeMiguel et al. (2009) study.

We obtain the plug-in version of the GMV portfolio by mimicking the procedure used by
DeMiguel et al. (2009). To illustrate, let Σt = Ωt − µtµ

′
t denote the conditional covariance

matrix of returns. In a setting with no riskless asset, the GMV portfolio for period t + 1
is obtained by finding the vector of weights that minimizes w′

tΣtwt subject to w′
tι = 1.

The solution is wt = Σ−1
t ι/ι′Σ−1

t ι. 15 We estimate these weights for each month t in the
performance evaluation window by replacing µt and Σt with rolling estimates of the form
µ̂t = (1/L)

∑L−1
i=0 rt−i and Σ̂t = (1/L)

∑L−1
i=0 (rt−i − µ̂t)(rt−i − µ̂t)

′. Following DeMiguel et al.
(2009), we set L = 120 for the empirical analysis.

The statistical significance of the observed differences in performance across portfolios is
assessed using large-sample t-statistics. Let λ̂pi

and λ̂pj
denote the estimated Sharpe ratios

of portfolios i and j for the evaluation period. If the two portfolios have the same population
Sharpe ratio, then we have the large-sample approximation

√
T

 λ̂pi
− λ̂pj

V̂
1/2
λ

 a∼ N (0, 1), (36)

where V̂λ denotes a consistent estimator of the asymptotic variance of
√
T (λ̂pi

− λ̂pj
). 16 To

14 This is often attributed to the fact that the weights of the GMV portfolio do not depend on
expected returns, which reduces estimation risk (see, e.g., Jagannathan and Ma, 2003).
15 We call this the GMV portfolio to be consistent with the terminology used in previous studies.
From an unconditional perspective, it is actually the global minimum second-moment portfolio. To
see this, use equation (20) of Ferson and Siegel (2001) to establish that wt = Ω−1

t ι/ι′Ω−1
t ι minimizes

the unconditional second moment of the portfolio, and use the Sherman-Morrison matrix inversion
formula to invert Ωt = Σt + µtµ

′
t and establish that Ω−1

t ι/ι′Ω−1
t ι = Σ−1

t ι/ι′Σ−1
t ι.

16 We use the generalized method of moments to construct this estimator. Let

et(θ̂) =


r̃pit − rft − σ̂pi λ̂pi

r̃pjt − rft − σ̂pj λ̂pj

(r̃pit − rft − σ̂pi λ̂pi)
2 − σ̂2

pi

(r̃pjt − rft − σ̂pj λ̂pj )
2 − σ̂2

pj

 ,
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assess whether a given UMVE portfolio i outperforms a particular benchmark j, we find the
p-value for the null hypothesis λpi

− λpj
≤ 0. If we reject the null, we conclude that the

sample UMVE portfolio displays superior performance.

3.4 Results for the 10 Industry dataset

Table 1 documents the performance of the sample UMVE portfolios for the 10 Industry
dataset. Panel A presents results for the baseline case and panel B for the case with shrinkage
estimators. Each panel contains four sets of results. The initial two rows are for c = 5 bp
with δ = 0 (full adjustment to the estimated optimal weights) and δ ≥ 0 (partial adjustment
to the no-trade boundary). The final two rows are for c = 50 bp with δ = 0 and δ ≥ 0.

For each c and δ combination, we report the estimated expected portfolio return, the es-
timated portfolio standard deviation, the estimated portfolio Sharpe ratio, the estimated
certainty-equivalent (CE) portfolio return, and the estimated expected portfolio turnover.
The first four statistics are computed using transaction costs of both 5 and 50 basis points
to assess the impact of using a value of c in the tuning-parameter optimization that differs
from the level of transaction costs assumed for the performance evaluation. We also report p-
values for three one-sided hypothesis tests: (i) the S&P 500 index performs at least as well as
the UMVE portfolio (ii) the 1/N portfolio performs at least as well as the UMVE portfolio,
and (iii) the plug-in GMV portfolio performs at least as well as the UMVE portfolio.

First consider the no-shrinkage case with c = 5 bp. If we set δ = 0 and assume transaction
costs of 5 bp for performance evaluation, the sample UMVE portfolio has an estimated
expected return of 33.3%, an estimated standard deviation of 16.8%, an estimated Sharpe
ratio of 1.65, and an estimated CE return of 12.1%. Setting δ ≥ 0 yields identical results
because the optimizer chooses δ̂ = 0 even when partial adjustment is not ruled out a priori.
In comparison, the best-performing benchmark — the 1/N portfolio — has an estimated
Sharpe ratio of 0.55. Its estimated expected return is less than half that of the sample UMVE
portfolio, but its estimated standard deviation is almost three percentage points higher. The
p-values indicate that the sample UMVE portfolio outperforms all the benchmarks at the
1% significance level. These findings highlight the promise of the methodology.

Note, however, that the sample UMVE portfolio achieves these results at the cost of very
high portfolio turnover, averaging over 1400% per year. As a consequence, its performance
deteriorates markedly if we impose transaction costs of 50 bp for performance evaluation.
The estimated expected return falls to 20.2%, the estimated standard deviation increases to
17.3%, the estimated Sharpe ratio falls to 0.85, and the estimated CE return falls to −2.3%.
Nonetheless, it still outperforms both the S&P 500 index and the plug-in GMV portfolio at
the 5% significance level, and the 1/N portfolio at the 10% significance level.

where rft denotes the one-month Treasury bill rate and θ̂ = (λ̂pi , λ̂pj , σ̂
2
pi

, σ̂2
pj

)′ contains the sample
Sharpe ratios and excess return variances for portfolios i and j. Under regularity conditions (see
Hansen, 1982),

√
T (θ̂ − θ) a∼ N (0, (D̂′Ŝ−1D̂)−1) where D̂ = (1/T )

∑T0+T
t=T0+1 ∂et(θ̂)/∂θ̂′ and Ŝ =

Γ̂0 +
∑m

l=1(1 − l/(m + 1))(Γ̂l + Γ̂′
l) with Γ̂l = (1/T )

∑T0+T
t=T0+l+1 et(θ̂)et−l(θ̂)′. For the empirical

analysis, we set m = 5 and V̂λ = V̂11 − 2V̂12 + V̂22 where V̂ ≡ (D̂′Ŝ−1D̂)−1.
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Figure 1 suggests a possible explanation for the high turnover for the 10 Industry dataset.
Because the cross-sectional dispersion in sample means for the industry portfolios is relatively
low, the performance advantage of the sample UMVE portfolio may largely reflect the success
of the optimizer in exploiting time-series variation in the estimates of conditional expected
returns. If this is the case, the high turnover is not surprising. Imposing a larger rebalanc-
ing penalty should reduce the aggressiveness of the optimizer and, consequently, improve
performance under the 50 bp transaction costs assumption for performance evaluation.

Increasing c to 50 bp does produce a large decrease in the estimated expected turnover. It
falls by over 1000 percentage points to about 380% per year. If we impose transaction costs
of 5 bp for performance evaluation, the sample UMVE portfolio has an estimated expected
return of 21.6%, an estimated standard deviation of 13.4%, an estimated Sharpe ratio of 1.21,
and an estimated CE return of 8.2%. This represents a substantial reduction in performance,
but the portfolio still outperforms all three benchmarks at the 1% significance level.

If we instead impose transaction costs of 50 bp for performance evaluation, the estimated
expected return falls to 18.1%, the estimated standard deviation increases to 13.5%, the
estimated Sharpe ratio falls to 0.94, and the estimated CE return falls to 4.5%. This is
sufficient to outperform all three benchmarks at the 5% significance level. Setting δ ≥ 0
leads to a further reduction in turnover, but the performance of the sample UMVE is little
changed under either transaction costs assumption. In all cases, the portfolio outperforms
the three benchmarks at the 5% significance level.

Note also that there is a distinct pattern to the estimated CE returns in panel A. Specifically,
for each level of transaction costs imposed for performance evaluation, using the matching
level of c for tuning-parameter optimization leads to higher estimated CE returns than using
the alternative level of c. This is as expected, because the chosen tuning parameter values
maximize the historical performance of the portfolio under the selected value of c. This
comparison confirms that the procedure is working as intended by appropriately adapting
to changes in the level of assumed transaction costs.

Now consider the impact of using shrinkage estimators on the performance of the sample
UMVE portfolio. In general, the results in panel B look a lot like those in panel A. We see the
same patterns, but the performance of the sample UMVE portfolio is slightly improved for
every c and δ combination. For example, with c = 50 bp and δ ≥ 0, the estimated expected
portfolio turnover is about 285%. If we impose transaction costs of 50 bp for performance
evaluation, the portfolio has an estimated expected return 20.1%, an estimated standard
deviation of 14.1%, an estimated Sharpe ratio of 1.04, and an estimated CE return of 5.2%.
This is sufficient to outperform all three benchmarks at the 1% significance level.

The small gain from employing shrinkage estimators is an interesting result. Other studies
tend to find larger effects (see, e.g., the information ratios reported by Ledoit and Wolf,
2004). Perhaps this is because the benefit of using shrinkage techniques is tied to the tuning
parameter values. Conventional approaches to specifying the tuning parameter values might
yield values that are far from optimal, thereby leaving substantial room for improvement
and making shrinkage estimators more valuable. The evidence thus far indicates that the
additional flexibility offered by these estimators has little value within a framework that
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includes tuning-parameter optimization.

3.4.1 Properties of the estimated tuning parameters and plug-in weights

To aid in understanding how the results in Table 1 are achieved, we document key properties
of the estimated tuning parameters and plug-in weights. In the interest of space, we limit
the analysis to one particular case: c = 50 bp and δ ≥ 0 with the use of shrinkage estima-
tors. This is the most relevant case in terms of practical application. It delivers the lowest
estimated turnover of the 12 scenarios considered, yet produces a sample UMVE portfolio
that outperforms all of the benchmarks at the 1% significance level.

Figure 2, panel A plots the estimated optimal value of each tuning parameter through time.
The left-hand scale is for the estimated smoothing constants, φ̂ and ϕ̂; the right-hand scale
is for the estimated risk penalty, ψ̂, no-trade distance, δ̂, and shrinkage factor, ρ̂. 17 The
shaded rectangles identify bear market periods (10% or greater market declines). In general,
the estimates of the smoothing constants are quite stable. The value of φ̂ ranges from 0.68
to 0.84 with some upward trend through time, indicating that the estimates of conditional
expected returns are only moderately persistent. In comparison, the estimates of the con-
ditional second-moments of returns are very persistent: the value of ϕ̂ ranges from 0.93 to
0.99. It is likely, therefore, that most of the time-series variation in the plug-in weights for
this dataset is driven by variation in µ̂t(φ̂).

The value of ψ̂ is somewhat more variable through time, ranging from 27 to 57. Even at
the low end, the risk-penalty used to construct the estimated weights is substantially higher
than the value of γ used to construct the sample objective function. Recall that in Section
2.1 we found that setting ψ < γ is necessary to obtain the UMVE portfolio for a given value
of γ. However, this was in the absence of both rebalancing costs and estimation risk. The
restriction on the value of ψ need not hold more generally, because rebalancing costs reduce
the expected portfolio return and estimation risk inflates the variance of the portfolio return.
These effects are likely to favor a more conservative investment strategy than that obtained
by setting ψ < γ.

Notice that the value of ψ̂ jumps upward about a third of the way through the performance
evaluation period. Specifically, it increases from about 42 to 55. This is in response to the
1987 stock market crash. Once the October 1987 data enter the holdout sample, the crash
is reflected in returns used to construct the sample objective function. The presence of large
negative returns causes the optimizer to select a more conservative value of ψ̂. Over time the
influence of the crash dissipates as the length of the holdout sample increases, leading to a
decline in the value of ψ̂. It falls to below 35 before jumping upward again at the end of the
performance evaluation period.

The value of δ̂, which defines the size of the no-trade region, ranges from 0.6 to 11.9. If
the annualized value of the estimated conditional expected utility loss from leaving weights
unchanged exceeds δ̂ bp, we rebalance the portfolio. Even at the high end of this range,

17 We report δ̂ as an annualized bp measure and ρ̂ in percent, i.e., we multiply the estimates by
120,000 and 100, respectively, to obtain the values shown in the figure.
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the no-trade region is quite small. This explains why we see only a modest impact from
allowing partial adjustment of the estimated weights. The small no-trade region suggests
that reducing the time-series variation in the weights entails a heavy performance penalty
for this dataset.

The value of ρ̂ ranges from about 24% to 42%. This is higher than might be anticipated
based on the results in Table 1. Even though the methodology incorporates a substantial
degree of shrinkage, the performance results are little changed from the no-shrinkage case. It
appears, therefore, that the performance of the sample UMVE portfolio is not very sensitive
to the choice of shrinkage factor over a large range of values. This again suggests that the
additional flexibility offered by shrinkage estimators has little value when optimizing with
respect to the tuning parameters.

In Figure 3, panel A we plot the minimum weight, the maximum weight, and the sum of the
negative weights for each month in the performance evaluation period. The minimum weight
is typically between −10% and −50%, while the maximum weight is typically between 50%
and 100%. The sum of the negative weights, a measure of portfolio leverage, is typically above
−100%. Although this is high by mutual fund standards, it is much more reasonable than
the levels reported in some previous studies of mean-variance optimization. For example,
our findings contrast sharply with those of DeMiguel et al. (2009). Extreme weights are
common under their approach to constructing sample mean-variance efficient portfolios. In
one case they report estimated weights ranging from −148,195% to 116,828%. Our analysis
suggests that extreme weights can be a consequence implementation choices rather than a
fundamental shortcoming of mean-variance optimization itself.

3.5 Results for the 25 Size/Book-to-Market dataset

The analysis for the 10 Industry dataset suggests that the proposed methodology for con-
structing plug-in weights improves the out-of-sample performance of mean-variance opti-
mization by a substantial margin. The one aspect of the results that stands out as a possible
concern is turnover, which is considerably higher than that of a typical actively-managed
institutional portfolio. Even though the performance of the sample UMVE portfolios still
looks quite good after accounting for the impact of plausible transaction costs, an estimated
expected turnover of more than 250% per year could raise doubts about the economic rele-
vance of the portfolio choice problem addressed by the research design. 18 Thus, it is useful
to understand more about the drivers of turnover in our framework.

To develop additional insights on turnover, we turn to the 25 Size/Book-to-Market dataset.
Earlier it was noted that using size and book-to-market characteristics to sort firms into
portfolios generates a wider dispersion in the sample means than sorting firms on SIC codes.

18 Griffin and Xu (2009) provide a useful perspective on this issue. They report that an annualized
turnover in the neighborhood of 100% is not uncommon for actively-managed mutual funds and
that the turnover for a meaningful portion of the hedge funds examined is between 100% and 200%
per year. Moreover, they find that hedge funds often have turnover approaching 200% per year and
that the turnover for a small share of the funds studied is over 200% per year.
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This may indicate that the firms within each size/book-to-market portfolio are more homo-
geneous in terms of asset pricing dynamics. To the extent that the sorting scheme generates
large cross-sectional differences in conditional expected returns that persist over time, we an-
ticipate that it will generate strong persistence in the plug-in weights. This should translate
into lower portfolio turnover, all else being equal.

Table 2 documents the performance of the sample UMVE portfolios for the 25 Size/Book-to-
Market dataset. In the no-shrinkage case, setting c = 5 bp, δ = 0, and imposing transaction
costs of 5 bp for performance evaluation yields an estimated expected return of 21.9%, an
estimated standard deviation of 12.6%, an estimated Sharpe ratio of 1.30, and an estimated
CE return of 10.0%. This is sufficient to outperform the S&P 500 index and the1/N portfolio
at the 1% significance level. The estimated expected turnover — 464% per year — is high,
but not nearly as high as the corresponding value in Table 1. If we impose transaction
costs of 50 bp for performance evaluation, the estimated expected return falls to 17.7%, the
estimated standard deviation increases to 12.8%, the estimated Sharpe ratio falls to 0.95,
and the estimated CE return falls to 5.4%. This is sufficient to outperform the S&P 500
index and the 1/N portfolio at the 5% significance level. Allowing for partial adjustment of
the plug-in weights has little impact on portfolio performance.

In addition to the reduction in turnover, the other notable departure from the 10 Industry
results is that the sample UMVE portfolio fails to significantly outperform the plug-in GMV
portfolio. This is because of the strong performance of the plug-in GMV portfolio for this
dataset. If we impose transaction costs of 5 bp for performance evaluation, the plug-in GMV
portfolio has an estimated Sharpe ratio of 1.22 and a certainty equivalent return of 8.8%.
Thus it outperforms both the S&P 500 index and 1/N portfolio at the 1% significance level.
In addition, its estimated expected turnover of 495% per year is only slightly higher than
that of the sample UMVE portfolio. It appears that the ad hoc choice of a 120-month window
length for the rolling estimators is well-suited to these data.

The disparity in the performance of the plug-in GMV portfolio across the 10 Industry and
25 Size/Book-to-Market datasets is noteworthy. It might be due solely to differences in the
shape of the efficient frontier and its location in expected return/standard deviation space.
But it could also be a direct reflection of the choice of L. The fundamental problem with
using ad hoc choices of the tuning parameters is that values that perform well in one setting
may perform poorly in another. This is why it is important to use the data to assess the effect
of changing the values of the tuning parameters and to focus on economic objectives when
developing a methodology for choosing these values. Doing so brings a level of robustness to
parameter choices that is not possible otherwise.

The results for the case with c = 50 bp reinforce this point. With δ = 0 the estimated
expected turnover of the sample UMVE portfolio falls to about 285% per year. Allowing for
partial adjustment of the weights reduces this further to about 135% per year. This reduction
in turnover gives the sample UMVE portfolio a substantial advantage over the plug-in GMV
portfolio in settings with high transaction costs. After imposing transaction costs of 50 bp
for performance evaluation, the plug-in GMV portfolio has an estimated Sharpe ratio of 0.86
and a certainty equivalent return of 4.2%. The values for the sample UMVE portfolio are
1.03 and 6.1%. We find, therefore, that the sample UMVE portfolio outperforms the plug-in
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GMV portfolio at the 5% significance level.

Using shrinkage estimators has a greater impact for the 25 Size/Book-to-Market dataset than
for the 10 Industry dataset, but the effects are still small. If we set c = 50 bp, δ ≥ 0 and
impose transaction costs of 50 bp for performance evaluation, the sample UMVE portfolio
has an estimated Sharpe ratio of 1.11 and a certainty equivalent return of 7.4%, a small
improvement on the 1.03 and 6.1% values obtained in the no-shrinkage case. In addition, the
estimated expected turnover falls from about 135% per year to about 100% per year. This
reduction could be meaningful if we strongly favor low-turnover strategies.

3.5.1 Properties of the estimated tuning parameters and estimated weights

Figure 2, panel B plots the estimated optimal value of each tuning parameter through time
for the c = 50 bp and δ ≥ 0 case with the use of shrinkage estimators. There are two notable
differences from the analogous graph for the 10 Industry dataset. Although the values of δ̂
and ρ̂ are similar to those in panel A, the values of φ̂ and ϕ̂ are substantially higher. The
former ranges from 0.990 to 0.997, while the latter ranges from 0.97 to 0.99. This indicates
that the estimates of the conditional first and second moments of returns are very persistent.
In addition, the value of ψ̂ is lower than in panel A, ranging from about 12 to 26.

The high values of φ̂ and ϕ̂ undoubtedly contribute to the reduced turnover of the sample
UMVE portfolios. In general, highly persistent estimates of the means, variance, and covari-
ances can be expected to translate into highly persistent plug-in weights. The low end of the
range of estimated expected turnover values for this dataset — about 100% — would fall in
the upper tail of the distribution of annual turnover levels observed for active managers.

The high values of φ̂ and ϕ̂ can also help explain why the plug-in GMV portfolio obtained
by setting L = 120 performs well for this dataset. With this choice of window length,
the average age of the returns used to estimate the weights of the GMV portfolio is 60
months. To obtain the same average age with exponential smoothing requires a smoothing
constant of 0.983. This is close to the estimated optimal values of the smoothing constants.
It appears that, for this dataset, estimating the optimal choice of window length from the
data would produce something close to our ad hoc choice of L. We could not have anticipated
this, however, without first assessing the performance of the sample UMVE portfolios using
historical data. There is no reliable a priori basis for predicting how a given choice of L will
perform for a particular combination of dataset and investment objective.

Figure 3, panel B plots the minimum weight, the maximum weight, and the sum of the
negative weights for each month in the performance evaluation period. The minimum weight
is typically between −30% and −70%, while the maximum weight is typically between 40%
and 70%. In these respects, the properties of the estimated weights are similar to those for
the 10 Industry dataset. The sum of the negative weights, on the other hand, is typically
in the −200% to −300% range, so the sample UMVE portfolio displays considerably higher
leverage for this dataset than for the 10 Industry dataset.

The reason for the higher leverage is not immediately clear, but aggregating the estimated
weights within in each book-to-market quintile reveals relatively large short positions in both
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the lowest and highest book-to-market quintiles. Thus the sample UMVE portfolio shorts
stocks at the both ends of the value/growth spectrum to invest in stocks in the middle of the
spectrum. The extent to which the performance of the portfolio is driven by high leverage
is not yet clear. There is, however, no evidence of the extreme short positions reported
elsewhere in the literature on mean-variance portfolio optimization.

3.6 Results for the 30 Momentum/Volatility dataset

The difference in the results for the 10 Industry and 25 Size/Book-to-Market datasets sug-
gests that the sorting rule used to create the dataset is an important consideration. This is
not surprising in view of the potential for the sorting rule to affect properties such as the
cross-sectional dispersion in conditional means and variances. Intuitively, we would expect to
find that increasing the cross-sectional dispersion in the conditional moments enhances the
performance of mean-variance optimization. To see if the evidence supports this hypothesis,
we turn to the 30 Momentum/Volatility dataset, a dataset constructed using a sorting rule
specifically designed to accomplish this objective.

Table 3 documents the performance of the sample UMVE portfolios for the 30 Momen-
tum/Volatility dataset. We find clear support for our hypothesis. In the no-shrinkage case,
for example, setting c = 5 bp, δ = 0, and imposing transaction costs of 5 bp for performance
evaluation yields an estimated expected return of 27.6%, an estimated standard deviation
of 12.5%, an estimated Sharpe ratio of 1.76, an estimated CE return of 15.9%, and an es-
timated expected turnover of around 345% per year. This is the best performance for this
combination of settings across the three datasets.

The sample UMVE portfolio also performs well in a relative sense. The plug-in GMV portfolio
is again the best-performing benchmark. However, its performance for this dataset is not
particularly impressive. It has an estimated Sharpe ratio of 0.68, an estimated certainty-
equivalent return of 5.0%, and an estimated expected turnover of about 475% per year. We
find, therefore, that the sample UMVE portfolio outperforms the plug-in GMV portfolio and
the other two benchmarks at the 1% significance level.

The most compelling results are obtained with c = 50 bp and δ ≥ 0. First, this combination
of settings delivers an estimated expected turnover of only 75% per year. With turnover
of this magnitude, there is little difference in the performance of the portfolio across levels
of transaction costs. Using transaction costs of 5 bp for performance evaluation, it has an
estimated expected return of 23.7%, an estimated standard deviation of 11.2%, an estimated
Sharpe ratio of 1.62, and an estimated CE return of 14.2%. The corresponding values with
transaction costs of 50 bp are 23.0%, 11.3%, 1.54, and 13.4%. Regardless of the level of
transaction costs, the sample UMVE portfolio outperforms all of the benchmarks at the 1%
significance level. Employing shrinkage methods produces similar results.

These findings are indicative of the potential for mean-variance optimization to deliver on the
promise of improved portfolio performance in out-of-sample applications. They show what
can be achieved by employing a comprehensive approach to the portfolio choice problem.
First, we lay the groundwork for successful implementation of the optimization methodology
by constructing the dataset in a manner designed to increase the cross-sectional dispersion
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in conditional means and variances. Second, we make the optimization methodology more
robust by using the data to estimate the values of the tuning parameters that deliver the
best-performing portfolio with respect to the stated investment objective. The effect of these
two factors working in concert is apparent in these results.

3.6.1 Properties of the estimated tuning parameters and plug-in weights

In Figure 2, panel C, we plot the estimated optimal value of each tuning parameter through
time for the c = 50 bp and δ ≥ 0 case with the use of shrinkage estimators. The value of
φ̂ ranges from about 0.99 to 1, and the value of ϕ̂ ranges from about 0.98 to 1. Thus the
estimates of the conditional first and second moments of returns are again very persistent.
The value of ψ̂ remains within a relatively narrow band from around 12 to 17. This is also
the true for the value of δ̂, which remains within a band of 0.2 to 2.5. In contrast, the value
of ρ̂ spans a relatively wide range: 23% to 61%.

If we compare the plot in panel C to the other two plots in Figure 2, we see that the values
for the 30 Momentum/Volatility dataset look much more like those for the 25 Size/Book-
to-Market dataset than those for the 10 Industry dataset. Perhaps this reflects the presence
of common risk factors. Figure 1 suggests that both the size/book-to-market and momen-
tum/volatility sorting rules do a reasonable job of grouping firms with similar conditional
expected returns together. If the dynamics of conditional expected returns are driven by a
set of common risk factors, it would not be surprising to find that the optimal values of the
tuning parameters for the two datasets are similar.

In Figure 3, panel C, we plot the minimum weight, the maximum weight, and the sum of
the negative weights for each month in the performance evaluation period. The minimum
weight is typically between −10% and −40%, while the maximum weight is typically between
20% and 40%. The sum of the negative weights stays around −100% for the majority of the
performance evaluation period. However, it is in the −100% to −200% range for most of the
1990’s. The increase in leverage during this decade appears to be a response to the strong
bull-market conditions that preceded the collapse of the tech bubble.

To more clearly illustrate the role of the sorting rule in generating our results, Figure 4 pro-
vides additional information about the properties of the estimated weights for this dataset.
In panel A we plot the time series obtained by aggregating the estimated weights within
each of the three momentum categories. This shows how funds are allocated across low-,
intermediate- and high-momentum stocks without regard to volatility. We find that there is
a monotonic relation between the aggregate weights and momentum characteristics. The ag-
gregated weight for low-momentum stocks is always negative, the aggregate weight for high-
momentum stocks is always positive, and the aggregate weight for intermediate-momentum
stocks always lies between the other two.

In panel B we plot the time series obtained by aggregating the estimated weights within
each of the ten volatility categories. This shows how funds are allocated across the volatility
spectrum without regard to momentum. We find that the lower volatility stocks generally
receive higher aggregate weights. The lowest volatility decile stands out in this regard, re-
ceiving an aggregate weight in the 60% to 100% range. In contrast, the highest volatility

25



deciles typically receive a weight close to zero. The exception to this is during the 1990s
when an increasing long position in the most volatile decile is balanced against an increasing
short position in decile nine. These results suggest that the sorting rule plays a significant
role in determining the performance of the sample UMVE portfolios for this dataset.

3.7 Incorporating short-sales constraints

A potential criticism of the results presented in Tables 1–3 is that all investors face some
limits on selling securities short. We can address this criticism by modifying the framework
developed in Section 2 to include weight constraints. To illustrate, suppose that short sales
are prohibited. If we take the values of ψ, φ, and ϕ as given, we can use numerical methods
to solve the quadratic program

max
wt

w′
tµ̂t(φ)− ψ

2
w′

tΩ̂t(ϕ)wt,

s.t. w′
tι = 1,

wit ≥ 0, i = 1, 2, . . . , N,

(37)

for any period t. The solution to this program is the vector of plug-in weights for period
t under the long-only constraint. Accordingly, we construct the long-only version of the
sample objective function for period T0 by using these weights in place of the Ferson and
Siegel (2001) weights for t = K0, K0 + 1, . . . , T0, and proceed in an analogous fashion for
each subsequent period. In all other respects, the analysis goes through unchanged. A similar
approach can be used to accommodate more general weight constraints.

Table 4 summarizes the results obtained for each dataset under a long-only constraint for the
shrinkage-estimators case. We begin with the results in panel A for the 10 Industry dataset.
Prohibiting short sales clearly has a meaningful impact on the performance of the sample
UMVE portfolios. For example, setting c = 50 bp, δ ≥ 0, and assuming transaction costs of 50
bp for performance evaluation yields an estimated Sharpe ratio of 0.79 and an estimated CE
return of 2.7%, substantially lower than the corresponding values of 1.04 and 5.2% reported
in Table 1. Nonetheless, the long-only sample UMVE portfolio still outperforms the S&P 500
index and näıve diversification at the 1% significance level and the long-only GMV portfolio
at the 10% significance level. Thus the leverage generated by short sales does not appear to
be an overriding factor in determining the performance of mean-variance optimization for
this dataset.

The results in panel B show that prohibiting short sales has a larger effect on portfolio
performance for the 25 Size/Book-to-Market dataset. For example, setting c = 50 bp, δ ≥ 0,
and assuming transaction costs of 50 bp for performance evaluation yields an estimated
Sharpe ratio of 0.64 and an estimated CE return of −3.5%, as opposed to the values of
1.11 and 7.4% reported in Table 2. Although the estimated Sharpe ratio of the long-only
sample UMVE portfolio is higher than that of any of the benchmarks, it is not high enough
to conclude that the performance advantage is statistically significant. We noted earlier that
the unconstrained portfolios display considerably higher leverage for the 25 Size/Book-to-
Market dataset than for the 10 Industry dataset. The evidence in Table 4 suggests that high
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leverage is a key contributor to the performance of the portfolio in the unconstrained case
for this dataset.

In terms of methodology, the results in panel C for the 30 Momentum/Volatility dataset
are the most interesting. Setting c = 50 bp, δ ≥ 0, and assuming transaction costs of 50
bp for performance evaluation yields an estimated Sharpe ratio of 1.04 and an estimated
CE return of 8.7%. The values of 1.64 and 14.3% reported in Table 3 are of course more
impressive, but it is noteworthy that the long-only sample UMVE portfolio outperforms all
of the benchmarks at the 1% significance level, and it does so with an estimated expected
turnover of less than 10% per year. This supports our contention that expanding the scope
of the optimization problem to include the sorting scheme enhances portfolio performance.

We should also point out that in no instance does imposing the long-only constraint lead
to an increase in the estimated Sharpe ratio of the portfolio. It seems obvious that we
should expect this to be the case. However, some studies in the literature report the opposite
finding (e.g., see Table 3 of DeMiguel et al., 2009). This again raises questions about the
efficacy of the research designed used in these studies. It would be surprising to find that
imposing additional constraints on the portfolio improves its performance when using a
robust approach for exploiting sample information.

3.8 Reward and risk analysis using factor models

The analysis thus far has examined the performance of the sample UMVE portfolios relative
to a number of common benchmarks. To develop a more complete picture of the performance
landscape, we use a linear factor model to analyze the reward and risk characteristics of the
portfolios. Specifically, we fit the Carhart (1997) extension of the Fama and French (1993)
three-factor model to the excess returns on the sample UMVE portfolios. The Carhart (1997)
model includes market, size, book-to-market, and momentum factors. 19 In the interest of
space, we focus on the case using shrinkage estimators, with c = 50 bp, δ ≥ 0, and assuming
transaction costs of 50 bp for performance evaluation.

Table 5 summarizes the results of the factor model regressions. We begin with panel A, which
presents results for the scenario with unconstrained weights. The estimated annualized alphas
of the sample UMVE portfolios range from 4.6% for the 10 Industry dataset to 11.2% for
the 30 Volatility/Momentum dataset; all of the estimates are statistically significant. Hence,
the evidence indicates that the average returns for the sample UMVE portfolios contain a
component that is not captured by this model. This finding is not surprising. In general,
we would not expect an unconditional factor model to fully explain the average returns for
the sample UMVE portfolios because these portfolios have time-varying weights and hence
time-varying expected returns.

The estimated factor loadings and R2 values for the three datasets are more interesting. All
of the estimated loadings for the 10 Industry dataset are positive and statistically signifi-
cant. However, the largest is only 0.6, indicating that the sample UMVE portfolio returns

19 The monthly factor returns and one-month T-bill rate are obtained from the Ken French data
library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).
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for this dataset are relatively insensitive to these sources of systematic risk. In addition, the
R2 for the regression is only 62%, so a substantial portion of the risk of the portfolio is
idiosyncratic. Like the estimated alphas, this is consistent with the presence of time-varying
factor exposures that cannot be captured using an unconditional factor model. The regres-
sions for the 25 Size/Book-to-Market and 30 Volatility/Momentum datasets also produce
relatively low R2 values: 65% and 59%. But not all of the estimated factor loadings are
statistically significant. The sample UMVE portfolio for the 25 Size/Book-to-Market has no
statistically significant exposure to the size and momentum factors, and the portfolio for the
30 Volatility/Momentum dataset has no statistically significant exposure to the size factor.

Panel B shows how the results change under the long-only constraint. First, the estimated
alphas decrease to 1.7% for the 10 Industry and the 25 Size/Book-to-Market datasets and to
3.7% for the 30 Volatility/Momentum dataset. Imposing the constraint reduces the magni-
tude of the unexplained component of the average portfolio returns. Second, the regression R2

increases to 78% for the 10 Industry and 30 Volatility/Momentum datasets, and to 92% for
the 25 Size/Book-to-Market. Imposing the constraint reduces the idiosyncratic component
of risk. Third, all of the estimated factor loadings are statistically significant.

3.9 Additional robustness checks

Before concluding we discuss two additional robustness checks to address potential concerns
about our research design. First, we determine if our findings are overly sensitive to the value
of γ used to construct the sample objective function. Although our choice of γ will clearly
affect the aggressiveness of the sample UMVE portfolios, we want to exclude the possibility
that this alters the overall conclusions about the performance of our methodology. To do so,
we repeat the empirical analysis using γ = 5 instead of γ = 15. As expected, the results are
indicative of a much more aggressive investment style. For example, if we set c = 50 bp, δ ≥ 0,
assume transaction costs of 50 bp for performance evaluation, and use shrinkage estimators of
the conditional moments of returns, the sample UMVE portfolio for the 10 Industry dataset
has an estimated expected return of 38.8%, an estimated standard deviation of 27.1%, an
estimated Sharpe ratio of 1.23, an estimated CE return of 20.4%, and an estimated expected
turnover of 818% per year. But changing the value of γ does not affect our general conclusions
regarding the performance of the sample UMVE portfolio. It still outperforms all three of
the benchmarks at the 1% significance level.

Second, we determine whether using equally-weighted portfolios as assets has a undue in-
fluence on the results. Perhaps this explains why our methodology performs so well in com-
parison to the methodologies employed in prior studies that use value-weighted portfolios
as assets. To exclude this possibility, we repeat the empirical analysis for versions of the 10
Industry and 25 Size/Book-to-Market datasets that contain value-weighted portfolios. This
does produce some changes in the results. For instance, both the estimated Sharpe ratios
and estimated expected turnover figures for the 10 Industry dataset are lower than those re-
ported in Table 1. But the performance comparisons remain favorable to the sample UMVE
portfolios. For example, if we use shrinkage estimators, set c = 50 bp, δ ≥ 0, and assume
transaction costs of 50 bp for performance evaluation, the sample UMVE portfolio for the
25 Size/BTM dataset has an estimated expected return of 17%, an estimated standard de-
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viation of 13%, an estimated Sharpe ratio of 0.89, an estimated CE return of 4.6%, and
an estimated expected turnover of 84% per year. This is sufficient to outperform all three
benchmarks at the 5% level. Thus the choice of weighting scheme does not seem to be a
critical issue.

4 Closing Remarks

Mean-variance portfolio optimization has recently come under fire for its ostensibly poor
performance in out-of-sample applications. Much of this recent criticism is motivated by
DeMiguel et al. (2009). The authors of this study construct sample mean-variance efficient
portfolios using several variants of the plug-in approach and find that näıve diversification
outperforms these portfolios for most of the datasets considered. This poor showing by the
sample mean-variance efficient portfolios, which is interpreted as evidence that “the errors
in estimating means and covariances erode all the gains from optimal, relative to naive,
diversification,” leads the authors to conclude that “there are still many ‘miles to go’ before
the gains promised by optimal portfolio choice can actually be realized out of sample.”

Our investigation supports a sharply contrasting view of the out-of-sample performance of
mean-variance optimization. We begin by noting that many aspects of the plug-in approach,
such as how to model changes in the investment opportunity set and how to estimate the
model parameters, fall outside the scope of the traditional optimization framework. This
gives rise to significant robustness issues because ad hoc choices with respect to the details of
the research design can lead to unforeseen consequences. For example, DeMiguel et al. (2009)
focus on the performance of the sample version of the tangency portfolio, which is obtained
by implementing the plug-in approach using a time-varying value of relative risk aversion.
Although in principle this is fine, it leads to extreme turnover and poor performance because
the sample tangency portfolio frequently targets a conditional expected return in excess of
100% per year (Kirby and Ostdiek, 2012).

To address the optimization problem in a more comprehensive fashion, we expand the scope of
the analysis to encompass the effects of estimation risk, specification errors, and transaction
costs on portfolio performance, and we use an adaptive empirical procedure to select the
values of the unknown parameters that appear in the expression for the plug-in weights. The
empirical analysis demonstrates that our methodology leads to robust portfolio selection
rules, regardless of whether transaction costs are high or low. The resulting sample UMVE
portfolios have well-behaved weights, reasonable turnover, and substantially higher estimated
Sharpe ratios and certainty-equivalent returns than common performance benchmarks such
as the 1/N portfolio and S&P 500 index. This is true regardless of whether we permit short
sales or impose a long-only constraint.

As further evidence on the value of taking a comprehensive approach to the optimization
problem, we show that constructing the dataset by sorting firms into portfolios on the basis of
historical measures of momentum and volatility leads to sample UMVE portfolios that per-
form particularly well. Indeed, the sample UMVE portfolios for the 30 Momentum/Volatility
dataset outperform the S&P 500 index, 1/N portfolio, and a simple plug-in version of the
GMV portfolio at the 1% significance level. This finding is noteworthy because prior studies
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report that the GMV portfolio performs well relative to other sample efficient portfolios.
In view of this finding and the evidence in general, we believe the proposed methodology
represents a significant step forward in addressing the challenges of mean-variance portfolio
choice in the presence of estimation risk, model misspecification, and transaction costs.

With respect to future research, there are a number of interesting ways to extend the method-
ology. One possibility is to expand the information set by allowing the conditional moments
of returns to depend on both past returns and other financial variables, such as interest rates,
dividend yields and credit spreads. Another is to further expand the scope of the optimiza-
tion problem by allowing the number of portfolios N under a given sorting rule to be an
additional tuning parameter. This would allow the data to inform our choice of the scale of
the optimization problem rather than imposing the scale a priori. We are currently pursing
ideas along these lines.
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Table 5
Factor Model Decomposition of Sample UMVE Portfolio Returns

The table documents the results of fitting a linear four-factor risk model to the excess returns on the
sample UMVE portfolios constructed using a relative risk aversion of γ = 15 and shrinkage estimators.
The risk factors are the excess return on the S&P 500 index (MKT-rf ), the return on the small-minus-big
(SMB) size portfolio, the return on high-minus-low (HML) book-to-market portfolio, and the return on
the momentum (MOM) portfolio. We report the estimated intercept (α̂), the estimated factor loadings
(β̂i ∀ i), the corresponding standard errors (in parentheses), and the regression R2. The strategies are
implemented using exponential smoothing estimators of the conditional mean vector and conditional
second-moment matrix. All parameters in the expression for the optimal portfolio weights are estimated
using an approach designed to minimize the adverse impact of estimation risk and rebalancing costs as
described in the text. The analysis is conducted with partial-adjustment of the portfolio weights (δ ≥ 0)
using proportional transaction costs of c = 50 basis points to construct the sample objective function.
The portfolio returns are measured net of proportional one-way transaction costs of 50 basis points. The
performance evaluation period is January 1976 to December 2009 (408 months).

γ = 15, c = 50 bp, δ ≥ 0

α̂ β̂1 β̂2 β̂3 β̂4 R2

MKT-rf SMB HML MOM

Panel A: Unconstrained Weights

10 Industry Dataset 4.57 0.60 0.31 0.41 0.37 0.62
(1.74) (0.04) (0.08) (0.08) (0.05)

25 Size/Book-to-Market Dataset 7.18 0.66 0.02 0.61 0.00 0.65
(1.66) (0.04) (0.05) (0.06) (0.04)

30 Momentum/Volatility Dataset 11.18 0.53 0.02 0.43 0.36 0.59
(1.75) (0.04) (0.06) (0.07) (0.06)

Panel B: Long-Only Weights

10 Industry Dataset 1.74 0.73 0.33 0.45 0.11 0.78
(1.34) (0.03) (0.05) (0.05) (0.03)

25 Size/Book-to-Market Dataset 1.68 0.95 0.33 0.49 -0.12 0.92
(0.85) (0.02) (0.04) (0.04) (0.02)

30 Momentum/Volatility Dataset 3.70 0.52 0.21 0.37 0.05 0.78
(0.96) (0.03) (0.04) (0.03) (0.03)



Panel A.  10 Industry Portfolios

Panel B.  25 Size/Book-to-Market Portfolios

Panel C.  30 Momentum/Volatility Portfolios

Figure 1

Reward and Risk Characteristics of the Datasets

Mean Return Volatility

The figure summarizes the sample reward and risk characteristics for the 10 Industry dataset (panel A), 25
Size/BTM dataset (panel B), and 30 Momentum/Volatility dataset (panel C). The first graph in each panel shows
the cross-section of annualized mean returns and the second shows the cross-section of annualized return
standard deviations. The full sample period is January 1946 to December 2009 (768 monthly observations). The
reported statistics correspond to the performance evaluation period, i.e, observations 361 to 768.
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Panel A.  10 Industry Dataset

Panel B.  25 Size/Book-to-Market Dataset

Panel C.  30 Momentum/Volatility Dataset

Figure 2

Estimated Optimal Tuning Parameter Values for the Sample UMVE Portfolios
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The figure plots the times series of estimated optimal tuning parameter values for the 10 Industry dataset
(panel A), 25 Size/BTM dataset (panel B) and 30 Momentum/Volatility dataset (panel C). The sample
UMVE portfolios are constructed using a relative risk aversion of γ=15, proportional one-way
transactions costs of c=50 basis points, partial-adjustment of the portfolio weights (δ≥0), and shrinkage
versions of the exponential smoothing estimators of the conditional mean vector and conditional second-
moment matrix. All parameters in the expression for the optimal portfolio weights are estimated using an
approach designed to minimize the adverse impact of estimation risk and rebalancing costs as described
in the text. Each graph plots the time series of the estimated smoothing constants,  and φ, (both left-
hand scale), and the estimated risk penalty, , no-trade distance, δ, and shrinkage factor, ρ, (all right-
hand scale). We report the estimates of δ in annualized basis points and the estimates of ρ in percent. The
shaded rectangles indicate bear markets (10% or greater declines in the S&P 500 index). The data begin
in January 1946. The performance evaluation period is January 1976 to December 2009 (408 months).



Panel A.  10 Industry Dataset

Panel B.  25 Size/Book-to-Market Dataset

Panel C.  30 Volatility/Momentum Dataset

Figure 3

Characteristics of the Estimated Weights for the Sample UMVE Portfolios
The figure illustrates characteristics of the estimated optimal weights for the 10 Industry dataset (panel
A), 25 Size/BTM dataset (panel B) and 30 Momentum/Volatility dataset (panel C). The sample UMVE
portfolios are constructed using a relative risk aversion of γ=15, proportional one-way transactions costs
of c=50 basis points, partial-adjustment of the portfolio weights (δ≥0), and shrinkage versions of the
exponential smoothing estimators of the conditional mean vector and conditional second-moment matrix.
All parameters in the expression for the optimal portfolio weights are estimated using an approach
designed to minimize the adverse impact of estimation risk and rebalancing costs as described in the text.
Each graph plots the time series of the maximum estimated portfolio weight, the minimum estimated
portfolio weight and the level of estimated portfolio leverage, defined as the total short position as a
percent of portfolio value. The shaded rectangles indicate bear markets (10% or greater declines in the
S&P 500 index). The data begin in January 1946. The performance evaluation period is January 1976 to
December 2009 (408 months).
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Panel A.  Weights Aggregated by Momentum Category

Panel B.  Weights Aggregated by Volatility Category

Figure 4

Estimated Weights as a Function of Momentum and Volatility Characteristics

Small LargeSize	4Size 3Size 2 Low HighBTM	4BTM 3BTM2

The figure plots the time series of estimated optimal weights as a function of momentum and volatility
characteristics for the 30 Momentum/Volatility dataset. The sample UMVE portfolios are constructed
using a relative risk aversion of γ=15, proportional one-way transactions costs of c=50 basis points,
partial-adjustment of the portfolio weights (δ≥0), and shrinkage versions of the exponential smoothing
estimators of the conditional mean vector and conditional second-moment matrix. All parameters in the
expression for the optimal portfolio weights are estimated using an approach designed to minimize the
adverse impact of estimation risk and rebalancing costs as described in the text. Panel A plots the time
series obtained by aggregating the estimated weights within each of the three momentum categories.
Panel B plots the time series obtained by aggregating the estimated weights within each of the ten
volatility categories. The shaded rectangles indicate bear markets (10% or greater declines in the S&P
500 index). The data begin in January 1946. The performance evaluation period is January 1976 to
December 2009 (408 months).
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