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Abstract
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1. Introduction

Although researchers have known for decades that firm characteristics help to explain the cross-
section of average stock returns, many still question whether this finding can be reconciled with
the predictions of asset pricing theory. Among those who advance rational pricing stories, it is
commonly argued that characteristics proxy for exposures to systematic risk. I assess the abil-
ity of firm characteristics to capture systematic risk using a new type of multivariate generalized
autoregressive conditional heterskedasticity (MGARCH) model that assumes a fundamental factor
structure for individual stock returns. Because the features of the model make it feasible to esti-
mate the conditional covariance matrix of returns for systems containing thousands of individual
stocks, the analysis delivers a comprehensive picture of the relation between firm characteristics, the
cross-section of covariance risk, and the cross-section of average stock returns.

My approach to model development builds on ideas pioneered by Rosenberg (1974) and Fama
and French (1993). Following Rosenberg (1974), I assume that the innovations to individual stock
returns have a common factor structure in which firm characteristics function as observable factor
loadings. To eliminate any issues with stationarity and aid in interpretation, I assume that each of
the time-varying characteristics is standardized to have a cross-sectional mean of zero and a cross-
sectional variance of one in every time period. A major departure from typical conditional factor
specifications is that the innovations to individual stock returns are linked to the factor innovations
and idiosyncratic errors via a full-rank matrix transformation that entails no loss of information.
As a result, the factor innovations are indentified with characteristic-based hedge portfolios that
have known time-varying weights. Fama and French (1993) introduced the use characteristic-based
portfolio returns as priced factors. In their case, however, the portfolio weights are prespecified
rather than emerging naturally from the underlying assumptions of the model.

Under the proposed factor structure, the conditional covariances between individual stock re-
turns can be expressed in terms of the conditional covariances between the factors. I assume that
the conditional factor covariance matrix displays MGARCH dynamics, and refer to the resulting
specification for individual stock returns as a fundamental-factor MGARCH (FF-MGARCH) model.
The FF-MGARCH model has some structural elements in common with the generalized orthogonal

GARCH model of Lanne and Saikkonen (2007). However, it is far more computationally tractable



because the factor loadings are observable. This makes likelihood-based inference feasible for systems
that contain thousands of individual stocks. Importantly, missing values and time-series changes in
the number of traded stocks pose no difficulties whatsoever. To incorporate and test the predic-
tions of asset pricing theory, I specify the vector of conditional means such that the model implies
exact factor pricing. This is accomplished by assuming that conditional expected excess returns are
linearly related to the conditional covariances between the excess returns and fundamental factors.
The price of covariance risk for each factor is assumed to be constant.

The choice of characteristics determines the nature of the fundamental factors. I assume that the
first characteristic has a value of one for every firm, and show that the associated fundamental factor
is simply the excess return on the equally-weighted market portfolio. The next four characteristics
might be described as the “usual suspects” from the empirical asset pricing literature: the logarithm
of market equity (log ME), the logarithm of the book-to-market equity ratio (log BE/ME), gross
profitability scaled by book assets (GP/BA), and the logarithm of the gross growth rate of book
assets (log AG). I also include two variables that have been widely studied in the anomalies literature:
current accruals scaled by book assets (CA/BA), and the logarithm of the gross growth rate of split-
adjusted shares outstanding (log SG). Finally, I consider net sales scaled by market equity (NS/ME).
This characteristic has received little attention outside of a recent study by Lewellen (2015), but
it appears to have incremental explanatory power for cross-section of average returns, particularly
for small-cap stocks. I refer to the returns on the associated hedge portfolios as the size, value,
profitability, investment, accruals, offerings, and sales factors, respectively.

I fit the FF-MGARCH model to monthly individual excess stock returns for NYSE, NASDAQ),
and AMEX firms. Because I include every stock that has the required data items each month,
the cross-sectional dimension of the dataset changes through time. It contains around 3500 stocks
on average for my sample period (July 1962 to December 2016). I also investigate the impact of
excluding microcap stocks on my findings. This is a common robustness check in the empirical
literature on characteristic-based asset pricing models. The parameter estimates are obtained by
maximizing the log likelihood function for conditionally Gaussian observations. However, I employ
a multi-step estimation procedure of the type often used in MGARCH studies. This significantly
reduces the computational demands of fitting the model.

As anticipated, the evidence with respect to second moment dynamics is consistent with that



from the volatility modeling literature. The parameter estimates point to strong persistence in the
conditional factor variances, conditional factor correlations, and conditional error variances. This
finding, in conjunction with the strict factor structure that underpins the model, suggests that the
conditional second moments of individual excess stock returns are subject to long swings away from
their long-run average values. The parameter estimates for the no-microcaps sample display the
same general patterns. Although the estimated persistence measures are somewhat higher after
dropping microcap stocks, it is apparent that the second moment dynamics of the factors extracted
from the no-microcaps sample are broadly similar to those extracted from the full sample.

Examining the distributional properties of the estimated conditional covariances of excess stock
returns with the fundamental factors yields some initial insights on the cross-sectional implications
of the model. Notably, the estimated conditional covariances of excess stock returns with the market
factor vary widely across firms, suggesting that the cross-sectional variation in conditional market
betas is substantial. This is an interesting finding because the loading on the market factor is the
same for every firm. Thus it follows that the cross-sectional variation in estimated market betas
arises from the cross-sectional variation in the characteristics in conjunction with the estimated
conditional correlations between the market factor and the other factors in the model. In other
words, the cross-sectional variation in the estimated market betas is driven entirely by characteristic-
based patterns in the data. Stocks with high estimated betas have excess returns that display low
(often negative) conditional covariances with the size, value, and profitability factors, and high
conditional covariances with the investment, accruals, issuance, and sales factors.

Under the model, every factor except the market contributes to differences in systematic risk
across firms. As might be inferred from the properties of the estimated market betas, the evidence
suggests that firms display substantial variation in their risk exposures. The size and value factors
stand out in this regard, with each exhibiting a wide range of estimated conditional covariances with
excess stock returns. This finding is consistent with the strong incremental explanatory power of the
SMB and HML returns in the Fama and French (1993) generalization of the Sharpe (1964)-Lintner
(1965) capital asset pricing model (CAPM). The range of estimated conditional covariances for the
remaining five factors is narrower, which is suggestive of a smaller role in explaining cross-sectional
variation in systematic risk, but the results suggest that all seven factors make non-negligible con-

tributions in this regard. In short, the findings are consistent with the presence of strong linkages



between the firm characteristics and covariance risk, which supports the use of the FF-MGARCH
specification as a risk model in high-dimensional applications.

The performance of the FF-MGARCH specification as an asset pricing model is a separate
issue. Broadly speaking, the evidence on the pricing ability of the fundamental factors is mixed.
The estimated price of covariance risk is statistically significant for every factor, which indicates
that the conditional covariances of excess returns with the factors help to explain the differences in
conditional expected excess stock returns across firms. Hence, I find support for the hypothesis that
the fundamental factors are “priced” in the parlance of the traditional two-pass regression-based
approach to testing asset pricing models. This finding is in line with the predictions of exact factor
pricing. However, an analysis of the pricing errors makes it clear that the model falls short of fully
capturing the cross-section of conditional expected excess stock returns.

To keep the analysis manageable and facilitate comparisons with prior research, I use well-
diversified portfolios to evaluate the pricing performance of the model. Specifically, I employ portfo-
lios that are formed by using the fitted conditional expected excess stock returns to sort stocks into
25 groups for each month in the sample period. The idea is similar to the well-established practice
of using portfolio sorts to illustrate the extent to which conditioning on firm characteristics spreads
average stock returns. To see how well the model captures differences in unconditional expected
stock returns across firms, I compare the average excess portfolio returns to the average values of
the fitted conditional expected excess portfolio returns.

The 25 portfolios display a wide spread of average annualized excess returns: —4.2% to 35.9%.
This is indicative of the extent to which the covariances of excess returns with the fundamental
factors capture the characteristic-based patterns in the data. In comparison, the average values
of the fitted conditional expected excess portfolio returns range from —10.9% to 31.7%. As these
figures suggest, the average estimated pricing error is slightly negative. Portfolios that fall near
the ends of the range of estimated expected excess returns have positive estimated pricing errors,
while those that fall in the center of this range have negative estimated pricing errors. The median
and average of the absolute estimated pricing errors are 2.0% and 2.6% per annum, respectively.
Estimated pricing errors of this magnitude seem likely to be economically significant.

To investigate further, I examine the pricing performance of the fundamental factors in the

arbitrage pricing theory (APT) framework of Ross (1976). This facilitates head-to-head pricing



comparisons with competing models from the literature. I use the five-factor model of Fama and
French (2015) as a performance benchmark. In the APT framework, the estimated pricing errors
are simply the estimated intercepts in regressions of excess portfolio returns on a constant and
the factors. I find that most of the estimated intercepts for fundamental factor regressions are
statistically significant, indicating that the hypothesis of exact factor pricing is rejected. This
bolsters the conclusion that conditional covariances of excess stock returns with fundamental factors
fail to fully explain the cross-section of conditional expected excess stock returns.

In comparison, the five-factor model produces a smaller number of statistically-significant inter-
cepts. This seems unfavorable to the FF-MGARCH model at first glance. However, the reduction
in statistical significance relative to the fundamental factor regressions is driven by increases in the
standard errors. The average magnitude of the estimated intercepts is 2.6% per annum for the fun-
damental factors, versus 3.5% per annum for the Fama and French (2015) factors. The fundamental
factors produce lower standard errors because they explain more of the time series variation in the
excess portfolio returns than the Fama and French (2015) factors. On average, the regression R? is
94.0% for the former versus 85.4% for the latter. Hence, the general picture that emerges from the
comparisons casts the FF-MGARCH model in a relatively favorable light.

Overall the analysis suggests that the FF-MGARCH model is a very promising addition to
the small set of existing MGARCH models that are designed to capture time-varying covariances
in high-dimensional settings. Although there are certainly indications of specification error, this
is hardly surprising. One would be hard pressed to argue that a parsimoniously-parameterized
MGARCH model can be expected to unerringly capture the dynamics of excess returns for thousands
of individual stocks. The real question is not whether the model is misspecified, but whether
it provides a reasonably accurate description of the process that generates excess stock returns.
Because all indications are that the FF-MGARCH model enjoys considerable success in this regard,

I anticipate that it will prove useful in a wide variety of applications.

2. Fundamental-Factor MGARCH Model for Individual Stock Returns

For many years, the use of MGARCH models was almost entirely confined to low-dimensional
settings because the parameter space of most models grows very quickly with the number of variables

in the system. Researchers have recently developed a few tightly-parameterized MGARCH models,



such as the dynamic equicorrelation (DECO) specification of Engle and Kelly (2012), that can be
applied to high-dimensional systems, and MGARCH models based on factor structures, such as
those proposed by Alexander (2001), van der Weide (2002), Lanne and Saikkonen (2007), and Fan
et al. (2008), show promise in balancing the competing demands of generality and computational
tractability. However, none of these models is suited to the task of analyzing highly-unbalanced
panels of stock returns for hundreds or thousands of individual firms, many of which appear in the
dataset for a relatively short window of time.

To develop an MGARCH model that is specifically designed for investigating the relation between
characteristics and covariance risk, I build on ideas pioneered by Rosenberg (1974) and Fama and
French (1993). Rosenberg (1974) extends the familiar market model by allowing the beta of each
stock to be linearly related to an observable set of firm characteristics. This extension yields what
is commonly called a fundamental factor model: a factor model in which characteristics function
as observable factor loadings. Fama and French (1993), on the other hand, investigate the asset
pricing performance of a model that has two characteristic-based factors. Specifically, they use the
returns on two characteristic-based hedge portfolios to formulate a three-factor generalization of the
Sharpe (1964)-Lintner (1965) CAPM. In both cases, the modeling strategy is developed with an eye
towards capturing the observed characteristic-based patterns in average stock returns.

I follow Rosenberg (1974) by assuming that firm characteristics can be treated as observable
factor loadings. This assumption lays the foundation for developing a factor-based MGARCH model
whose computational demands rise very slowly with the dimensionality of the system. Notably,
missing values for individual stock returns and time-series changes in the number of traded stocks
do not pose any computational difficulties in the proposed framework. This is because the model
implies that the factors are returns on characteristic-based hedge portfolios that are rebalanced in
every time period. Although period-by-period rebalancing of the hedge portfolios is in the spirit of
Fama and French (1993), the approach used to construct the hedge portfolios relies on cross-sectional

regression methods instead of an ad hoc characteristic-based sorting scheme.

2.1. Common factor structure for returns

I begin by describing the factor structure that underpins the model. Let ;1 denote an N x 1 vector

of excess stock returns for period ¢t + 1. For example, it might represent the vector of excess returns



for all NYSE, NASDAQ, and AMEX stocks for a particular month. Let Z; denote the information

set of market participants for period ¢. I take as given that r,y1 can be expressed as

Tl = My + Upy 1, (1)

where my = E(r;41|Z;) denotes the N x 1 vector of conditional expected excess returns and w1

is an N x 1 vector of serially-independent innovations. The proposed dynamic specification for

St = E(usy1u;4|Z;), the conditional covariance matrix of 74,1, builds on two key assumptions.
First, I assume that the vector of serially-independent innovations in equation (1) has a decom-

position of the form

Uy = Bi(fry1 —mys) + Gregy, (2)

where B; € 7; is an N x K matrix, Gy € I; is an N x (N — K) matrix, f;; is a K x 1 vector of
common factors whose conditional mean is my; = E(f;,{|Z¢), and e;1; is an (N — K) x 1 vector
of errors that satisfies E(es41|Z;) = 0, E(ety1f141|Z:) = 0, and E(ei41€},,|Z;) = diI. Equation (2)
implies that w1 is described by a type of linear factor model that permits the matrix of factor
loadings and the conditional covariance matrix of Ge 11, the N x 1 vector of idiosyncratic return
shocks, to change through time. The main departure from typical specifications of conditional
factor models is that the leading dimension of e;; 1 is smaller than that of wsy1, so the conditional
covariance matrix of the vector of idiosyncratic shocks is singular. This feature reflects the nature
of the factor innovations in the model. If the matrix A; = (By, G¢) is nonsingular, then the factor
innovations are simply linear combinations of the demeaned excess stock returns. Note in particular
that f,,; —my; is given by the first K elements of the IV x 1 vector At_lut+1.

Second, I assume that conditional factor loadings are observable firm characteristics, and hence
the nth row of B; contains the observed characteristic values of the nth firm for period ¢. Under this
assumption, the columns of G; form a basis for the null space of an observable projection matrix.
Specifically, Gy contains the first N — K eigenvectors of My = I — By(B,B;) !B, in its columns.
This follows because the inverse of A; is given by

(B;B:)"'B;

Al = (3)
G,



for any choice of By that has full column rank.!
In view of equation (3), it is easy to see that the vector of fundamental factors for period ¢ 4 1

can be expressed as

fror=mps + v, (4)

where v;,1 = (B}B;)"!Bju;,1 is the vector of fundamental factor innovations. Notice that the
K x N matrix B = (B}B;) ! Bj takes a familiar form: the left pseudoinverse of B, that delivers
the ordinary least squares (OLS) estimator of the coefficients for a cross-sectional regression of w1
on B;. Hence, we can view equation (2) as a regression-based decomposition of w41 in which
the regression residuals e;;; are assumed to satisfy a set of conditional orthogonality restrictions.
Because this decomposition lies at the core of my modeling strategy, the proposed specification
for S; inherits many of the features that have made cross-sectional regressions a workhorse of the
empirical asset pricing literature. For example, allowing N to change from one period to the next
poses no difficulties whatsoever. This is essential given the intended application of the model.

Lanne and Saikkonen (2007) develop a generalized orthogonal GARCH model that is based on a
linear decomposition similar to that in equation (2). However, their model assumes that the matrix
A; is both time invariant and unobservable. The potential gains from taking this matrix to be a
known function of observable time-varying characteristics are clear. First, we allow the conditional
factor loadings to change through time. Second, we drastically reduce parameter proliferation as
the value of N increases. Third, we make likelihood-based inference feasible for high-dimensional
problems. This is because the computational demands of fitting a specification for Sy are not very
sensitive to the value of N for the typical case in which the joint conditional distribution of excess
returns is assumed to be multivariate normal.

The assumption that E(ety1e;,,|Z;) = diI may appear to be unduly restrictive. But similar
assumptions appear in the literature on static factor analysis. For instance, the probabilistic version
of principal components analysis is based on a static factor model in which the covariance matrix

of the errors is assumed to be a scalar multiple of the identity matrix (Tipping and Bishop, 1999).

'To see how the inverse is derived, note that M is symmetric, idempotent, and has rank N — K. Because these
properties imply that its eigenvalues consist of N — K ones and K zeros, it can be decomposed as M; = GG, where
G, is an N x (N — K) matrix with orthonormal columns, i.e., GiG; = I. Using these results along with M;B; = 0,
it follows that G4 B = 0. Thus it is easy to verify that the matrix in equation (3) satisfies A;'A; = A, A7 =T



The success of such methods in a range of settings suggests that the assumption of spherical errors
should be a reasonable starting point for model development. Of course additional flexibility can
be introduced at the cost of increased computational demands. One could, for example, replace the
assumption of spherical errors with E(e;y1e; |Z;) = did + ¢;(11" — I), where d; > ¢; > 0 and 1
denotes an (N — K) x 1 vector of ones. This would yield a conditional factor model for w11 in

which the errors display time-varying equicorrelation.

2.2. A brief digression on the characteristics-versus-covariances debate

Before filling in the details of the model, it is useful to discuss how specifying characteristics as
factor loadings fits into the characteristics-versus-covariances debate. Numerous studies show that
firm characteristics help to explain the cross-section of average stock returns. However, there is no
consensus view on the explanation for this finding. Some researchers, such as Fama and French
(1993, 1996, 2000), favor rational pricing stories. They argue that firm characteristics, such as
market capitalization and the book-to-market ratio, capture cross-sectional differences in expected
stock returns by serving as proxies for the covariances between returns and common risk factors.
Others, such as Daniel and Titman (1997, 1998), favor behavioral stories. They argue that the
covariances between returns and common risk factors provide little information about expected
stock returns after controlling for firm characteristics. Interestingly, fundamental factor structures
have the potential to explain the empirical findings of researchers on both sides of the debate.

For instance, many of the findings deal with the pricing performance of the Fama and French
(1993) three-factor model. Under this model, the systematic risk of a stock depends on how its excess
return covaries with three risk factors: the excess return on the value-weighted market portfolio (the
VWM portfolio), the return on a hedge portfolio that short sells large-cap stocks to purchase small-
cap stocks (the SMB portfolio), and the return on a hedge portfolio that short sells stocks with low
B/M ratios to purchase stocks with high B/M ratios (the HML portfolio). Fama and French (1993)
show that the estimated loadings on these factors successfully capture the patterns in average excess
returns for portfolios that are formed by sorting stocks on market capitalization and the book-
to-market ratio. This lines up with what we would expect to find under a fundamental factor
model in which market capitalization and the book-to-market ratio are factor loadings. That is,

we would expect the estimated slope coefficients obtained by regressing excess stock returns on the



fundamental factors, which are returns on characteristic-based hedge portfolios, to do a reasonable
job of capturing the characteristic-based patterns in average excess stock returns.

Daniel and Titman (1997) also investigate the explanatory power of the estimated loadings on
the SMB and HML factors. However, their tests center on sets of portfolios whose constituent
stocks have roughly the same market capitalization and same book-to-market ratio. They report
that there is no apparent relation between the average excess portfolio returns and the estimated
slopes on the SMB and HML factors, and conclude that “it is characteristics rather than factor
loadings that determine expected returns.” Once again, this what we would expect to find under
a fundamental factor model in which market capitalization and the book-to-market ratio are factor
loadings. The variation in the estimated loadings for stocks or portfolios that have the same values
of the characteristics must be due to estimation error. Thus differences in the estimated loadings
should not have any ability to explain differences in the average excess stock or portfolio returns.

More broadly, it is easy to envision other scenarios in which such tests are unlikely to be fruitful.
Suppose, for example, that excess stock returns are described by a conditional linear factor model,
the unobserved time-varying loadings are cross-sectionally correlated with firm characteristics, and
exact factor pricing holds. If we use the characteristics as loadings and extract the associated factors,
then the estimated factor loadings (estimated regression slopes) will have some ability to explain the
cross-section of average excess stock returns. However, the explanatory power of the characteristics
will likely dominate that of the estimated loadings, because the fundamental factors maximize the
cross-sectional explanatory power of the characteristics for individual excess stock returns.

Instead of trying to determine whether covariances proxy for characteristics or vice versa, I
take an in-depth look at the pricing implications of fundamental factor models. The basic idea
is to specify m; such that exact factor pricing holds, use a flexible multivariate GARCH process
to capture the dynamics of the conditional factor covariance matrix, and estimate the price of
covariance risk for each factor by fitting the model to excess returns for large universe of individual
stocks. My objectives are to assess the extent to which firm characteristics explain the cross-section
of covariance risk, assess the extent to which the covariances with the fundamental factors explain
the cross-section of expected excess returns, and provide insights on the relative importance of the

different fundamental factors in determining the overall pricing performance of the model.
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2.3. Modeling the cross-section of conditional expected excess stock returns

Equations (1) and (2) deliver exact factor pricing if the cross-sectional variation in the values of
the characteristics explains all of the cross-sectional variation in conditional expected excess stock

returns. By specifying m; in accordance with this restriction,
my — Btmf,t, (5)

I can obtain evidence on the pricing performance of the fundamental factors. To lay the groundwork
for the proposed specification of m;, I invoke two additional assumptions about the nature of the
characteristics that serve as conditional factor loadings in the model.

First, I assume that the leading column of B; is an N X 1 vector of ones. This is analogous to
including an intercept in a cross-sectional regression model. It allows for the presence of a cross-
sectionally invariant component in conditional expected excess stock returns. Second, I assume
that the remaining K — 1 characteristics have been standardized such that (1/N) 27]:7:1 bkt =
0 and (1/N) 25:1 bim = 1, where b,1; denotes the kth element of the nth row of B;. Using
standardized characteristics makes it reasonable to treat the matrix of conditional factor loadings
as stationary, and also makes it easier to compare the estimates of the parameters associated with
different characteristics. Both assumptions are easily satisfied in empirical work. Furthermore, they
identify the first element of f,,; as the excess return on the equally-weighted market portfolio for
period t + 1.2 This follows by noting that B,By is a block diagonal matrix whose first row is
(N,0,...,0), and hence the first row of B is (1/N,...,1/N). Isolating the market factor as a
distinct element of f,,; makes the pricing implications of the model more transparent.

Consider, for example, the specification my; = H X, where H; = E(v;11v; |Z;) denotes the

conditional covariance matrix of f; ;. Substituting for my, in equation (5) yields
myy = Ct>\, (6)

where C; = B;H; denotes the N x K matrix of conditional covariances between r;y1 and f, ;.

2In other words, the first element of m ¢+ = B} m, is the conditional expected excess return on an equally-weighted
portfolio of the N stocks, and the first element of vs11 = B u¢11 is the corresponding return innovation.
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Hence, specifying m; = H;\ implies that the conditional price of covariance risk is constant for
each of the K factors. Adopting a constant-price-of-risk specification seems like a straightforward
approach for developing insights about the cross-section of covariance risk captured by the funda-
mental factors. However, one of its pricing implications is not very palatable.

Note that the first column of C; is the vector of conditional covariances of excess stock returns
with the market factor. Each element of this vector is a characteristic-weighted sum of the elements
in the first column of H;. Thus the covariances will differ across firms unless the excess return on the
market portfolio is conditionally uncorrelated with all of the remaining factors. Because equation (6)
treats the conditional covariance with the market as a separate source of covariance risk, it implies
that cross-sectional differences in exposure to this risk make a distinct marginal contribution to
cross-sectional differences in conditional expected excess stock returns. This seems untenable given
that the cross-sectional differences in the conditional covariance with the market arise solely from
the conditional correlations of the market with the other factors.

To eliminate this concern, I employ a modified version of the constant-price-of-risk specification
for the empirical analysis. Let H; be partitioned as

H, - hiis  hioy (7)

ho1: Haoy
where hi1; is a scalar, hia; and ho; are row and column vectors with K — 1 elements, and Hg ¢
isa (K —1) x (K — 1) matrix. Similarly, partition f,,; = (f1,¢+1, f2441) and A = (A1, A2)" in a

conformable fashion. I adopt the specification my; = H;L;\, where L; is given by

1 0
Li— 1 . (8)
Hyy hory 1

The motivation for this approach, which is equivalent to specifying A; = L\ as the price of risk
vector for period t + 1, may not be obvious at first glance. With a little algebra, however, the

resulting specification for m; can be expressed as

m; = CiA, (9)
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where C} = ByH L, is obtained by replacing the first column of C; with (h11; — hlgytH2_21’th217t)1.
Equation (9) has a simple interpretation. Let f{,,; denote the component of the market factor

that is conditionally uncorrelated with the other factors, i.e.,

ff,t+1 = fl,t+1 - f/2,t+1H2_21,th21,t- (10)

It is easy to verify that

var(f1 4411Ze) = hi1e — h12,tH2_217th21,t7 (11)

which shows that A represents the price of variance risk for an orthogonalized version of the market
factor. The conditional variance of f7, is priced because it represents the unavoidable component
of market risk. To see why it is unavoidable, note that the model implies that cov(rn t+1, f14411Zt) =
var(f{,41|Z¢) for all n. So every stock is exposed to the same baseline level of variance risk, and the
compensation for bearing this risk is determined by the value of A\;. The remaining factors in the
model are responsible for all of the cross-sectional variation in covariance risk, and hence all of the

cross-sectional variation in conditional expected excess stock returns.?

2.4. Modeling second-moment dynamics

To complete the model, T need to specify how S; evolves through time. Equation (2) implies that
S; can be expressed as

S; = BthBi + dthG;, (12)

so it is sufficient to model the dynamics of H; and d;. Because I employ GARCH specifications,
I call the resulting process for r.y; a fundamental-factor MGARCH model. The specification for
H, is obtained by decomposing this matrix into conditional factor variances and conditional factor
correlations. This facilitates multi-step estimation of the model parameters.

Let h; denote the K x 1 vector of conditional factor variances for period t (i.e., the main diagonal

3Specifying my,; = p ¢ would yield similar implications with respect to the role of market risk because the condi-
tional loading on the market factor is one for every stock. However, restricting the factor risk premiums to be constant
seems less likely to be empirically plausible.
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of H;). I assume that this vector evolves as
hi = wh + By 0 hy 1 + oy 0 v}, (13)

where wp, = (wp1,...,wni), By = Bui,---,Br k) and ay, = (a1, ..., o, k) are K x 1 vectors,
o denotes the Hadamard (element-by-element) product, and v = v; o v; denotes the Hadamard
square of v;. In other words, I assume that each factor follows a GARCH(1,1) process that displays
GARCH-in-mean effects of the form specified earlier (i.e., viy1 = fip 1 — Hi LX),

Let Ry = (H;o I)™"/?H,(H; o I)~/? denote the conditional correlation matrix of f,,;. To
facilitate correlation targeting, I assume that R; is given by a version of the rotated conditional
correlation (RCC) specification of Noureldin et al. (2014). Suppose that I'? denotes the symmetric

square root of I' = E(R;).* Under the RCC specification, R; evolves as

R; = (Qt © I)_1/2Qt(Qt © I)_l/z’ (14)
Q,=T"P,1" (15)
P, =1+ (8.,8.)°"0(Pi_1 —I)+ (aca)*? o (wyw) — I, (16)

where a. and B, are K x 1 vectors, (-)OI/ 2 denotes the element-wise square root of its argument,
and w; = T™72(H,_, o I)™"2v, satisfies E(w,w}) = I.

Equation (14) mirrors the decomposition of R; used in the dynamic conditional correlation
(DCC) model of Engle (2002). It allows the conditional factor correlations to be modeled in terms
of the elements of an auxiliary time-varying matrix Q,. Equation (15) defines this auxiliary matrix to
be the rotation of another matrix P, that satisfies E(P;) = I by construction. Equation (16) implies
that w1, which is a vector of standardized and rotated excess returns, follows a diagonal version
of the multivariate GARCH process of Engle and Kroner (1995), i.e., a diagonal BEKK model.
Correlation targeting can be accomplished by substituting a simple moment-based estimator for
I''/? that is consistent under the specified process for the conditional factor variances.

Noureldin et al. (2014) emphasize that the RCC model has two important advantages relative

to competing specifications. First, the model guarantees that R; is positive definite under simple

“That is, I'/? = TIA/?II’, where TIATII’ is the eigendecomposition of E(R;).
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parameter restrictions that can be easily enforced during estimation. It is sufficient to ensure that
the inequality restriction o, + B, < 1 is satisfied. Second, parsimonious parameterizations of the
P, process translate into rather rich dynamics for the conditional correlation matrix. The diagonal
parameterization in equation (16), for example, implies that Q, follows a full version of the BEKK
model, i.e., a version that has dense asymmetric parameter matrices.

To motivate the specification for d;, note that the fundamental factor structure implies that
E(ej  e1+1|Z¢) = (N — K)d;. Thus we can view d; as the conditional expected value of the cross-
sectional average of squared errors for period ¢ 4+ 1. If we assume that the cross-sectional average of

the squared errors follows an ARMA(1,1) process, then d; evolves as

wq + 1+« (
t d dlt—1 d N K )

where wy, 4, and oy are scalars. This approach is equivalent to specifying a univariate GARCH(1,1)
process for each of the N — K elements of e;;1, and then restricting the value of each parameter

that appears in the conditional variance equation to be the same for every process.

2.5. Log likelihood calculations

The fundamental factor structure of the model greatly facilitates estimation and inference. Suppose,
for example, that the dataset consists of excess returns on N individual stocks for periods ¢ =
1,2,...,T.5 Let @ denote the vector of unknown parameters. Under the assumption 7 1|Z; ~

N(my, St), the model implies that factors and errors for period ¢ + 1 are distributed as

S 7| ~ N myy H, 0

) (18)
€t+1 0 0 dI

where I have suppressed the dependence of my;, Hy, and d; on 6 for notational convenience. One

can therefore estimate 8 by maximizing

T
1 1 _
L£(0) = Z —ilog |Hy 1] — i'vfth_ll’Ut -
=1

N-K le!
logdy_y — =St (19)
2di—1

51 assume a balanced panel for ease of illustration. The same approach works if the cross-sectional dimension of
the panel changes over time.
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which is, apart from an additive constant, the log likelihood function for the model. Because £(8)
is additively separable, the parameters that characterize the dynamics of H; can be estimated
independently of those that characterize the dynamics of d; with no loss of efficiency.

Although the computational complexity of using numerical methods to maximize £(8) obviously
depends on the value of N, the rate at which the complexity increases with IV is quite slow provided
that the value of K is not too large. Indeed, £(€) can be computed with little effort beyond that
required to fit a sequence of T cross-sectional regressions with sample size N, because a cross-
sectional regression of r; — my_; on By;_1 delivers v, and eje; is given by the sum of the squared
residuals from this regression. To further reduce the computational demands of the model, I employ

a multi-step estimation procedure.

2.6. Estimation and inference

Multi-step estimation procedures are common in the MGARCH literature. Although they entail
some sacrifice in efficiency, the gains in terms of computational tractability are typically quite
substantial. I view this as a favorable trade-off because drawing inferences about the parameters
that characterize the dynamics of H; and d; is not the main focus of the analysis. The proposed
multi-step procedure is inspired by the methods used for DCC models. However, the presence
of GARCH-in-mean effects makes it necessary to employ an iterative approach similar to that
used by De Santis and Gerard (1997) to conduct MGARCH-based tests of the conditional CAPM.
Convergence usually occurs in a reasonable number of iterations because allowing for time variation
in the conditional mean typically has little impact on the estimated dynamics of volatility. Indeed,
most MGARCH studies simply assume constant means for this reason.

I begin by fitting a simplified version of the FF-MGARCH model in which my; = p; and
m; = Bypy. This yields preliminary estimates of {H, ;‘F:_Ol, and {d; tT:_Ol. The procedure is as

follows (note that f, = B} ;7 and e; = G);_,r; for this version of the model).

1. Construct f, = (fit fors---,[fre) for t = 1,2,...,T and compute by = (1/T) Zzzl £
Estimate wy,, 3;,, and oy, in equation (13) by fitting a sequence of K univariate GARCH(1,1)
models, the kth of which assumes that f¢|Z;—1 ~ N (g, f, hik—1). Let {fzt tT:_Ol denote the

vector sequence of estimated conditional factor variances.

2. Compute Z;¢ = (frt — ﬂk’f)/ﬂ;/,;t_l fork=1,2,...,Kandt=1,2,...,T.
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3. Compute I = (1/7) Zthl 212}, the sample covariance matrix of 2; = (214, 224, ..., 2K¢)’. Let
f‘l/Q denote the symmetric square root of this matrix.

4. Compute wy = IA‘il/Qét for t =1,2,...,T. Estimate a, and 3, in equation (16) by assuming
that 2¢Z; 1 ~ N(0, R;_1). Let {R;}7- denote the estimated sequence of conditional factor
correlation matrices.

5. Construct {e;}1 ;. Estimate wg, 84, and oy in equation (17) by assuming that e;|Z;_1 ~
N(0,d;1I). Let {th}tTgol denote the estimated sequence of conditional error variances.

6. Combine {fzt}tT;Ol with {Rt}tT;Ol to obtain {H 131!, the estimated sequence of conditional

factor covariance matrices.

The time required to complete the procedure is largely governed by step four, which entails opti-
mization over 2K parameters and requires 1" numerical inversions of a K x K matrix in order to
compute the value of the log likelihood function implied by 2¢|Z;—1 ~ N (0, R;_1).

Once the sequence {I:I t}z:ol is in hand, a preliminary estimate of A can be obtained by mini-

mizing the criterion

T
el
Q(A) = Zv;Ht_lvt, (20)
t=1
where
Oy = f, — H;_Li_ 1\ (21)

denotes the K x 1 vector of estimated factor innovations obtained by replacing H;_1 and L;_; with
the preliminary estimates of these matrices. This approach maximizes the log likelihood function
in equation (19) for the case in which all the parameters except for A are restricted to equal their
preliminary estimates. It is equivalent to pooled generalized-least-squares (GLS) estimation of a

sequence of T' cross-sectional regressions of the form
Ty = C:_l)\—l-et (22)

where C”:,l = Bt_lfit_lf/t_l.ﬁ To update {I;It};f:_ol via a second iteration, I replace fiy ; with the

5To see this, consider the cross-sectional regression for period t. The GLS estimator for this regression is obtained
by minimizing the criterion

Qt(A) = 51/55;115“
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kth element of H t—1i/t—15\7 where X denote the preliminary estimate of X. All subsequent updates
of {H t}tT;Ol are carried out in the same manner using A from the previous iteration.

Asymptotic standard errors for the final parameter estimates can be computed by nesting the
multi-step estimation procedure within the generalized-method-of-moments framework (see, e.g.,
Noureldin et al., 2014). But there is a simpler approach that should be adequate for assessing
the precision of the parameter estimates that characterize the dynamics of the fitted conditional
variances, fitted conditional covariances, and fitted conditional correlations. Specifically, the outer-
product and second-derivative estimates of the information matrix for the univariate GARCH(1,1)
models in step one and the RCC model in step four can be used to compute quasi maximum likelihood
standard errors for the dynamic parameters. The generalized-method-of-moments approach might

therefore be reserved for cases in which one wants to perform formal hypothesis tests.

3. Data and Preliminary Analysis

I obtain monthly data for individual stocks from the Center for Research in Security Prices (CRSP)
monthly stock file. The sample begins in July 1963, ends in December 2016, and is restricted to
ordinary common equity (CRSP share code 10 or 11) for NYSE, AMEX, and NASDAQ firms. The
monthly risk-free rate series is taken from the “Fama/French 3 factors” dataset that is posted to the
web-based data library maintained by Ken French.” The annual data for the required accounting
variables are drawn from the Compustat annual industrial file.®

I combine the variables into a single dataset by matching accounting information for firms whose
fiscal year ends in month t with excess stock returns for months ¢ +5 to ¢t +16. Under this matching
strategy, the accounting variables are lagged by a minimum of four months with respect to the
start of the holding period over which the excess stock returns are measured. Four months should
be sufficient time for the accounting variables to enter the public information set. This timing

convention is also employed in the recent study of Lewellen (2015), which uses long-run averages

where S’;ll = Bzr_'lI:I;,llBj_l + cZ;_lth_lGQ,l. By noting that G;—1G,_; B;_1 = 0, it follows that Qt(/{,)\) can be
expressed as
~ N - L1 - . P
QN = (f; — Hia Lo a N H oy (f — Hioa Lo N) + d 2 (MG Gy ry).
Hence, minimizing 23:1 Q:(M\) produces the same estimates as minimizing Q(X).
See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
81 exclude firms with less than two years of Compustat data to mitigate the well-known biases that arise from the
way in which firms are added to the file.
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of the coefficient estimates from Fama and MacBeth (1973) regressions to generate out-of-sample
forecasts of the cross-section of expected excess stock returns.
The choice of firm characteristics is motivated by prior research. Table 1 described how the

“usual suspects” from

characteristics are constructed. The first four variables could be called the
the recent asset pricing literature: the logarithm of market equity (log ME), the logarithm of the
book-to-market equity ratio (log BE/ME), gross profitability scaled by book assets (GP/BA), and
the logarithm of the gross growth rate of book assets (log AG). The use of the log ME and log
BE/ME variables to capture cross-sectional differences in expected excess stock returns dates to the
seminal studies of Fama and French (1992, 1993). But these variables have recently been combined
with measures of firm profitability and investment to extend the Fama and French (1993) three-
factor model (e.g., Fama and French, 2015; Hou et al., 2015). I refer to the returns on the hedge
portfolios associated with these four variables as the size, value, profitability, and investment factors.

The fifth and six variables have been widely studied in the anomalies literature: current accruals
scaled by book assets (CA/BA), and the logarithm of the gross two-year growth rate of split-
adjusted shares outstanding (log SG). Interest in the accruals anomaly dates to Sloan (1996), who
found a strong cross-sectional relation between current accruals and average stock returns. Around
the same time, Loughran and Ritter (1995) found that net stock issues are negatively related to
subsequent average stock returns. The origins of these anomalies have been the subject of much
debate. In contrast, the seventh variable — net sales scaled by market equity (NS/ME) — has
received little attention outside of a recent study by Lewellen (2015). His findings suggest that the
NS/ME variable captures cross-sectional differences in average stock returns, but the effect seems
to be largely confined to firms that have low market equity. I refer to the returns on the hedge
portfolios associated with these three variables as the accruals, offerings, and sales factors.

Table 2 reports the sample mean, sample volatility, sample skewness, and selected sample per-
centiles for the seven firm characteristics.” The sample used to compute the statistics in panel A
contains all available NYSE, NASDAQ, and AMEX firms (the “full sample”). There is nothing in

the results that looks to be cause for concern. In most cases, the statistics are closely aligned with

T winsorize all of the characteristics monthly at the 1st and 99th percentiles of their cross-sectional distribution.
Using winsorized or trimmed characteristics is a common approach for limiting the influence of outliers in cross-
sectional regression studies that focus on asset pricing issues. See, for example, the recent studies of Novy-Marx
(2013) and Ball et al. (2015).
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those reported by prior studies that use similar data. The log ME variable, for example, has a mean
of 4.67 and volatility 2.19. Ball et al. (2015) report values of 4.55 and 1.97 for this variable using
data for a largely-overlapping sample period.

The sample used to compute the statistics in panel B is constructed via a month-by-month
screening procedure that excludes microcap stocks (the “no-microcaps sample”). The definition
of a microcap stock, which follows Fama and French (2008), is one whose market capitalization
for the month is below the 20th percentile of the monthly cross-sectional distribution of market
capitalization for NYSE firms. Apart from the rightward shift in the distribution of the log ME
variable, the most notable change is an increase in the median excess return from 0.00% to 0.77%
per month. In general, dropping microcap stocks from the sample has relatively minor effects on the
distributional properties of most characteristics. The exception is the NS/ME variable. The sample

percentiles indicate that the right tail of its distribution shortens considerably.

3.1. Fama-MacBeth regressions

Table 3 uses Fama-MacBeth regressions to illustrate the cross-sectional explanatory power of the
characteristics for excess stock returns. The results in columns (1) to (6) are for the full sample.
Those in the remaining columns are for the no-microcaps sample. In each case, I report two sets of
estimates to show the effect of excluding financial firms (SIC codes 6000-6999) from the analysis.!®
The dependent variable for the regressions is the excess percentage stock return, and all specifications
include an intercept.

First consider the results for a specification that uses the log ME and log BE/ME variables as
regressors. The average estimated slopes are —0.15 and 0.27 with t-statistics of —3.57 and 5.18 for
the full sample, or —0.16 and 0.30 with ¢-statistics of —3.63 and 5.68 if I exclude financial stocks.
These results are broadly consistent with those reported by Fama and French (1992) and numerous
subsequent studies. Note, however, that the results are sensitive to the sample composition. Using
the no-microcaps sample, the average estimated slopes are —0.06 and 0.14 with ¢-statistics of —1.59
and 2.06, or —0.06 and 0.13 with ¢-statistics of —1.35 and 1.89 if I exclude financial stocks. Thus the

evidence of a cross-sectional relation between the two regressors and expected excess stock returns

10The SIC codes used to screen firms are from Compustat (item SICH). If the Compustat code is missing, I replace
it with the code from CRSP (item SICCD), if available.
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is considerably weaker if we drop microcap stocks from the analysis.

The next specification adds the GP/BA and log AG variables to the set of regressors. The
average estimated slopes for these two variables are highly statistically significant, regardless of the
sample composition. Using the no-microcaps sample, for example, the average estimated slopes are
0.47 and —0.89 with t-statistics of 4.53 and —6.50, or 0.49 and —0.97 with t-statistics of 4.37 and
—6.62 if T exclude financial stocks. Adding the GP/BA and log AG variables as regressors also
leads to somewhat stronger evidence (larger absolute t-statistics) that the log ME and log BE/ME
variables are related to expected excess stock returns for the no-microcaps sample.

For the final specification, I include the entire set of seven characteristics as regressors. All of the
average estimated slopes for this comprehensive specification are statistically significant at the 1%
level using the full sample. Excluding financial firms produces some changes in the results, primarily
with respect to the accruals variable. However, the changes are relatively minor. The explanatory
power of the regressions is clearly weaker for the no-microcaps sample, but with the exception of
the accruals and sales variables, the average estimated slopes remain statistically significant. In
addition, the average estimated slope on the accruals variable becomes statistically significant if
financial firms are excluded from the regressions. I therefore follow Fama and French (1992, 1993),

and exclude financial firms for the remainder of the analysis.

3.2. Properties of the fundamental factors

Tables 4 contains descriptive statistics for the market, size, value, profitability, investment, accruals,
offerings, and sales factors. Panel A reports the sample mean, sample volatility, sample skewness,
and selected sample percentiles for the full and no-microcap samples. Panel B reports the sample
correlation matrix of the factors. For any given month, the factor realizations are simply excess
returns on well-diversified portfolios of the individual stocks. The portfolio weights sum to one for
1

the market factor, and to zero for each of the remaining characteristic-based factors.!

The mean of the market factor is 0.85% per month, or about 10% on an annualized basis. This

1Recall that the vector of factor realizations for month ¢ is given by f.= (Bg_lBtfl)leQ_lrt. Because the first
column of B;_; is a vector of ones, and the elements in each of its remaining columns have a mean of zero and a
variance of one (the characteristics are standardized in the cross-sectional dimension), it is easy to see that the first
row of (B;_lBtfl)leé_l sums to one, and that each of its remaining rows sums to zero. So the first element of f, is
the excess return on a unit-cost portfolio (the equally-weighted market index) and the remaining elements are excess
returns on zero-cost portfolios (characteristic-based hedge portfolios).
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is more than double the mean for any other factor in terms of magnitude. However, the market
factor is unique in the sense that it entails long positions in all of the individuals stocks. Each of the
remaining seven factors is the return on a zero-cost portfolio that has negative weights for roughly
half of the stocks and positive weights for the others. So one might anticipate finding that these
factors have smaller absolute means (and lower volatilities) than the market.

Notice that the pattern of the mean excess returns is consistent with the results of the Fama-
MacBeth regressions in Table 3. Specifically, the mean returns are positive for the market, value,
profitability, and sales factors, and negative for the size, investment, accruals, and offerings factors.
This pattern is expected because the mean excess portfolio returns are the average slope coefficients
that would be obtained by fitting Fama-MacBeth regressions using the standard values of the char-
acteristics as regressors. In other words, the mean excess return for a given factor is an estimate of
the marginal effect of a one standard deviation increase in the value of the associated characteristic
(loading) on conditional expected excess stock returns.

None of the other distributional properties of the factors stands out as especially noteworthy.
Several factors display evidence of mild skewness. The size factor, for example, has an estimated
skewness of —1.71. But the return distributions appear to be reasonably symmetric on the whole.
The sample correlations between the factors are fairly low in general. The market and offerings
factors have the largest correlation at 55%. However, the majority of the correlations are less than
20% in magnitude. The correlations are relatively weak because every factor except one is explicitly
designed to capture the marginal explanatory power of a particular characteristic for the cross-
section of excess stock returns. In general, the weak correlations are broadly consistent with the

view that each factor represents a distinct source of common variation in excess returns.

4. Parameter Estimates and the Cross-Section of Covariance Risk

Table 5 reports estimates of the parameters that determine the dynamics of the conditional variances
and conditional covariances under the FF-MGARCH model. I begin with the estimates for the
full sample, which are shown in the first six columns of the table. The upper section presents the
GARCH(1,1) estimates for the conditional factor variances. As anticipated, the results indicate that
the conditional variances are quite persistent. The sum of Bh,k’ and &y ), (the estimated coefficients

on the lagged conditional variance and lagged squared demeaned excess return for the kth factor)
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ranges from 0.74 to 0.97. This finding is in line with evidence from the volatility modeling literature,
which overwhelmingly points to strong persistence in stock return volatility.

Note, however, that several of the ¢&j ; values are larger than those usually reported in studies
that fit GARCH(1,1) models to stock returns. Together with the other estimates, these values are
indicative of autocorrelations for the squared demeaned factors that are fairly large. For example,
the estimates translate into an estimated first-order autocorrelation of 0.52 in the squared demeaned
value factor. Typically, the estimates of GARCH(1,1) parameters for stock returns imply a first-
order autocorrelation of around 0.2 or lower for squared demeaned returns. Because the factors are
excess returns on portfolios with characteristic-based weights, the results indirectly suggest that the
characteristics are cross-sectionally related to the volatility of individual excess stock returns.

The parameter estimates for the no-microcaps sample display the same general patterns, but
some changes are evident. First, the estimates of volatility persistence display less variation across
factors. The sum of Bh,k and &p, i ranges from 0.90 to 0.98. Second, the estimates of &j x tend to
be smaller than those obtained using the full sample. But the results still point to autocorrelations
for the squared demeaned factors that are fairly large. In the case of the value factor, for instance,
the estimates translate into an estimated first-order autocorrelation of 0.53. Overall the evidence
suggests that the volatility dynamics of the factors extracted from the no-microcaps sample are
similar to those of the factors extracted from the full sample.

The middle section of Table 5 presents the GARCH estimates for conditional error variances.
The sum of 34 and Gy for the full sample is 0.97, which is again consistent with strong volatility
persistence. Although the estimated value of &4, which is 0.42, may seem unusually large, the
interpretation of this estimate differs from that of & in the GARCH(1,1) specifications. Recall
that oy determines how d; responds to an increase in eje;/(N — K). Under the fundamental factor
structure, eje;/(N — K) is akin to a realized variance that converges in probability to d;—; as
N — oo. Hence, it is not surprising to find that the weight placed on this quantity is relatively
large. Dropping microcap stocks from the sample has little impact on either of the estimates.

The lower section of Table 5 presents the estimates for the RCC specification of conditional
factor correlation matrix. The results suggest that the conditional factor correlations display a level
of persistence on par with that of the conditional factors variances. In particular, the elements

of (G.al)”? + (Bc,élc)l/ ?, which determine the estimated persistence of the conditional covariances
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between the rotated versions of the standardized factors, range from 0.57 to 1.00 (rounded to two
decimal places), with most exceeding 0.8. In addition, most of the estimated persistence measures

increase when microcap stocks are excluded from the sample.

4.1. Cross-section of covariance risk

In view of the parameter estimates, it seems likely that the elements of H; experience long swings
away from their unconditional expected values. The FF-MGARCH model implies that, in general,
such swings are accompanied by a shift in the entire cross-section of conditional covariance risk
for individual stocks. But how well do the firm characteristics capture cross-sectional differences
in covariance risk? I use density plots to provide some initial insights on this question. First, I
randomly pick 250 stocks each month from the set of available stocks for the month. Second, I
record the estimated conditional covariances between the excess returns on the selected stocks and
the fundamental factors for every month in the sample period. Third, I estimate the unconditional
density of conditional covariances with each factor. Figure 1 plots these density estimates for both
the full and no-microcaps samples.

The plot for the market factor has some interesting implications. Under the FF-MGARCH model,
all of the cross-sectional variation in the conditional covariance of excess stock returns with the
market factor is explained by the conditional correlations between this factor and the characteristic-
based factors (the market factor has a loading of 1 for every stock). Yet the conditional covariance of
excess returns with the market displays wide variation across stocks. Indeed, it displays more cross-
sectional variation than the conditional covariance of excess returns with any other factor. Dropping
microcap stocks from the sample shifts the plot to the left, but the magnitude of the shift is relatively
small. Thus the model points to substantial cross-sectional variation in conditional CAPM betas
that is directly tied to cross-sectional differences in the values of the firm characteristics. This
implication of the model is examined in more depth later on.

Because the conditional loadings for the remaining factors are standardized, the density plots can
be used to get a rough idea of the relative importance of each factor in capturing the comovements
of excess stock returns. The size and value factors appear to display stronger explanatory power
than the other factors, although much of the strength of the size factor appears to be associated

with microcap stocks. But the plots suggest that all of the factors have some ability to capture the

24



comovements of excess returns. Of course these visual comparisons are only suggestive.

To dig deeper, I compare the model-based estimates of the unconditional covariances to the
corresponding sample covariances. Consider, for example, the unconditional covariance with the
market factor. I start by forming 50 equally-weighted portfolios that are rebalanced every month.
The portfolios are constructed by sorting the set of available stocks for the month in ascending order
of the estimated conditional covariance with the market. Once I have determined the composition
of each portfolio for every month in the sample period, I use the fitted conditional moments for
individual excess stock returns to construct the fitted conditional expected excess portfolio returns
and the fitted conditional covariances of the excess portfolio returns with the market factor. Fi-
nally, I use the fitted conditional moments of the excess portfolio returns to derive estimates of the
unconditional covariances of the excess portfolio returns with the market factor.?

Figure 2 illustrates the relation between the model-based estimates of the unconditional covari-
ances and the corresponding sample covariances. If the FF-MGARCH model is correctly specified,
then the observed differences between the two sets of covariance estimates arise solely from estima-
tion error. For the most part, the model-based estimates of the unconditional covariances line up
pretty well with the sample covariances. The most notable exception is for the size factor. The
model-based estimates for this factor are larger than the sample covariances at both ends of the
spectrum. This finding suggests a moderate degree of specification error with respect to the size
factor, perhaps due to the presence of neglected nonlinearity in the relation between log ME and
covariance risk. On the whole, however, the comparisons are not unfavorable to the model.

It is also clear that the extent to which the sorting procedure spreads the unconditional covari-
ances depends very much on the factor under consideration. Sorting on the estimated conditional
covariance with the market produces a wide spread in the estimated unconditional covariances with
this factor, which is consistent with the evidence from Figure 1. The range of estimated covariances
produced by the size- and value-based sorts is also fairly large. In comparison, the accruals-based
sort produces a very modest spread in estimated covariances with the accruals factor.

Although the scatterplots in Figure 2 confirm that the FF-MGARCH model captures cross-

sectional differences in covariances risk, they do not tell us whether the differences in covariances

2This is straightforward using the relation cov(z,y) = E[cov(z,y|2)] + cov(E(x|z), E(y|z)), where z , y, and z are
random variables defined on the same probability space.
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across firms translate into cross-sectional variation in expected excess stock returns. Even if one
presumes that covariance risk is priced, the range of estimated covariances for a given factor may not
be a reliable indicator of its importance in explaining the cross-section of expected excess returns,
because the associated price-of-risk might be relatively large or quite small. Accordingly, I now turn

to an examination of the price-of-risk estimates produced by the model.

5. Covariance Risk and the Cross-Section of Expected Excess Returns

Table 6 reports the price-of-risk estimates for the fundamental factors. All of the estimates for the
full sample (panel A) are statistically significant at the 1% significance level, with ¢-statistics that
range from 2.93 to 8.07 in absolute value. Thus the analysis indicates that all of the conditional factor
covariances help to explain the cross-sectional variation in excess individual stock excess returns.
The magnitude of the estimates ranges from 0.08 for the market factor to 0.31 for the accruals
factor, with negative signs for the size, investment, accruals, and offerings factors. As anticipated,
the sign of each estimate matches that of the corresponding factor mean in Table 4.

Recall that under the proposed version of exact factor pricing, market risk makes the same
contribution to the conditional expected excess return of every stock. The estimated value of this
contribution is 0.08 times the estimated conditional variance of the component of the market factor
that is conditionally uncorrelated with the remaining factors. To help put this in context, the R-
squared for a time-series regression of the excess market return on the remaining factors is nearly
50%. Using this information along with the sample volatility of the excess market return (about 6%
per month) suggests that, on average, market risk contributes around 0.08 * 36/2 = 1.4 percentage
points per month to expected excess stock returns. Hence the results point to a substantial reward
for bearing the component of market risk that is pervasive across all stocks.

Interestingly, however, the estimates imply that the reward for bearing other types of risk is
even higher on a per-unit basis. The estimated price of risk for the accruals factor, for example, is
almost quadruple that for the market factor. Although this finding is not necessarily inconsistent
with rational pricing, it is difficult to understand why investors would demand to be compensated so
highly for the covariance of excess stock returns with an accruals-based factor. There may ultimately
be a way to reconcile this finding with the predictions of asset pricing theory, but doing so would

require a mechanism that links accruals to systematic risk in a persuasive fashion.
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To check the stability of the results, I compare the prices-of-risk estimates obtained using three
equal-length subperiods: July 1963 to April 1981, May 1981 to February 1999, and March 1999 to
December 2016. The estimates clearly display nonnegligible differences across subperiods. Nonethe-
less, the basic message of the results is not overly sensitive to the choice of subperiod. The sign of
the subperiod estimates is consistent for seven of the eight factors. The lone exception is the sales
factor, whose price-of-risk estimate is negative for the first subperiod, and positive for the second
and third subperiods. But the estimate for the first subperiod is statistically indistinguishable from
zero. The most recent of the three subperiods generally produces the smallest absolute t-statistic
for each factor. Nonetheless, I find that six of the eight estimates for this subperiod are statistically
significant at the 10% level, and five of these are statistically significant at the 5% level.

The price-of-risk estimates for the no-microcaps sample are generally smaller in magnitude than
those for the full sample. This finding suggests that the cross-sectional relation between the char-
acteristics and covariance risk is weaker for stocks that have relatively high market capitalization.
Even so, the estimates remain statistically significant for all but two of the factors. The lack of
significant results for the value and sales factors may to some extent reflect an overall reduction
in the precision of the price-of-risk estimates that is caused by excluding microcap stock from the

analysis. Dropping these stocks reduces the number of available observations by around 60%.

5.1. Long-term predictive ability of fitted conditional expected excess returns

As previously noted, it is questionable whether rational pricing can be regarded as a plausible expla-
nation for the results reported in Table 6. Ball et al. (2015) suggest a straightforward way to develop
additional insights in this regard. In particular, they point out that long-horizon regressions can
assist in differentiating between rational and irrational explanations for the cross-sectional predic-
tive ability of firm characteristics, such as operating profitability, for individual stock returns. Their
basic argument is that “mispricing is more likely to be corrected over longer horizons,” whereas
expected stock returns “are likely to be more stationary and, hence, the informativeness of past

”

profitability measures for future returns is likely to persist longer.” Because their long-horizon re-
gressions reveal that the cross-sectional relation between operating profitability and stock returns
persists for a large number of years, they conclude that the evidence is “difficult to reconcile with

market mispricing being the explanation for operating profitability’s predictive power.”
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Table 7 presents a similar analysis for the FF-MGARCH model. First, I use the model to
construct the fitted expected excess return for each stock that appears in the dataset for month
t — 1, where | € {1,6,12,34,36,60,120}. Second, I identify the subset of stocks that appear in the
dataset for every month between ¢ — [ and ¢. Third, I use the data for this subset of stocks to fit
cross-section regressions. The dependent variable is either the excess stock return for month ¢, or
the average excess stock return for months ¢ — [ + 1 to t. The explanatory variables are a constant
and the fitted conditional expected excess stock return for month ¢t —[. I estimate the regression for
every month in which it is feasible, and report the average estimated intercept and average estimated
slope for both the full sample (panel A) and the no-microcaps sample (panel B).

The results in columns (1) to (5) of panel A are for the regressions that use monthly excess
stock returns as the dependent variable. Column (1) reports the results for one-step-ahead forecasts
(I = 1). The average estimated intercept is —0.29 with a ¢-statistic of —1.13, and the average
estimated slope is 0.98 with a t-statistic of 9.20. Because the former is statistically indistinguishable
from zero and the latter is statistically indistinguishable from one at conventional significance levels,
I cannot reject the hypothesis that the one-step-ahead forecasts of excess returns are unbiased and
efficient. Although the average value of the regression R? is very low (only 1%), this is the anticipated
finding in view of previous results. Specifically, the average R? produced by the Fama-MacBeth
regression that uses the full set of characteristics as regressors, which is shown in column (3) of
Table 3, is only 3.4%. It is not surprising, therefore, that the fitted conditional expected excess
returns explain only a small fraction of the cross-sectional variation in monthly excess returns.

The average estimated slope and average regression R? steadily decrease as the forecast horizon
increases from one month to three years. The decline in the average estimated slope is consistent
with cross-sectional mean reversion in conditional expected excess stock returns. It indicates that
the multi-step-ahead forecasts of excess returns (the fitted values for the regression) display a lower
cross-sectional dispersion than the fitted conditional expected excess returns. One expects the
average regression R? to fall as [ increases, but it is notable that the explanatory power of the
model, as measured by the t-statistic of the average estimated slope, remains highly statistically
significant for all forecast horizons. Thus the cross-sectional relation between the fitted conditional
expected excess returns and future realized excess returns persists for at least 3 years.

The results for the regressions that use average excess returns as the dependent variable are
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shown in columns (6) to (10). Column (6) reports the results for one-step-ahead forecasts of average
annual excess returns (k = [ = 12). The average estimated intercept is —0.12 with a ¢-statistic of
—0.43, and the average estimated slope is 0.93 with a t-statistic of 8.99. The most notable change
from results in column (1) is that the regression R? increases to 3.1%. This increase is qualitatively
consistent with strong persistence in conditional expected excess returns. By averaging the excess
stock returns over time we reduce noise, and the reduction in noise should improve the signal-to-noise
ratio if the conditional expected excess returns are sufficiently persistent.

The average estimated slope steadily decreases as the horizon used to compute average excess
returns increases, which is again suggestive of cross-sectional mean reversion in conditional expected
excess stock returns. But the regression R? displays the opposite behavior as k increases, steadily
rising from 3.1% for one-year average returns to 7.0% for ten-year average returns. If one looks
favorably on the argument that mispricing is more likely to be corrected over longer horizons, then
the regression evidence runs counter to typical mispricing stories. It is difficult to envision how
overreaction or underreaction could generate an increase in the regression R? as the horizon used to
compute average excess returns increases all the way out to 10 years.

Dropping microcap stocks from the sample used to fit the regressions alters the findings to some
extent, but the general message of the results remains the same. The average estimated slope and
average regression R? decrease as the forecast horizon increases, which is the anticipated finding if
there is cross-sectional mean reversion in conditional expected excess stock returns. Conversely, the
average regression R? increases with the horizon that is used to compute average excess returns.

Thus the key takeaways are insensitive to the sample composition.

5.2. Properties of portfolios formed on fitted conditional estimated expected excess returns

Earlier I used portfolio sorts to investigate the implications of the FF-MGARCH model with respect
to covariance risk. A similar approach is useful for investigating the model’s pricing performance.
If the constant-price-off-risk specification captures the cross-sectional variation in expected excess
stock returns, then using the fitted conditional expected excess returns to group stocks into portfolios
should be an effective strategy for spreading average excess portfolio returns. Suppose, for example,
that we want to form 25 portfolios in month ¢ that will be held until month ¢ + 1. We can use the

fitted value of m; (the one-step-ahead forecast of r;; under the model) to sort the available stocks
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in ascending order of estimated expected excess returns and group them accordingly (bottom 4%
in portfolio 1, next 4% in portfolio 2, etc.). By repeating the sorting and grouping process for each
month in the sample period, we obtain the desired time series of excess portfolio returns. Table 8
examines the properties of portfolios formed on fitted conditional expected excess returns.

The initial ten columns report the sample mean and sample volatility of the excess portfolio
returns, followed by their sample covariances with the market, size, value, profitability, investment,
accruals, offerings, and sales factors. The results in the first column highlight the economic signif-
icance of the cross-sectional explanatory power of the constant-price-off-risk specification. Despite
the low R-squared values reported in Table 7, the sorting scheme produces a wide spread in average
excess portfolio returns. The average excess return ranges from a low of —0.35% per month for
portfolio 1 to 2.99% per month for portfolio 25. Although the increase in the average excess return
with the portfolio number is not quite monotonic, the results leave little doubt that the estimates
of my; convey considerable information about the relative performance of stocks in period ¢ + 1.

The results also highlight the exceedingly poor fit of the CAPM. The sample covariance between
the excess portfolio returns and the market factor is largely flat, showing only slight variation across
most of the portfolios. It increases somewhat for portfolios at the upper end of the cross-sectional
distribution of average excess returns. But the same is true for portfolios at the lower end of the
distribution. The lack of any clear relation between the estimated market betas and average excess
portfolio returns brings the pricing performance of the CAPM into stark focus.

In contrast to the estimated market betas, the sample covariances of several of the characteristic-
based factors with the excess portfolio returns display clear cross-sectional trends. For example, the
sample covariances rise steadily as the portfolio number increases for the value and sales factors,
and fall steadily for the investment factor. In other cases there appears to be a non-monotonic
relation between the sample covariances and portfolio number. Note, however, that it is difficult to
interpret these findings in isolation because the characteristic-based factors are correlated with one
another. Altering the covariance risk of a portfolio with respect to a given factor will typically alter
its covariance risk with respect to all factors. Thus it is not yet clear whether the observed patterns
in the sample covariances are in line with the predictions of the FF-MGARCH model.

The last ten columns of the table report the estimates needed to assess the evidence in this regard.

Specifically, they contain the estimates of the unconditional expected excess portfolio returns, the
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unconditional volatilities of the excess portfolio returns, and the unconditional covariances between
the excess portfolio returns and factors that are implied by the fitted conditional means, fitted
conditional variances, and fitted conditional covarainces from the FF-MGARCH model. If the FF-
MGARCH model is correctly specified, then the fitted conditional moments can be used to construct
consistent estimators of the unconditional moments provided that the parameters of the model are
estimated consistently. Hence, the differences between the sample moments and the model-based
estimates can be used as specification diagnostics.

In general, the results paint a reasonably favorable picture of the pricing performance of the
model. Like the average excess portfolio returns, the average values of the fitted conditional expected
excess returns increase steadily as the portfolio number increases, rising from —0.91% per month
for portfolio 1 to 2.64% per month for portfolio 25. The absolute pricing error is below 20 basis
points per month for a majority of portfolios, but it increases somewhat at both ends of the cross-
sectional distribution of average excess returns. The largest absolute pricing errors are for the first
two portfolios: 56 and 47 basis points per month, respectively.

Similarly, the discrepancies between the sample covariances and the model-based estimates of the
unconditional covariances are fairly small in general. Consider, for instance, the observed pattern
for the market factor. The sample covariance with the market factor starts at 43.0 for portfolio
1, falls to 35.2 for portfolio 10, and then slowly rises to 49.1 for portfolio 25. In comparison, the
model-based estimate of the unconditional covariance starts at 46.4 for portfolio 1, falls to 37.3 for
portfolio 8, and then slowly rises to 44.9 for portfolio 25. The results for the other seven factors are
similar. It is apparent that, on the whole, the cross-sectional patterns in the model-based estimates
mirror those in the sample covariances reasonably well.

Figure 3 provides additional evidence on the pricing performance of the model. It illustrates how
the relation between the average excess returns and average fitted conditional expected excess returns
changes as the number of portfolios formed via the sorting scheme increases. Some deterioration is
apparent as the number of portfolios rises from 25 in the top-left panel to 200 in the bottom-right
panel, but the drop off in performance is relatively slow. The sample correlation of the average
excess portfolio return with the average value of the fitted conditional expected excess portfolio
return falls from 0.943 for 25 portfolios to 0.895 for 200 portfolios. Overall the subset of stocks that

have the highest estimated conditional expected excess returns appear to be the most troublesome
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from a pricing perspective. The average excess return on the portfolio that contains these stocks is
substantially higher than the corresponding model-based estimate in every case, and the magnitude

of the pricing error becomes larger as the number of portfolios increases.

5.8. Properties of portfolios formed on fitted conditional covariances

One drawback of forming portfolios on the basis of fitted conditional expected excess stock returns
is that both the low- and high-numbered portfolios tend to contain stocks that are subject to large
estimation errors. To see why, consider a scenario in which every stock has exactly the same expected
excess return. The sorting is performed purely on estimation error in this case, so it follows that
the error in estimating the expected excess portfolio return is maximized for the bottom and top
portfolios. This “error maximization” feature of the sorting scheme is undesirable because it is likely
to produce large pricing errors for the bottom and top portfolios that are not an accurate reflection
of the true performance of the model.

I therefore consider a second set of 25 portfolios that are formed by sorting on the fitted con-
ditional covariances with the market factor. The motivation for this alternative sorting scheme is
simple. Under the FF-MGARCH model, the conditional covariances with the market (or, equiva-
lently, the conditional market betas) have no direct bearing on conditional expected excess stock
returns. To the extent that a relation exists, it arises indirectly due to correlations between the
market factor and the other factors in the model. Hence, sorting on the fitted conditional covari-
ances should distribute the estimation error more evenly than sorting on fitted conditional expected
excess returns. Table 9 summarizes the properties of the resulting portfolios.

The general pattern of the results gives the initial impression of lending support to the CAPM.
First, the sample covariance between the excess portfolio returns and the market factor increases
monotonically from a low of 20.1 for portfolio 1 to a high of 57.3 for portfolio 25, which translates
into the estimated market beta rising from 0.5 to 1.5 based on the estimated volatility of this factor
(Table 4). Second, the average portfolio excess return increases from a low of 0.58% per month for
portfolio 1 to a high of 1.25% per month for portfolio 25. The increase is not quite monotonic, but
it lines up with the estimated market betas pretty well.

However, it is apparent that most — if not all — of the cross-sectional variation in the estimated

market betas is explained by firm characteristics. Firms with low estimated market betas tend to
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have high market capitalizations, low book-to-market ratios, high profitability, low asset growth, low
accruals, low share growth, and low sales-to-market ratios, while those with high estimated market
betas tend to have the opposite characteristics. The estimated volatility of the excess portfolio
returns displays the same general pattern, increasing from a low of 4.15% per month for portfolio
1 to a high of 10.43% per month for portfolio 25. So sorting on the estimated conditional betas is
clearly effective from the standpoint of spreading portfolio volatility.

The estimates of the unconditional moments implied by the fitted conditional means, condi-
tional variances, and conditional covariances provide further evidence that the firm characteristics
capture the cross-sectional variation in the estimated market betas. The model-based estimate of
the unconditional covariance between the excess portfolio returns and the market factor increases
monotonically from 24.2 for portfolio 1 to 62.5 for portfolio 25. This pattern mimics that displayed
by the sample covariances with the market factor. The correspondence is somewhat looser for the
model-based estimates of unconditional expected excess returns. The average value of the fitted
conditional expected excess return undergoes a fairly sharp decline from portfolio 20 to portfolio 25,
while the average excess portfolio return shows no such pattern. On the whole, however, the model
has a good deal of success in replicating the cross-sectional patterns in both the sample covariances

with the factors and the average excess portfolio returns.

5.4. Fundamental factors in the APT framework

In view of the evidence from the portfolio sorts, one might wonder how the pricing performance
of the FF-MGARCH model compares to that of other models that feature prominently in the
asset pricing literature. For instance, the Fama and French (2015) five-factor model, which is an
unconditional specification of the form envisioned by the APT of Ross (1976), has recently attracted
a lot of attention. It is a natural benchmark in the present setting because the factors consist of
the excess value-weighted market return along with the excess returns on four characteristic-based
hedge portfolios. Tests of the model typically focus on the statistical significance of the estimated
intercepts obtained by regressing excess stock or portfolio returns on the five factors.

To benchmark the performance of the FF-MGARCH model against that of the five-factor model,
I regress excess portfolios returns on the fundamental factors, and compare the resulting intercepts

to those obtained by fitting analogous regressions for the Fama and French (2015) factors. Table
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10 presents the side-by-side comparison. I report results for both the 25 portfolios formed on fitted
conditional expected excess stock returns (Table 8) and the 25 portfolios formed on fitted conditional
covariances of excess stock returns with the market factor (Table 9). The table omits the estimated
slope coeflicients and associated t-statistics to conserve space. The estimated intercept for each
regression is shown first, followed by its t-statistic and the regression RZ.

Columns (1) to (6) present the results for the 25 portfolios formed on fitted conditional ex-
pected excess returns. The specifications that use the fundamental factors as regressors produce a
statistically-significant intercept for most of the portfolios. Thus there is ample evidence against
exact factor pricing in the APT framework. In addition, the estimated intercepts display an easily
discernible pattern across portfolios. Portfolios that have either relatively low or quite high average
excess returns produce positive estimated intercepts, while those that have intermediate average
excess returns produce negative estimated intercepts.

The results obtained using the Fama and French (2015) factors help to put these findings in
perspective. The estimated intercepts for these factors generally have smaller absolute t-statistics
that those for the fundamental factors. Indeed, the estimated intercepts are statistically insignificant
at the 10% level for all but eight of the portfolios. But a reduction in the statistical significance of
the estimated intercepts is not necessarily an indication of an improvement in pricing performance.
Note in particular that the R? value using the Fama and French (2015) factors is always lower than
that obtained with the fundamental factors. Consequently, the standard errors of the estimated
intercepts tend to be substantially larger than those obtained with the fundamental factors.

The picture that emerges if we assess goodness of fit using the mean absolute pricing error
(MAPE) is considerably more favorable to the FF-MGARCH model. The five-factor model produces
a MAPE of 29.3 basis points per month, which is larger than the 21.7 basis points per month obtained
with the fundamental factors. In addition, the average pricing error for the five-factor model is 16.6
basis points per month, while that for the fundamental factor specification is less than 0.1 basis
points per month. Thus the fundamental factors fare reasonably well in explaining the cross-section
of average excess stock returns in a relative sense.

A potential concern with such comparisons is that the portfolios are formed on the fitted condi-
tional expected excess returns produced by the FF-MGARCH model. Perhaps the five-factor model

is at an inherent disadvantage in this context because the sorting scheme is designed to maximize
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the dispersion in average excess returns based on the characteristic-based patterns in the data.
This should be less of a concern for the portfolios formed on the estimated conditional covariances
of excess returns with the market factor, because the market factor plays no role in explaining
cross-sectional differences in expected excess returns under the FF-MGARCH model.

Columns (7) to (12) of Table 10 present the results for this second set of portfolios. It is apparent
that the fundamental factors perform better in this case. First, all but three of the estimated
intercepts are statistically insignificant at the 10% level. Second, the MAPE is only 8.3 basis points
per month. These improvements may seem unremarkable given the reduced spread in the average
excess returns relative to the first set of portfolios. But consider the results for the five-factor model.
Nine of the estimated intercepts are statistical significant at the 10% level, and the MAPE is 17.8
basis points per month. So we again conclude that the fundamental factors fare reasonably well in

explaining the cross-section of average excess stock returns.

6. Conclusions

The three-factor model of Fama and French (1993) has been a mainstay of the empirical asset
pricing literature for over 20 years. Building on the idea of using the returns on characteristic-
based portfolios as risk factors, I develop a new type of MGARCH model that has a fundamental
factor structure for individual excess stock returns. Because the model assumes that the loadings on
the fundamental factors are observable firm characteristics, it can easily be estimated for systems
that contain thousands of individual stocks. Although it is first and foremost a risk model, exact
factor pricing can be incorporated and tested by adopting a suitable specification for the vector of
conditional expected excess stock returns.

My empirical investigation of the model’s performance reveals some evidence of misspecification.
But it would be very surprising if this were not the case. One can hardly expect a parsimoniously-
parameterized MGARCH model to unerringly capture the dynamics of excess returns for thousands
of individual stocks. The question is not whether the proposed model is misspecified, but whether it
provides a reasonably accurate description of the process that generates excess stock returns. The ev-
idence is quite encouraging from this perspective. Accordingly, the FF-MGARCH model represents
a promising addition to the small set of existing MGARCH models that are designed to capture time-

series changes in conditional variances, covariances, and correlations in high-dimensional settings.
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In view of its tractability and demonstrated performance, it is likely to find a host of applications

in empirical asset pricing, portfolio selection, risk management, and related areas.
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Table 1
Firm characteristics used as factor loadings

log ME The first characteristic is the logarithm of market equity (ME). The ME of a firm is its
stock price (CRSP item PRC) multiplied by the number of shares outstanding (CRSP item
SHROUT). It is measured in millions of dollars. This characteristic is updated monthly,
and is assumed to be known immediately (i.e., the loading on the size factor for month ¢+ 1
depends on the ME for month ¢).

log BE/ME The second characteristic is the logarithm of book equity (BE) to market equity. The
BE of a firm is shareholders equity (Compustat item SEQ), plus balance-sheet deferred
taxes and investment tax credit (Compustat item TXDITC), if available, minus the book
value of preferred stock, which is either its redemption value (Compustat item PSTKRV),
liquidation value (Compustat item PSTKL), or par value (Compustat item PSTK), in this
order of preference. This definition follows Fama and French (1992). The BE is updated
annually, and is assumed to be known four months after the fiscal year end (i.e., the loading
on the value factor for month ¢ + 1 depends on the BE for month ¢ — 4 or earlier). If the
shareholders equity is missing, I substitute common equity plus preferred stock (Compustat
item CEQ plus item PSTK), if available, or total assets minus total liabilities (Compustat
item AT minus item LT), if available, in this order of preference.

GP/BA The third characteristic is gross profits (GP) to beginning-of-year book assets (BA). The
GP of a firm is the difference between total revenue and cost of goods sold (Compustat item
REVT minus item COGS). The BA of a firm is its total assets (Compustat item AT). This
characteristic is updated annually, and is assumed to be known four months after the fiscal
year end (i.e., the loading on the profitability factor for month ¢ + 1 depends on the GP for
month ¢t — 4 or earlier).

log AG The fourth characteristic is the logarithm of the gross asset growth rate over the fiscal year
(AG). Assets are book assets (Compustat item AT). This characteristic is updated annually,
and is assumed to be known four months after the fiscal year end (i.e., the loading on the
investment factor for month ¢ 4+ 1 depends on the AG for month ¢ — 4 or earlier).

CA/BA The fifth characteristic is current accruals (CA) to beginning-of-year book assets. The CA
of a firm is the annual change in working capital. Working capital is current assets net
of cash (Compustat item ACT minus item CHE) minus current liabilities net of long-term
debt (Compustat item LCT minus item DLC). This characteristic is updated annually, and
is assumed to be known four months after the fiscal year end (i.e., the loading on the accruals
factor for month ¢ + 1 depends on the CA for month ¢ — 4 or earlier).

log SG The sixth characteristic is the logarithm of the gross growth rate of split-adjusted common
shares over the prior two fiscal years (SG). Split-adjusted common shares is common shares
outstanding times the factor to adjust shares for stock splits (Compustat item CSHO multi-
plied by item AJEX). This characteristic is updated annually, and is assumed to be known
four months after the fiscal year end (i.e., the loading on the offerings factor for month ¢+ 1
depends on the SG for month ¢ — 4 or earlier).

NS/ME The seventh characteristic is net sales (NS) to market equity (NS is Compustat item SALE).
The numerator is updated annually, and is assumed to be known four months after the fiscal
year end (i.e., the loading on the sales factor for month ¢ + 1 depends on the NS for month
t — 4 or earlier.

The table describes the CRSP and Compustat data items that define the firm characteristics. The standardized values
of the characteristics are used as factor loadings in the FF-MGARCH model. I refer to the returns on the associated
hedge portfolios as the size, value, profitability, investment, accruals, offerings, and sales factors, respectively.
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Table 2
Descriptive statistics for individual stock returns and firm characteristics

Panel A: All firms

Percentiles

Mean Vol Skew 1st 10th 25th 50th 75th 90th 99th
Return (%) 1.24 18.01 6.71 —-38.60 —15.28 —6.67 0.00 729 1736 57.32
log ME 4.67 2.19 0.30 0.33 1.93 3.06 4.52 6.17 7.63 10.12
log BE/ME —0.72 1.16  —0.90 —4.02 —2.28 —1.24 —-0.52 0.04 0.52 1.44
GP/BA 0.36 0.42 0.70 —0.74 0.02 0.11 0.32 0.56 0.85 1.67
log AG 0.12 0.38 1.91 -0.79 -0.19 -0.02 0.08 0.20 0.47 1.67
CA/BA —-0.11 0.28 —-3.37 —0.86 -0.45 —-0.15 —0.05 0.00 0.09 0.47
log SG 0.11 0.40 4.58 —0.35 —-0.16 —0.01 0.01 0.11 0.39 2.10
NS/ME 2.34 4.01 4.94 0.00 0.13 0.42 1.06 2.52 5.53  20.10
Panel B: No microcaps

Percentiles

Mean Vol Skew 1st 10th 25th 50th 75th 90th 99th
Return (%) 1.08 12.32 1.21 -31.66 —11.63 —4.97 0.77 6.75 13.93 36.61
log ME 6.62 1.56 0.41 3.68 4.67 5.47 6.53 7.60 871 10.72
log BE/ME —0.84 097 —-0.96 —3.88 -207 -1.32 -0.70 -0.19 0.22 0.92
GP/BA 0.38 0.37 1.15 —0.46 0.05 0.13 0.32 0.55 0.83 1.58
log AG 0.16 0.31 3.03 —0.60 —0.05 0.03 0.10 0.20 0.42 1.46
CA/BA —0.11 0.26 —4.18 —0.84 —-0.44 —-0.12 —-0.05 —0.01 0.05 0.32
log SG 0.09 0.34 5.66 —0.31 —0.09 —-0.01 0.01 0.10 0.29 1.74
NS/ME 1.48 2.13 6.31 0.00 0.18 0.41 0.87 1.74 3.25 9.98

The table reports the sample mean (Mean), sample volatility (Vol), sample skewness (Skew), and selected sample
percentiles for the dataset variables. The statistics in panel A are computed using all available firm-month observations
(the “full sample”). The statistics in panel B are computed using the subset of firm-month observations obtained by
excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms (the “no-microcaps sample”). The characteristics are the logarithm of
market equity in millions (log ME), the logarithm of the ratio of book equity to market equity (log BE/ME), the
ratio of gross profits to book assets (GP/BA), the logarithm of the growth in book assets over the year (log AG),
the ratio of current accruals to book assets (CA/BA), the logarithm of the growth in split-adjusted common shares
over two years (log SG), and the ratio of sales to market equity (NS/ME). All accounting variables are updated four
months after the end of the firm’s fiscal year, and all of the characteristics are winsorized monthly at the 1st and 99th
percentiles of their cross-sectional distribution. The sample period is July 1963 to December 2016.
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Table 5
Estimates of dynamic parameters for the FF-MGARCH model

All nonfinancial stocks No microcaps

Estimates Std. Errors Estimates Std. Errors
Factors Bh o, Bh ap, Bh o Bh ap,
Poian 0.83 0.09 0.050 0.037 0.83 0.09 0.054 0.037
Py 0.46 0.28 0.263 0.089 0.82 0.11 0.048 0.032
Ry 0.54 0.34 0.097 0.066 0.62 0.30 0.080 0.057
Rpro 0.58 0.20 0.158 0.058 0.77 0.13 0.131 0.050
Ry 0.77 0.19 0.047 0.038 0.77 0.19 0.049 0.037
R oo 0.88 0.09 0.032 0.022 0.88 0.10 0.034 0.025
hopr 0.77 0.20 0.068 0.054 0.79 0.15 0.078 0.051
Pgas 0.83 0.14 0.038 0.030 0.84 0.12 0.058 0.039
Spherical errors Ba Qg Ba Qg Ba aq Ba gy
d 0.55 0.42 0.110 0.100 0.57 0.41 0.044 0.043
Standardized &
rotated factors Be Q. Be Q. Be Q. Be Q.
Pysnsiar 0.91 0.09 0.031 0.025 0.93 0.05 0.049 0.029
Py, s 0.76 0.06 0.085 0.031 0.88 0.04 0.153 0.033
Piva 0.86 0.05 0.093 0.031 0.87 0.09 0.054 0.033
Ppro pro 0.98 0.02 0.019 0.008 0.85 0.04 0.080 0.021
Py vy 0.70 0.08 0.114 0.036 0.65 0.13 0.082 0.054
P, o aco 0.91 0.04 0.052 0.021 0.92 0.05 0.047 0.019
Pore orr 0.85 0.04 0.107 0.025 0.88 0.04 0.051 0.016
Py osar 0.50 0.07 0.154 0.042 0.97 0.03 0.050 0.014

The table reports estimates of the dynamic parameters for the FF-MGARCH model. I assume that each element of
h:, the vector of conditional variances for the market, size, value, profitability, investment, accruals, offerings, and
sales factors, follows a GARCH(1,1) process, and incorporate exact factor pricing via GARCH-in-mean effects. The
coefficients on the lagged conditional variances are reported under 84 and the coefficients on the lagged squared factor
innovations are reported under a4. I assume that the conditional covariance matrix of the errors, d¢I, is described by a
GARCH process in which d; takes the form implied by specifying an ARMA(1,1) model for the cross-sectional average
of the squared errors. The coefficient on the lagged value of d; is reported under 5, and the coefficient on the lagged
cross-sectional average of the squared errors is reported under aq. I assume that the conditional correlation matrix of
the factors, Ry, follows a multivariate rotated conditional correlation (RCC) process. The dynamics of R; are specified
in terms of a recurrence relation for an auxiliary matrix P that evolves as a function of the vector of standardized and
rotated factors, w;. The recurrence relation for diagonal elements of P; takes the same general form as that for the
condition GARCH(1,1) variances. The coefficients on the lagged diagonal elements of P; are reported under 8. and the
coefficients on the lagged squared values of the standardized and rotated factors are reported under a.. The dynamics
of P; are fully determined by these parameters. I estimate the FF-MGARCH model via an iterative, multi-step,
likelihood-based procedure that assumes that individual excess stock returns follow a conditional multivariate normal
distribution. First, I obtain preliminary estimates of the dynamic parameters by treating the vector of conditional
factor means as constant (no GARCH-in-mean effects). Second, I use the fitted conditional variances and fitted
conditional correlations to obtain a preliminary estimate of the price-of-risk vector that characterizes the GARCH-in-
mean effects. Third, I use the preliminary estimate of the price-of-risk vector to update the estimates of the dynamic
parameters. Fourth, I use the updated estimates of the dynamic parameters to update the estimate of the price-of-risk
vector. The iterations continue in this fashion until convergence. I report two sets of parameter estimates: one for the
full set of NYSE, AMEX, and NASDAQ firms, and another obtained by excluding firms whose market equity for the
month is less than the 20th percentile of the monthly cross-sectional distribution of market equity for NYSE firms.
I use the quasi maximum likelihood estimator of the asymptotic covariance matrix to compute standard errors. The
sample period is July 1963 to December 2016.

44



Table 6
Estimates of price-of-risk parameters for the FF-MGARCH model

Panel A: All firms
Aian A A A A A A A

008  —0.17 011 027  —028  —031  —0.17 0.11
(8.07) (=7.25)  (3.67) (545) (—7.08) (—4.15) (—2.96)  (2.93)

S17Z VAL PRO INV. ACC OFF SAL

Subperiod results

Jul 63 to Apr 81 009  —0.27 007 016  —023  -043  —055  —0.13
(5.56) (—6.51)  (1.19) (1.88) (—2.55) (—3.62) (—4.32) (—1.60)
May 81 to Feb 99 0.09  —0.15 020 052  —071  —052  —0.05 0.27
(5.05) (—3.93)  (347) (6.80) (—8.68) (—3.56) (—0.37)  (3.75)
Mar 99 to Dec 16 007  —0.11 009 016  —0.19  —0.09  —0.09 0.10

(3.87)  (-2.93)  (233) (1.97) (-4.17) (=0.76) (-1.18)  (1.91)

Panel B: No microcaps

Ain A A A A A A A

007 —018  —0.03 012  -027  —021  —030  —0.03
(5.91) (—4.82) (=1.07) (2.76) (—6.21) (—3.41) (-4.28) (—0.52)

S1Z VAL PRO 1V ACC OFF SAL

Subperiod results

Jul ‘63 to Apr ‘81 005  —0.29 003 006  —0.17  —0.09  —0.64  —0.16
(2.46) (—4.45)  (0.58) (0.82) (—1.88) (=1.03) (=5.01) (—1.77)
May 81 to Feb 99 010  —008  —0.10 027  -045  —074  —0.32 0.04
(4.90) (=1.20) (—1.88) (3.73) (=5.13) (=5.83) (—2.33)  (0.38)
Mar 99 to Dec 16 006  —0.17 0.00  0.02 —023  -0.06  —0.14  —0.03

(299)  (-2.95)  (0.05) (0.26) (—4.05) (—0.51) (—1.39) (—0.41)

The table reports estimates of the price-of-risk vector, A, that appears in the conditional mean specification for the
FF-MGARCH model. The model assumes that each element of the vector of conditional variances for the market, size,
value, profitability, investment, accruals, offerings, and sales factors follows a GARCH(1,1) process. It incorporates
exact factor pricing via GARCH-in-mean effects. The price of risk for a factor is the incremental contribution to
conditional expected excess stock returns per unit of exposure to covariance risk with the factor. I estimate the FF-
MGARCH model via an iterative, multi-step, likelihood-based procedure that assumes that individual excess stock
returns follow a conditional multivariate normal distribution. First, I obtain preliminary estimates of the dynamic
parameters by treating the vector of conditional factor means as constant (no GARCH-in-mean effects). Second, I use
the fitted conditional variances and fitted conditional correlations to obtain a preliminary estimate of the price-of-risk
vector that characterizes the GARCH-in-mean effects. Third, I use the preliminary estimate of the price-of-risk vector
to update the estimates of the dynamic parameters. Fourth, I use the updated estimates of the dynamic parameters
to update the estimate of the price-of-risk vector. The iterations continue in this fashion until convergence. I report
two sets of parameter estimates: one for the full set of NYSE, AMEX, and NASDAQ firms, and another obtained
by excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms. I use the quasi maximum likelihood estimator of the asymptotic
covariance matrix to compute standard errors. The sample period is July 1963 to December 2016.
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Table 7
Cross-sectional forecasting performance of estimated expected stock returns

Panel A: All firms &
1 N
% Z Tnt+j—k = P1 + PmMp t—1 + €En,t
j=1
Monthly returns (k = 1) Average of monthly returns (k = 1)

=1 l=6 =12 [=24 [1=36 =12 =24 [=36 [=60 [=120
p1 —0.29 —0.14 0.02 0.27 0.32 —0.12 0.04 0.15 0.31 0.58
~ (-113) (=053) (0.10) (1.10) (1.28)  (—0.49) (0.18) (0.62) (1.30)  (2.46)
Pm 0.98 0.88 0.84 0.66 0.57 0.93 0.89 0.83 0.69 0.49

(9.20)  (7.50) (7.70) (6.25) (5.00) (8.99) (8.71) (8.28) (7.29)  (5.36)
RA(%) 1.0 0.9 1.0 0.8 0.7 3.1 4.4 5.4 6.5 7.0
N 3435. 3293.  3134.  2846.  2595. 3134. 2846. 2595.  2178. 1465.
Panel B: No microcaps

Monthly returns (k = 1) Average of monthly returns (k =1)

=1 =6 =12 [=24 1=36 =12 [1=24 [=36 [=60 (=120
p1 0.09 0.23 0.14 0.23 0.48 0.17 0.22 0.28 0.32 0.44
) (0.38)  (1.03) (0.67) (L.04) (2.11) (0.78) (1.04) (1.33) (157)  (2.16)
Pm 0.79 0.68 0.67 0.65 0.45 0.88 0.82 0.76 0.70 0.49

(4.91) (4.23) (4.05) (3.97) (2.76) (5.87) (5.66) (5.41) (5.35) (4.08)
R?(%) 1.5 1.4 1.4 1.2 1.0 2.9 3.7 3.9 4.5 5.4
N 1408. 1283. 1194. 1066. 971. 1194. 1066. 971. 833. 612.

The table reports time-series averages of selected statistics for monthly cross-sectional regressions. The dependent
variable for the regressions is either the excess percentage stock return for month ¢, or the average excess percentage
stock return for months t — [ + 1 to t. The explanatory variables are a constant and the fitted conditional expected
excess percentage stock return for month ¢ —1I. I fit the regressions as follows. First, I use the FF-MGARCH parameter
estimates to compute the fitted conditional expected excess return for each stock that has data for month ¢ — [, where
1 €{1,6,12,34,36,60,120}. Second, I identify the subset of stocks that appear in the dataset for every month between
t — [ and ¢t. Third, I use the data for this subset of stocks to fit a cross-section regression for month ¢ via OLS. I fit
the regression for every month from July 1963 to December 2016 for which it is feasible (the number of months with
available data depends on the values of k and [), and report the average values of the estimated coefficients, R-squared
statistic, and number of cross-sectional observations. Autocorrelation-robust versions of Fama and MacBeth (1973)
t-statistics are shown below the average estimated coefficients in parentheses (the monthly estimates of the coefficients
are serially correlated by construction for & > 1). The estimates reported in panel A are for the full set of NYSE,
AMEX, and NASDAQ firms. The estimates reported in panel B are for the subset of firm-month observations obtained
by excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms.

46



"9T0Z IquIadd(( 0} 96T Anr st porrod ojdures oy ], "SHUSUIOWOD PULR SPUSUWIOU [RUOT}IPUOIUN ST JO SOIRUIT)SO
paseq-jepow Surpuodser10d a7} }10dal sSUWIN[0O U9Y) [RUY 9Y, ], ‘SI0)OR] SO[eS PUR ‘SSULIOPO ‘S[RILIDOR ‘JUsun)saAul ‘Aiqeigord ‘enfea ‘ozis ‘jos[Iewt oY) Y)IM S9OURLIRAOD
ordures 110y} Aq pamof[oj ‘suinjal orjojirod sseoxa o1y jo Ajqrpeoa ojdures pue ueowr o[dwres oy} j10dol d[qe) 9Y) JO SUWN[OD U} [RIIUI Y], 'SuINjdl orjojyrod
$S00X0 Uure}qo 03 sdnoid Gz oY) Jo Yoro Ul POUTRIUOD SID09S 1} 0} sHYSTom [enbo udisse ] ‘uow UoAI3 ® I10J sdnoid Gz oYy oAey [ 90U() ‘[IIOJ OS pur ‘SUILIOS IoJe
somueoIed 118 pue )y oY) Uoom)ioq dIe Jer) SY00IS 9} surejuod dnois puodes o) ‘SurlIos Ioe o[luedtod 11 oY) MO[e( oIe JRI[} SHD0IS oY) surejuod dnois isiy
oy, 'sdnoid ¢z wio} 09 syurodyeaiq o[jusorod UINSOI oY) oSN PUR ‘SUINJOI SS9IXO [RUOIYIPUOD PoI)Y IS8T} JO I9PIO SUIPUSISE Ul S¥001s oY) 110s | ‘polrad sjdures o1p)
Ul HUOUW [oed 10 "[opowl HOYVOIN-AA oY) 10 sojpeurryse 1ojomrered [euy o) Suisn paurioj aIe jet) sorjojyrod ¢g jo 10s ® Jo serprodoid o1 sezlrewrmuns a[qes) o1 ],

119 ¢L'¢ 920 1€0— 80'T— 6V'0— €00T— 98FF €68 ¥9'C 969 68°¢ 0c0 @90 ¥8T— ¥6'T— 66'TI— IT'6F 896 66C GC
€L¢ 99¢ G¥0 920 SOT— OFV'I— 906— 9¢ch LS'L V0T OV €T'e G€0 190 69T— 60C— 066— O6VEY @8L 60C V¢
10°¢ 69°C 090 090 00°T— GLTI— L¥V8— CETIV 61L IS8T €C°¢ ¢6C 690 OV0 9€T— 8¢¢— 86'8— IT'TF 9L 69T €T
09°C €9C €90 990 96°0— 86'T— 66L— 0L0V L69 99T 66'¢ 99¢ 190 ¥90 LTT— ¥»cc— ¥I'8— 910V 969 LET €T
Ge€'¢ 6Vec ¥90 9.0 ¢60— ¥IC— G9L— GCOv 189 P91 9L°¢ T8t 6V0 ¥90 LT'T— 61¢— 9¥Li— 0166 699 ¢¢'T 1¢
9T'c ¥¥'c 690 980 680— 9¢¢— SGI'L— G86€E 699 ¥l Gy'c 1€¢C 990 99°0 L6°0— 0€C— GL9— L¥LlE  8E9 90T 0T
00¢ 0V'c 990 €60 G80— L&C— 9L9— 6V6E 839 9€'T 8€'C 8C'C 890 690 160— ¢&c— ¢¥9— LE&LE Q&9 VOT 61
98T 9€¢ 990 00T 80— L¥e— 0V9— 9166 679 8CT €T 9CC 990 L9°0 L60— LTG— 90°9— LE€LE  CE9 VOT 8I
GLT ¢€C 990 L0T 8L0— 99C— V09— G88¢ CV9 TICT 8T'C ¥I'c 190 ¢80 €L0— TT¢— 89¢— 6€9¢ ¢CI'9 680 LI
99T 0€¢ 990 ¥I'T  9L0— ¥#9¢— €L9— 698€ 9€9 PI'T 66'T ¥I'¢c €90 6.0 ¥L0— Tgc— 8I'G— L€9¢ 119 L80 91
99T 8¢'¢ 990 T¢'T ¢L0— €L¢— G¥9— ©¢v8¢ &9 80T 16'T €¢°¢ 090 ¢80 98°0— 99¢— 6£9— ¥0LE 619 160 G
VT ¥yeec €90 8¢'T  690— 18¢— II'§— PI8 929 10T L8T ¢I'c S9°0 L80 ¥L0— 09C¢— 68%— 91'9€ G609 8L0 VI
8€'T T¢c 990 G€T G990— 88C— 9LF— ¥8LE TC9 960 0LT TT'¢ €90 660 990— L¥c— 89F— GE€9¢ 809 8L0 €I
0€'T 0cCc 990 €T €90~ 66C— C9P— GLLE 0C9 680 99'T 6TC #9°0 0T LL0— 08C— 99¥%— €¥9¢ L09 CLO ¢TI
I¢’T LT'C $9°0 19T 690~ 80'€— 6IF— 092 LT'9 280 19T 02°¢ ¢S90 OT'T 89°0— 08¢— S€¥— €I9¢ ¥09 690 TIIT
VI'T 8T'c ¥9'0 19T 690— 0c€— 96'€— TPLE LT9 GL0 0V'T 60C¢ 990 L0T €90— 6L¢— 68°¢€— GI'sE  06'¢ 090 O
90'T LT'C »9°0 TLT 990— T€€— 89¢— T€LE 89 890 PET 9T'c L9°0 LET 890— ¢cc'€— LOP— 8LGE 109 990 6
860 LT'c #9°0 ¥8'T ¥90— 9¥V€— T¥Pe€— LTLE 029 190 1€'T 0¢'¢ ¢590 IVl ¢eL0— 8¢e€— ¥PIP— €996 66'¢ €50 8
06'0 6TC ¥9°0 00C 90— €9€¢— LT'€— TI€LE GC9 TS0 18T ¥¢'¢ LV0o 19T 890— &Fe— L8€— ¢9€e¢ 009 870 L
¢80 ¥¢'c ¥90 61'C €90— 98°€— 96C— 6VLE  TEI €70 860 ¥¥'¢ 890 OLT 180~ 96'€— ¥ec¥F— 619¢ 189 60 9
€L°0 1€¢C 990 8¥'¢ V90— CI'P— I8¢~ €8.LE  LV9 T€0 60T 19C ¥9°0 ¥8'T 86°0— G6'€— S¥y— 199¢ 929 G€0 ¢
€90 €¥V'Cc 990 98¢ 690— 9FP— L9C— LE€BE 699 9T°0 €6'0 89C 990 66T L0T— OVV— EVP— €L9¢ ¥P9 8CO0 ¥
¢g'0 99¢ 890 T¥V'e€ 690— 66F— ¥LC— €966 80L V00— 880 ¢6C LVO LE&T 8T'I— 0LV— 697— 8LLE €L9 TIT0 €
07’0 66C €90 8C¥ 880~ 89¢— T0€— T¢Iy €LL T&0— FJOT €2¢ 670 €9¢ 9¢T— LT'G— T8¢— 9L0FV 7¥E€L GT0 ¢
6c’0 ¥L€ G9L0 €19  LVI— C69— 90F— GE€9y 616 160— 160 ¢L€ €90 L0€ 98T— 0€9— LT9— T0€F 608 G€0— T
\N‘\m‘u\. ,«,«Q.\. OQ«\_\. \;:.\. O@Qbﬁ ‘j\\,u\. NNm‘m\. QA\SN\ MO\/ gﬁwz \Nv\m.\. ,«,«0.\. OU«\.\. \,Zm\. Ou&&m\. QQ\,_\. N?@.\ EQE_\. ~O> gﬁwz mz
SI0}0%] [BIUSWERPUNJ [}IM SOOUBLIBAOY) SI0}0%} [BIUSTUEPULJ [IIM SOOUBLIBAOY)

Sjuamiowr [euOoIjIpuooun jo s9jewir}se HOYVOIN-AA SHuoWIOW [RUOIIIPUOOUN JO S9jeUII)}So GMQQHQW

SUINJ3I 3}209s pajdadxa [eUOI}IPUOD pajewi)sd uo SuIlaos Aq paurioj sorfojjiod gz Uo suanjad ss9dxa Jo sorpredoad
8 9[qeL

47



'9T0g IoquIada( 0} €961 A st porrod ojdures oy ], ‘SHPUOUWIOWOD PUR SPUSUIOUW [RUOIIIPUOIUN IST) JO S9YRUI)SO Paseq-[opout Surpuodsariod oYy j10dox
SUWN[0d Ud) [RUY 9Y], ‘SI0JOR] So[es pur ‘SSULIDJJO ‘S[RNINOR ‘JuauiseAul ‘Ariqeigolrd ‘onfea ‘ozis ‘)ayIewll oY) [[}IM S9OURLIRAOD o[dures IBY) A POMO[[O] ‘SwInjal
orjoj310d $s00X0 o1} Jo Aj[13R[0A o[dures pue uweow ojdures oY) 310dor o[qe) 97} JO SUWN]OD WY [RIIIUI SY ], ‘SUINJOI offojrIod sseoxoe urelqo og sdnoid Gz o3 Jo yoes
UI POUTRIUOD SYD0IS oY) 0} SJYSTom [enbs udisse T ‘Fuow UsAld ' 10J sdnoid gg oy} oAy [ 90U() "YIIOJ OS pPUR ‘SUINIOS Iojje soruedied [)g PurR [[If oY) Usomioq
oIe Jel) SYO0Is oY) surejuod dnoid puodes oy} ‘SuIIos Iejye o[iuedIad Yij oY) MO[o(q aIr Jer) S}D03s o) surejuod dnoid 1s1g oy J, 'sdnoid ¢g wioy o} sjurodyesiq
a[yuedIad SUINSaI 97} oSN PUR ‘1070R] JONIRU 9} YIIM SUINJII SSOIXS I191[} JO 9OURLIBAOD [RUOI)IPUOD Pa})Ij 91} JO Ioplo SUIpuadse Ul syo09s 110s T ‘porrad ardures oY)
Ul HUOUW [oed 10 "[opow HOYVOIN-AA oY) I0] sojeunyse Iojotrered [euy o) Suisn paurioj aIe jet) sorjojrrod ¢g jo 10s ' Jo serprodold oty sezlrewrmuns o[qes) o],

G6'¢ G€'G 980 L9V €v'e— 9¢’L— 96°¢I— 0§¢9 GCTIT 960 GLy 0€6G €L0 7v0¢ ST€— 8¢9— €VVI— LELS €VOI GCT G¢
¥e'¢c 0€¥ ¢80 69€ 06'T— 09— ¥80I— 6¢7S 9€6 L90 0c'€ G497 ¢90 60¢C Lye— 9V'¢— 6L11— ¢¥ecd 66 €60 V¢
9¢'¢ I8¢ 6.0 88¢ 99T— €F'¢— T00T— G408 948 €80 LL¢ €0F 0L0 ¢9T SGT'¢— P¢'4— GROTI— 966V L9]8 €80 €¢
IT°¢ 6V'€ LL'O0 6€C 6V'1— 88%— €V6— 808F G088 760 9¥7'c 9L°¢ 890 G9T 88'T— GI'G— 0L0I— TG.LFy 618 680 CC
v0'c 9¢°¢ 7.0 v0C LET— GVP— 868— L9y 0L, €01 6G°¢ 99°¢ 0L°0 79T 88'T— TILP— LTOI— 899y 008 V60 I¢
86'T 80'¢ ¢L0 I8T G T— II'P— ¢98— G8¥r ¥¥L 801 1€¢ ¢€¢ LLO0 8V'T §9T1— €EV— €€6— 8IFF LS. 980 0¢
¢6'T ¥6'¢c 0L°0 89T LT'T— L8E— 608— 99€F 1¢L OTT L0¢ 60°€ LLO CV'T TI91— €€7— 998— T19€y L&L V80 61
98T I8¢ 190 8G'T 8O'T— ¥9€— 99L.— ¢9¢y <c¢0L TIT'1 0c¢c ¥0°€ 690 8€T 6T'T— 88E€E— VI'8— 68¢h LT'L G60 8I
¢81T 0L¢ 990 8V'T T0T— Sve€— 9¢°L— 691y 989 ¢<I'l ve'e v6'c 990 9¢'T 8E€T— ¥LE€— T16L— G8¢h 9T°'L 160 LI
LLT 09'C €90 P91 ¥6'0— GC€— ¢89— €80V 0L9 IT'T 66'T 99¢ 190 G€T L60— ¥ve€— 989— T0'IT¥ €89 G660 91
TL'T 09°¢ 190 6€T L80— TIIT'€— ¢vr9— 1007y 999 OTT LT'C G8¢ ¢90 8CT ¢0'T— ¥¢€— ¢V9— €96 699 €80 QI
L9°T T¥'¢ 840 LE'T 080— €6'C— 66G— ¥¢6E €79 601 €8T ¢V'¢c 840 GC'T L¥O0— TII'€— L¥G— <CI6E 679 P80 VI
19T ¢€¢ 990 PE€T €L0— 1I8C— 8GG— 098E T1€9 LOT 10¢ 0vV'¢ 690 6¢'T LLO0— €8¢C— L9G— ©C68E 99 880 €I
G¢'T €¢'¢ v90 T€ET L90— 69¢— ST'¢— 7¥LLE 009 GO'T €L°T 9¢°¢ 690 T0T 0L0— 99¢— 66F— 6L 1¢9 680 <CI
0¢'T #I'c ¢S50 0€T 190— 99¢— cL¥y— 002LE 609 €01 89'T €¢'¢ L9°0 860 990— ¥9¢— GL¥v— 099€ <¢I'9 060 TI
GP'T G0¢ 090 8T ¥9°0— SV'¢— 8¢V— Lg9€ 886G 001 GL'T 10¢ 870 L6°0 L90— ¥¢'¢c— 66'€— 009 T16'¢ L80 0T
07'T 96T L¥0 LT 80— €€¢— 08¢— €96 6849 L60 ¥9'T 96'T TG0 L6°0 LV0— Gcc— ¥9¢— 8G¥E €8G9 ¥80 6
GE'T L8'T G0 9¢'T 1¥V0— 6IC— 66€— TLVE 08G 7¥6°0 VT 78T 97’0 660 €v'0— GI'¢c— ST'€— TFEE 8YG €8O 8
8¢'T LLT T¥0 €CT €€0— 80¢— 9L¢— 06€ TLG 160 LG°T 0L'T 0F0 960 T€0— T6T— L9¢— T6'T€ G¥'G 9.0 L
¢c'lT 99T 8€'0 I¢T S¢0— €6'T— LI'¢c— 66CE €99 L8O 19T 69T 9¢€0 ¥80 ¥€0— ¥PL'T— T1€c¢— €60€ €€9 8LO 9
ET'T ¥¢'T ¥€0 0CT 9T°0— 6L1— LVI— 00¢E LSS ¢80 6V'T ¥P'T 920 ¢80 8T0— ¥v'i— 89T— 6£6c GI'S 8LO g
G0'T OP'T 0€0 LTT 00— €9T— ¢L0— 7¥80€ T14¢ LLO ¢S'T 8€T 920 LLO ¢¢'0— LC'T— ¢¢'T— 108 667 1.0 ¥
G660 ¢¢'T 9¢0 91T 800 <&VI— 9¢0 gr'6c 67’9 1.0 ¢€'T 02T 8T'0 690 LT'0— GO'T— 890— 996 0OL¥ 990 €
€8°0 00T 6T0 TIT'T 920 VI'T— 671 ¢9'Lec €99 €90 L&'T IT'T €10 990 #1°0— L90— GT0— 99€Cc 087 L90 ¢
990 69°0 600 960 990 L9°0— 6V'€E ¢ecve  clL'S ¥90 ¥O'T 60 80°0 190 9T°0— 690— €€0 €1'0c  SI'v  8S0 1
\:\m.\. .&,&0% DQQ.\, \;:.\. OQQDN. \Nﬁ\,.\v N~.w.\. QTEN.\. ﬁO\/ gﬁmz vam.\. EQ.O.\. OD_\UN. \,Zw\. Dm&.\. m:\\w.\. NNm.\, M&A\E.\. MO\/ Q@QE mz
SI030%] [RJUSUIRPUN] [}IM SOOURLIBAO)) SI030%] [RJUSTIRPUI] [}IM SOOURLIBAO))
SJUOWIOW [RUOTIIPUOD P33y Aq porjduul sojewr)sy suinjal orjojiiod jo sjuewowr ojdweg

1090®] 193 Jew 9Y) }IM SOUBLIBAOD [RUOI}IPUOD PIajeWI)Sd U0 pauwrioj sorjojyrod gz jo sorjasadord
6 °1q&L

48



Pricing performance of fundamental factors in the unconditional APT framework

Table 10

Eight fundamental factors

Five Fama-French factors (2 x 3)

Table 8 portfolios

Table 9 portfolios

Table 8 portfolios

Table 9 portfolios

Ne  Int t-stat R%(%) Int  t-stat R2(%) Int  t-stat R2(%) Int  t-stat R?(%)
1 030 223 892 023 250 83.0 —049 -3.27 84.0 —0.01 —-0.19  89.1
2 037 322 909 015 209 91.2 -0.13 —-1.08 872 —0.01 —0.18 90.4
3 030 317 9238 004 0.64 929 -0.18 —1.72 895 —0.07 —1.10 89.
4 030 350 930 0.06 092 944 —0.10 —1.08 90.5 —0.04 —0.66  91.1
5 017 255 951 0.04 080 949 —0.09 —1.18 92,5 0.03 044 910
6 017 239 948 0.04 061 950 —0.09 —1.29  92.9 0.01 0.08 919
7 012 189 956 002 041 950 -0.08 —1.15 931 —0.01 —0.12  92.1
8 0.02 037 952 0.05 082 949 -0.10 —-1.35 923 0.06 0.88  92.2
9 003 052 959 0.02 030 953 —0.09 —1.38 93.8 0.07 093 923
10 —0.08 —1.34 957 —0.00 —0.04 940 —0.14 —1.97  93.2 0.09 1.07  90.9
11 —0.08 —1.27 954 —0.00 —0.03 950 —0.06 —0.65 91.3 0.15 1.79 915
12 —0.12 —-2.14 956 —0.08 —1.30 955 —0.03 —0.44 919 0.08 098 917
13 —0.18 —2.78 950 —0.02 —0.34 956 —0.01 —0.14  90.6 0.13 1.22 899
14 —0.20 —2.93 946 —0.09 —1.49  95.7 0.00 0.00  90.3 0.12 1.29  89.9
15 —0.12 —1.64 946 —0.09 —1.24  94.7 011 1.14 884 0.11 1.09 879
16 —0.25 —3.88 942 —0.04 —0.63  95.0 0.02 019 87.7 0.24 2.07 879
17 —0.30 —4.69 946 —0.10 —1.22  95.2 0.05 0.43 86. 024 1.82 854
18 —0.24 -3.23 940 -0.05 —0.79  95.6 017 152 851 0.30 219 844
19 —0.24 —-3.38 940 —0.10 —1.31 944 020 1.55 83. 021 148  83.7
20 —0.32 —4.41 939 —0.12 —1.37 943 019 1.57 823 0.30 2.10 825
21 —0.27 —-3.62 943 —0.06 —0.53  93.8 0.35 238 794 0.38 225 789
22 —0.21 —256 938 —0.11 —1.15  93.9 0.50 297  76.1 0.35  1.99 79.
23 —0.10 —1.01  93.0 —0.17 —147  92.0 0.77 444  73.0 028 156  78.2
24 0.17 195 939 0.09 066 91.3 1.25 6.03  67.2 045 211 752
25  0.77  6.89  93.0 0.31 246  93.0 2.12  6.65 528 0.70 252  66.4

The table reports the results of regression-based pricing tests for the portfolios examined in Tables 8 and 9. The
footnotes to these tables describe the sorting schemes used to form the portfolios.
time-series regressions to the excess portfolio returns. The regressors are either a constant and the eight fundamental
factors that appear in the FE-MGARCH model, or a constant and the five Fama and French (2015) factors. I fit each
regression by OLS, and report the estimated intercept (Int), its t-statistic (t-stat), and the regression R-squared (R?).

I conduct the tests by fitting

The t-statistics are robust to conditional heteroskedasticity. The sample period is July 1963 to December 2016.
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Figure 3. Average returns vs average fitted conditional expected returns for portfolios formed on fitted
conditional expected returns. The figure compares average excess returns to model-based estimates of
unconditional expected excess returns (those implied by the fitted conditional expected excess returns)
for several sets of equally-weighted portfolios. To construct the N € (25, 50, 100, 200) portfolios used
for a given plot, | sort stocks on their fitted conditional expected excess returns for each month in the
sample period. Stocks that fall below the 1/N quantile for a given month are assigned to portfolio 1,
those that fall between the 1/N and 2/N quantiles are assigned to portfolio 2, and so on. The fitted
conditional expected excess returns are based on the final parameter estimates produced by the
iterative estimation procedure for the FF-MGARCH model using all NYSE, AMEX, and NASDAQ firms.
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