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Abstract

I analyze the cross-section of covariance risk for individual stocks using a new type of multivariate

volatility model in which firm characteristics serve as time-varying loadings on fundamental factors.

The evidence points to strong linkages between firm characteristics and covariance risk, and also

reveals that cross-sectional differences in covariance risk explain much of the cross-sectional variation

in expected excess stock returns. I find, for example, that the fundamental factors perform at least

as well as the Fama-French factors in regression-based pricing tests. In view of its tractability and

performance, the proposed model should find use in a variety of applications.
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1. Introduction

Although researchers have known for decades that firm characteristics help to explain the cross-

section of average stock returns, many still question whether this finding can be reconciled with

the predictions of asset pricing theory. Among those who advance rational pricing stories, it is

commonly argued that characteristics proxy for exposures to systematic risk. I assess the abil-

ity of firm characteristics to capture systematic risk using a new type of multivariate generalized

autoregressive conditional heterskedasticity (MGARCH) model that assumes a fundamental factor

structure for individual stock returns. Because the features of the model make it feasible to esti-

mate the conditional covariance matrix of returns for systems containing thousands of individual

stocks, the analysis delivers a comprehensive picture of the relation between firm characteristics, the

cross-section of covariance risk, and the cross-section of average stock returns.

My approach to model development builds on ideas pioneered by Rosenberg (1974) and Fama

and French (1993). Following Rosenberg (1974), I assume that the innovations to individual stock

returns have a common factor structure in which firm characteristics function as observable factor

loadings. To eliminate any issues with stationarity and aid in interpretation, I assume that each of

the time-varying characteristics is standardized to have a cross-sectional mean of zero and a cross-

sectional variance of one in every time period. A major departure from typical conditional factor

specifications is that the innovations to individual stock returns are linked to the factor innovations

and idiosyncratic errors via a full-rank matrix transformation that entails no loss of information.

As a result, the factor innovations are indentified with characteristic-based hedge portfolios that

have known time-varying weights. Fama and French (1993) introduced the use characteristic-based

portfolio returns as priced factors. In their case, however, the portfolio weights are prespecified

rather than emerging naturally from the underlying assumptions of the model.

Under the proposed factor structure, the conditional covariances between individual stock re-

turns can be expressed in terms of the conditional covariances between the factors. I assume that

the conditional factor covariance matrix displays MGARCH dynamics, and refer to the resulting

specification for individual stock returns as a fundamental-factor MGARCH (FF-MGARCH) model.

The FF-MGARCH model has some structural elements in common with the generalized orthogonal

GARCH model of Lanne and Saikkonen (2007). However, it is far more computationally tractable
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because the factor loadings are observable. This makes likelihood-based inference feasible for systems

that contain thousands of individual stocks. Importantly, missing values and time-series changes in

the number of traded stocks pose no difficulties whatsoever. To incorporate and test the predic-

tions of asset pricing theory, I specify the vector of conditional means such that the model implies

exact factor pricing. This is accomplished by assuming that conditional expected excess returns are

linearly related to the conditional covariances between the excess returns and fundamental factors.

The price of covariance risk for each factor is assumed to be constant.

The choice of characteristics determines the nature of the fundamental factors. I assume that the

first characteristic has a value of one for every firm, and show that the associated fundamental factor

is simply the excess return on the equally-weighted market portfolio. The next four characteristics

might be described as the “usual suspects” from the empirical asset pricing literature: the logarithm

of market equity (log ME), the logarithm of the book-to-market equity ratio (log BE/ME), gross

profitability scaled by book assets (GP/BA), and the logarithm of the gross growth rate of book

assets (log AG). I also include two variables that have been widely studied in the anomalies literature:

current accruals scaled by book assets (CA/BA), and the logarithm of the gross growth rate of split-

adjusted shares outstanding (log SG). Finally, I consider net sales scaled by market equity (NS/ME).

This characteristic has received little attention outside of a recent study by Lewellen (2015), but

it appears to have incremental explanatory power for cross-section of average returns, particularly

for small-cap stocks. I refer to the returns on the associated hedge portfolios as the size, value,

profitability, investment, accruals, offerings, and sales factors, respectively.

I fit the FF-MGARCH model to monthly individual excess stock returns for NYSE, NASDAQ,

and AMEX firms. Because I include every stock that has the required data items each month,

the cross-sectional dimension of the dataset changes through time. It contains around 3500 stocks

on average for my sample period (July 1962 to December 2016). I also investigate the impact of

excluding microcap stocks on my findings. This is a common robustness check in the empirical

literature on characteristic-based asset pricing models. The parameter estimates are obtained by

maximizing the log likelihood function for conditionally Gaussian observations. However, I employ

a multi-step estimation procedure of the type often used in MGARCH studies. This significantly

reduces the computational demands of fitting the model.

As anticipated, the evidence with respect to second moment dynamics is consistent with that
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from the volatility modeling literature. The parameter estimates point to strong persistence in the

conditional factor variances, conditional factor correlations, and conditional error variances. This

finding, in conjunction with the strict factor structure that underpins the model, suggests that the

conditional second moments of individual excess stock returns are subject to long swings away from

their long-run average values. The parameter estimates for the no-microcaps sample display the

same general patterns. Although the estimated persistence measures are somewhat higher after

dropping microcap stocks, it is apparent that the second moment dynamics of the factors extracted

from the no-microcaps sample are broadly similar to those extracted from the full sample.

Examining the distributional properties of the estimated conditional covariances of excess stock

returns with the fundamental factors yields some initial insights on the cross-sectional implications

of the model. Notably, the estimated conditional covariances of excess stock returns with the market

factor vary widely across firms, suggesting that the cross-sectional variation in conditional market

betas is substantial. This is an interesting finding because the loading on the market factor is the

same for every firm. Thus it follows that the cross-sectional variation in estimated market betas

arises from the cross-sectional variation in the characteristics in conjunction with the estimated

conditional correlations between the market factor and the other factors in the model. In other

words, the cross-sectional variation in the estimated market betas is driven entirely by characteristic-

based patterns in the data. Stocks with high estimated betas have excess returns that display low

(often negative) conditional covariances with the size, value, and profitability factors, and high

conditional covariances with the investment, accruals, issuance, and sales factors.

Under the model, every factor except the market contributes to differences in systematic risk

across firms. As might be inferred from the properties of the estimated market betas, the evidence

suggests that firms display substantial variation in their risk exposures. The size and value factors

stand out in this regard, with each exhibiting a wide range of estimated conditional covariances with

excess stock returns. This finding is consistent with the strong incremental explanatory power of the

SMB and HML returns in the Fama and French (1993) generalization of the Sharpe (1964)–Lintner

(1965) capital asset pricing model (CAPM). The range of estimated conditional covariances for the

remaining five factors is narrower, which is suggestive of a smaller role in explaining cross-sectional

variation in systematic risk, but the results suggest that all seven factors make non-negligible con-

tributions in this regard. In short, the findings are consistent with the presence of strong linkages
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between the firm characteristics and covariance risk, which supports the use of the FF-MGARCH

specification as a risk model in high-dimensional applications.

The performance of the FF-MGARCH specification as an asset pricing model is a separate

issue. Broadly speaking, the evidence on the pricing ability of the fundamental factors is mixed.

The estimated price of covariance risk is statistically significant for every factor, which indicates

that the conditional covariances of excess returns with the factors help to explain the differences in

conditional expected excess stock returns across firms. Hence, I find support for the hypothesis that

the fundamental factors are “priced” in the parlance of the traditional two-pass regression-based

approach to testing asset pricing models. This finding is in line with the predictions of exact factor

pricing. However, an analysis of the pricing errors makes it clear that the model falls short of fully

capturing the cross-section of conditional expected excess stock returns.

To keep the analysis manageable and facilitate comparisons with prior research, I use well-

diversified portfolios to evaluate the pricing performance of the model. Specifically, I employ portfo-

lios that are formed by using the fitted conditional expected excess stock returns to sort stocks into

25 groups for each month in the sample period. The idea is similar to the well-established practice

of using portfolio sorts to illustrate the extent to which conditioning on firm characteristics spreads

average stock returns. To see how well the model captures differences in unconditional expected

stock returns across firms, I compare the average excess portfolio returns to the average values of

the fitted conditional expected excess portfolio returns.

The 25 portfolios display a wide spread of average annualized excess returns: −4.2% to 35.9%.

This is indicative of the extent to which the covariances of excess returns with the fundamental

factors capture the characteristic-based patterns in the data. In comparison, the average values

of the fitted conditional expected excess portfolio returns range from −10.9% to 31.7%. As these

figures suggest, the average estimated pricing error is slightly negative. Portfolios that fall near

the ends of the range of estimated expected excess returns have positive estimated pricing errors,

while those that fall in the center of this range have negative estimated pricing errors. The median

and average of the absolute estimated pricing errors are 2.0% and 2.6% per annum, respectively.

Estimated pricing errors of this magnitude seem likely to be economically significant.

To investigate further, I examine the pricing performance of the fundamental factors in the

arbitrage pricing theory (APT) framework of Ross (1976). This facilitates head-to-head pricing
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comparisons with competing models from the literature. I use the five-factor model of Fama and

French (2015) as a performance benchmark. In the APT framework, the estimated pricing errors

are simply the estimated intercepts in regressions of excess portfolio returns on a constant and

the factors. I find that most of the estimated intercepts for fundamental factor regressions are

statistically significant, indicating that the hypothesis of exact factor pricing is rejected. This

bolsters the conclusion that conditional covariances of excess stock returns with fundamental factors

fail to fully explain the cross-section of conditional expected excess stock returns.

In comparison, the five-factor model produces a smaller number of statistically-significant inter-

cepts. This seems unfavorable to the FF-MGARCH model at first glance. However, the reduction

in statistical significance relative to the fundamental factor regressions is driven by increases in the

standard errors. The average magnitude of the estimated intercepts is 2.6% per annum for the fun-

damental factors, versus 3.5% per annum for the Fama and French (2015) factors. The fundamental

factors produce lower standard errors because they explain more of the time series variation in the

excess portfolio returns than the Fama and French (2015) factors. On average, the regression R2 is

94.0% for the former versus 85.4% for the latter. Hence, the general picture that emerges from the

comparisons casts the FF-MGARCH model in a relatively favorable light.

Overall the analysis suggests that the FF-MGARCH model is a very promising addition to

the small set of existing MGARCH models that are designed to capture time-varying covariances

in high-dimensional settings. Although there are certainly indications of specification error, this

is hardly surprising. One would be hard pressed to argue that a parsimoniously-parameterized

MGARCH model can be expected to unerringly capture the dynamics of excess returns for thousands

of individual stocks. The real question is not whether the model is misspecified, but whether

it provides a reasonably accurate description of the process that generates excess stock returns.

Because all indications are that the FF-MGARCH model enjoys considerable success in this regard,

I anticipate that it will prove useful in a wide variety of applications.

2. Fundamental-Factor MGARCH Model for Individual Stock Returns

For many years, the use of MGARCH models was almost entirely confined to low-dimensional

settings because the parameter space of most models grows very quickly with the number of variables

in the system. Researchers have recently developed a few tightly-parameterized MGARCH models,
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such as the dynamic equicorrelation (DECO) specification of Engle and Kelly (2012), that can be

applied to high-dimensional systems, and MGARCH models based on factor structures, such as

those proposed by Alexander (2001), van der Weide (2002), Lanne and Saikkonen (2007), and Fan

et al. (2008), show promise in balancing the competing demands of generality and computational

tractability. However, none of these models is suited to the task of analyzing highly-unbalanced

panels of stock returns for hundreds or thousands of individual firms, many of which appear in the

dataset for a relatively short window of time.

To develop an MGARCH model that is specifically designed for investigating the relation between

characteristics and covariance risk, I build on ideas pioneered by Rosenberg (1974) and Fama and

French (1993). Rosenberg (1974) extends the familiar market model by allowing the beta of each

stock to be linearly related to an observable set of firm characteristics. This extension yields what

is commonly called a fundamental factor model: a factor model in which characteristics function

as observable factor loadings. Fama and French (1993), on the other hand, investigate the asset

pricing performance of a model that has two characteristic-based factors. Specifically, they use the

returns on two characteristic-based hedge portfolios to formulate a three-factor generalization of the

Sharpe (1964)–Lintner (1965) CAPM. In both cases, the modeling strategy is developed with an eye

towards capturing the observed characteristic-based patterns in average stock returns.

I follow Rosenberg (1974) by assuming that firm characteristics can be treated as observable

factor loadings. This assumption lays the foundation for developing a factor-based MGARCH model

whose computational demands rise very slowly with the dimensionality of the system. Notably,

missing values for individual stock returns and time-series changes in the number of traded stocks

do not pose any computational difficulties in the proposed framework. This is because the model

implies that the factors are returns on characteristic-based hedge portfolios that are rebalanced in

every time period. Although period-by-period rebalancing of the hedge portfolios is in the spirit of

Fama and French (1993), the approach used to construct the hedge portfolios relies on cross-sectional

regression methods instead of an ad hoc characteristic-based sorting scheme.

2.1. Common factor structure for returns

I begin by describing the factor structure that underpins the model. Let rt+1 denote an N×1 vector

of excess stock returns for period t+ 1. For example, it might represent the vector of excess returns
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for all NYSE, NASDAQ, and AMEX stocks for a particular month. Let It denote the information

set of market participants for period t. I take as given that rt+1 can be expressed as

rt+1 = mt + ut+1, (1)

where mt = E(rt+1|It) denotes the N × 1 vector of conditional expected excess returns and ut+1

is an N × 1 vector of serially-independent innovations. The proposed dynamic specification for

St = E(ut+1u
′
t+1|It), the conditional covariance matrix of rt+1, builds on two key assumptions.

First, I assume that the vector of serially-independent innovations in equation (1) has a decom-

position of the form

ut+1 = Bt(f t+1 −mf,t) +Gtet+1, (2)

where Bt ∈ It is an N ×K matrix, Gt ∈ It is an N × (N −K) matrix, f t+1 is a K × 1 vector of

common factors whose conditional mean is mf,t = E(f t+1|It), and et+1 is an (N −K) × 1 vector

of errors that satisfies E(et+1|It) = 0, E(et+1f
′
t+1|It) = 0, and E(et+1e

′
t+1|It) = dtI. Equation (2)

implies that ut+1 is described by a type of linear factor model that permits the matrix of factor

loadings and the conditional covariance matrix of Gtet+1, the N × 1 vector of idiosyncratic return

shocks, to change through time. The main departure from typical specifications of conditional

factor models is that the leading dimension of et+1 is smaller than that of ut+1, so the conditional

covariance matrix of the vector of idiosyncratic shocks is singular. This feature reflects the nature

of the factor innovations in the model. If the matrix At = (Bt,Gt) is nonsingular, then the factor

innovations are simply linear combinations of the demeaned excess stock returns. Note in particular

that f t+1 −mf,t is given by the first K elements of the N × 1 vector A−1t ut+1.

Second, I assume that conditional factor loadings are observable firm characteristics, and hence

the nth row of Bt contains the observed characteristic values of the nth firm for period t. Under this

assumption, the columns of Gt form a basis for the null space of an observable projection matrix.

Specifically, Gt contains the first N −K eigenvectors of M t = I −Bt(B
′
tBt)

−1B′t in its columns.

This follows because the inverse of At is given by

A−1t =

 (B′tBt)
−1B′t

G′t

 (3)
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for any choice of Bt that has full column rank.1

In view of equation (3), it is easy to see that the vector of fundamental factors for period t+ 1

can be expressed as

f t+1 = mf,t + vt+1, (4)

where vt+1 = (B′tBt)
−1B′tut+1 is the vector of fundamental factor innovations. Notice that the

K ×N matrix B+
t = (B′tBt)

−1B′t takes a familiar form: the left pseudoinverse of Bt that delivers

the ordinary least squares (OLS) estimator of the coefficients for a cross-sectional regression of ut+1

on Bt. Hence, we can view equation (2) as a regression-based decomposition of ut+1 in which

the regression residuals et+1 are assumed to satisfy a set of conditional orthogonality restrictions.

Because this decomposition lies at the core of my modeling strategy, the proposed specification

for St inherits many of the features that have made cross-sectional regressions a workhorse of the

empirical asset pricing literature. For example, allowing N to change from one period to the next

poses no difficulties whatsoever. This is essential given the intended application of the model.

Lanne and Saikkonen (2007) develop a generalized orthogonal GARCH model that is based on a

linear decomposition similar to that in equation (2). However, their model assumes that the matrix

At is both time invariant and unobservable. The potential gains from taking this matrix to be a

known function of observable time-varying characteristics are clear. First, we allow the conditional

factor loadings to change through time. Second, we drastically reduce parameter proliferation as

the value of N increases. Third, we make likelihood-based inference feasible for high-dimensional

problems. This is because the computational demands of fitting a specification for St are not very

sensitive to the value of N for the typical case in which the joint conditional distribution of excess

returns is assumed to be multivariate normal.

The assumption that E(et+1e
′
t+1|It) = dtI may appear to be unduly restrictive. But similar

assumptions appear in the literature on static factor analysis. For instance, the probabilistic version

of principal components analysis is based on a static factor model in which the covariance matrix

of the errors is assumed to be a scalar multiple of the identity matrix (Tipping and Bishop, 1999).

1To see how the inverse is derived, note that M t is symmetric, idempotent, and has rank N −K. Because these
properties imply that its eigenvalues consist of N −K ones and K zeros, it can be decomposed as M t = GtG

′
t, where

Gt is an N × (N −K) matrix with orthonormal columns, i.e., G′tGt = I. Using these results along with M tBt = 0,
it follows that G′tBt = 0. Thus it is easy to verify that the matrix in equation (3) satisfies A−1

t At = AtA
−1
t = I.

8



The success of such methods in a range of settings suggests that the assumption of spherical errors

should be a reasonable starting point for model development. Of course additional flexibility can

be introduced at the cost of increased computational demands. One could, for example, replace the

assumption of spherical errors with E(et+1e
′
t+1|It) = dtI + ct(11′ − I), where dt > ct > 0 and 1

denotes an (N − K) × 1 vector of ones. This would yield a conditional factor model for ut+1 in

which the errors display time-varying equicorrelation.

2.2. A brief digression on the characteristics-versus-covariances debate

Before filling in the details of the model, it is useful to discuss how specifying characteristics as

factor loadings fits into the characteristics-versus-covariances debate. Numerous studies show that

firm characteristics help to explain the cross-section of average stock returns. However, there is no

consensus view on the explanation for this finding. Some researchers, such as Fama and French

(1993, 1996, 2000), favor rational pricing stories. They argue that firm characteristics, such as

market capitalization and the book-to-market ratio, capture cross-sectional differences in expected

stock returns by serving as proxies for the covariances between returns and common risk factors.

Others, such as Daniel and Titman (1997, 1998), favor behavioral stories. They argue that the

covariances between returns and common risk factors provide little information about expected

stock returns after controlling for firm characteristics. Interestingly, fundamental factor structures

have the potential to explain the empirical findings of researchers on both sides of the debate.

For instance, many of the findings deal with the pricing performance of the Fama and French

(1993) three-factor model. Under this model, the systematic risk of a stock depends on how its excess

return covaries with three risk factors: the excess return on the value-weighted market portfolio (the

VWM portfolio), the return on a hedge portfolio that short sells large-cap stocks to purchase small-

cap stocks (the SMB portfolio), and the return on a hedge portfolio that short sells stocks with low

B/M ratios to purchase stocks with high B/M ratios (the HML portfolio). Fama and French (1993)

show that the estimated loadings on these factors successfully capture the patterns in average excess

returns for portfolios that are formed by sorting stocks on market capitalization and the book-

to-market ratio. This lines up with what we would expect to find under a fundamental factor

model in which market capitalization and the book-to-market ratio are factor loadings. That is,

we would expect the estimated slope coefficients obtained by regressing excess stock returns on the
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fundamental factors, which are returns on characteristic-based hedge portfolios, to do a reasonable

job of capturing the characteristic-based patterns in average excess stock returns.

Daniel and Titman (1997) also investigate the explanatory power of the estimated loadings on

the SMB and HML factors. However, their tests center on sets of portfolios whose constituent

stocks have roughly the same market capitalization and same book-to-market ratio. They report

that there is no apparent relation between the average excess portfolio returns and the estimated

slopes on the SMB and HML factors, and conclude that “it is characteristics rather than factor

loadings that determine expected returns.” Once again, this what we would expect to find under

a fundamental factor model in which market capitalization and the book-to-market ratio are factor

loadings. The variation in the estimated loadings for stocks or portfolios that have the same values

of the characteristics must be due to estimation error. Thus differences in the estimated loadings

should not have any ability to explain differences in the average excess stock or portfolio returns.

More broadly, it is easy to envision other scenarios in which such tests are unlikely to be fruitful.

Suppose, for example, that excess stock returns are described by a conditional linear factor model,

the unobserved time-varying loadings are cross-sectionally correlated with firm characteristics, and

exact factor pricing holds. If we use the characteristics as loadings and extract the associated factors,

then the estimated factor loadings (estimated regression slopes) will have some ability to explain the

cross-section of average excess stock returns. However, the explanatory power of the characteristics

will likely dominate that of the estimated loadings, because the fundamental factors maximize the

cross-sectional explanatory power of the characteristics for individual excess stock returns.

Instead of trying to determine whether covariances proxy for characteristics or vice versa, I

take an in-depth look at the pricing implications of fundamental factor models. The basic idea

is to specify mt such that exact factor pricing holds, use a flexible multivariate GARCH process

to capture the dynamics of the conditional factor covariance matrix, and estimate the price of

covariance risk for each factor by fitting the model to excess returns for large universe of individual

stocks. My objectives are to assess the extent to which firm characteristics explain the cross-section

of covariance risk, assess the extent to which the covariances with the fundamental factors explain

the cross-section of expected excess returns, and provide insights on the relative importance of the

different fundamental factors in determining the overall pricing performance of the model.
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2.3. Modeling the cross-section of conditional expected excess stock returns

Equations (1) and (2) deliver exact factor pricing if the cross-sectional variation in the values of

the characteristics explains all of the cross-sectional variation in conditional expected excess stock

returns. By specifying mt in accordance with this restriction,

mt = Btmf,t, (5)

I can obtain evidence on the pricing performance of the fundamental factors. To lay the groundwork

for the proposed specification of mf,t, I invoke two additional assumptions about the nature of the

characteristics that serve as conditional factor loadings in the model.

First, I assume that the leading column of Bt is an N × 1 vector of ones. This is analogous to

including an intercept in a cross-sectional regression model. It allows for the presence of a cross-

sectionally invariant component in conditional expected excess stock returns. Second, I assume

that the remaining K − 1 characteristics have been standardized such that (1/N)
∑N

n=1 bnk,t =

0 and (1/N)
∑N

n=1 b
2
nk,t = 1, where bnk,t denotes the kth element of the nth row of Bt. Using

standardized characteristics makes it reasonable to treat the matrix of conditional factor loadings

as stationary, and also makes it easier to compare the estimates of the parameters associated with

different characteristics. Both assumptions are easily satisfied in empirical work. Furthermore, they

identify the first element of f t+1 as the excess return on the equally-weighted market portfolio for

period t + 1.2 This follows by noting that B′tBt is a block diagonal matrix whose first row is

(N, 0, . . . , 0), and hence the first row of B+
t is (1/N, . . . , 1/N). Isolating the market factor as a

distinct element of f t+1 makes the pricing implications of the model more transparent.

Consider, for example, the specification mf,t = Htλ, where Ht = E(vt+1v
′
t+1|It) denotes the

conditional covariance matrix of f t+1. Substituting for mf,t in equation (5) yields

mt = Ctλ, (6)

where Ct = BtHt denotes the N × K matrix of conditional covariances between rt+1 and f t+1.

2In other words, the first element of mf,t = B+
t mt is the conditional expected excess return on an equally-weighted

portfolio of the N stocks, and the first element of vt+1 = B+
t ut+1 is the corresponding return innovation.
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Hence, specifying mf,t = Htλ implies that the conditional price of covariance risk is constant for

each of the K factors. Adopting a constant-price-of-risk specification seems like a straightforward

approach for developing insights about the cross-section of covariance risk captured by the funda-

mental factors. However, one of its pricing implications is not very palatable.

Note that the first column of Ct is the vector of conditional covariances of excess stock returns

with the market factor. Each element of this vector is a characteristic-weighted sum of the elements

in the first column ofHt. Thus the covariances will differ across firms unless the excess return on the

market portfolio is conditionally uncorrelated with all of the remaining factors. Because equation (6)

treats the conditional covariance with the market as a separate source of covariance risk, it implies

that cross-sectional differences in exposure to this risk make a distinct marginal contribution to

cross-sectional differences in conditional expected excess stock returns. This seems untenable given

that the cross-sectional differences in the conditional covariance with the market arise solely from

the conditional correlations of the market with the other factors.

To eliminate this concern, I employ a modified version of the constant-price-of-risk specification

for the empirical analysis. Let Ht be partitioned as

Ht =

 h11,t h12,t

h21,t H22,t

 (7)

where h11,t is a scalar, h12,t and h21,t are row and column vectors with K − 1 elements, and H22,t

is a (K − 1) × (K − 1) matrix. Similarly, partition f t+1 = (f1,t+1,f2,t+1)
′ and λ = (λ1,λ2)

′ in a

conformable fashion. I adopt the specification mf,t = HtLtλ, where Lt is given by

Lt =

 1 0

H−122,th21,t I

 . (8)

The motivation for this approach, which is equivalent to specifying λt = Ltλ as the price of risk

vector for period t + 1, may not be obvious at first glance. With a little algebra, however, the

resulting specification for mt can be expressed as

mt = C∗tλ, (9)
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where C∗t = BtHtLt is obtained by replacing the first column of Ct with (h11,t−h12,tH
−1
22,th21,t)1.

Equation (9) has a simple interpretation. Let f∗1,t+1 denote the component of the market factor

that is conditionally uncorrelated with the other factors, i.e.,

f∗1,t+1 = f1,t+1 − f ′2,t+1H
−1
22,th21,t. (10)

It is easy to verify that

var(f∗1,t+1|It) = h11,t − h12,tH
−1
22,th21,t, (11)

which shows that λ1 represents the price of variance risk for an orthogonalized version of the market

factor. The conditional variance of f∗1,t+1 is priced because it represents the unavoidable component

of market risk. To see why it is unavoidable, note that the model implies that cov(rn,t+1, f
∗
1,t+1|It) =

var(f∗1,t+1|It) for all n. So every stock is exposed to the same baseline level of variance risk, and the

compensation for bearing this risk is determined by the value of λ1. The remaining factors in the

model are responsible for all of the cross-sectional variation in covariance risk, and hence all of the

cross-sectional variation in conditional expected excess stock returns.3

2.4. Modeling second-moment dynamics

To complete the model, I need to specify how St evolves through time. Equation (2) implies that

St can be expressed as

St = BtHtB
′
t + dtGtG

′
t, (12)

so it is sufficient to model the dynamics of Ht and dt. Because I employ GARCH specifications,

I call the resulting process for rt+1 a fundamental-factor MGARCH model. The specification for

Ht is obtained by decomposing this matrix into conditional factor variances and conditional factor

correlations. This facilitates multi-step estimation of the model parameters.

Let ht denote the K×1 vector of conditional factor variances for period t (i.e., the main diagonal

3Specifying mf,t = µf would yield similar implications with respect to the role of market risk because the condi-
tional loading on the market factor is one for every stock. However, restricting the factor risk premiums to be constant
seems less likely to be empirically plausible.
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of Ht). I assume that this vector evolves as

ht = ωh + βh ◦ ht−1 +αh ◦ v◦2t , (13)

where ωh = (ωh,1, . . . , ωh,K)′, βh = (βh,1, . . . , βh,K)′, and αh = (αh,1, . . . , αh,K)′ are K × 1 vectors,

◦ denotes the Hadamard (element-by-element) product, and v◦2t = vt ◦ vt denotes the Hadamard

square of vt. In other words, I assume that each factor follows a GARCH(1,1) process that displays

GARCH-in-mean effects of the form specified earlier (i.e., vt+1 = f t+1 −HtLtλ).

Let Rt = (Ht ◦ I)−1/2Ht(Ht ◦ I)−1/2 denote the conditional correlation matrix of f t+1. To

facilitate correlation targeting, I assume that Rt is given by a version of the rotated conditional

correlation (RCC) specification of Noureldin et al. (2014). Suppose that Γ
1/2 denotes the symmetric

square root of Γ = E(Rt).
4 Under the RCC specification, Rt evolves as

Rt = (Qt ◦ I)−
1/2Qt(Qt ◦ I)−

1/2, (14)

Qt = Γ
1/2P tΓ

1/2, (15)

P t = I + (βcβ
′
c)
◦1/2 ◦ (P t−1 − I) + (αcα

′
c)
◦1/2 ◦ (wtw

′
t − I), (16)

where αc and βc are K × 1 vectors, (·)◦1/2 denotes the element-wise square root of its argument,

and wt = Γ−
1/2(Ht−1 ◦ I)−1/2vt satisfies E(wtw

′
t) = I.

Equation (14) mirrors the decomposition of Rt used in the dynamic conditional correlation

(DCC) model of Engle (2002). It allows the conditional factor correlations to be modeled in terms

of the elements of an auxiliary time-varying matrixQt. Equation (15) defines this auxiliary matrix to

be the rotation of another matrix P t that satisfies E(P t) = I by construction. Equation (16) implies

that wt+1, which is a vector of standardized and rotated excess returns, follows a diagonal version

of the multivariate GARCH process of Engle and Kroner (1995), i.e., a diagonal BEKK model.

Correlation targeting can be accomplished by substituting a simple moment-based estimator for

Γ
1/2 that is consistent under the specified process for the conditional factor variances.

Noureldin et al. (2014) emphasize that the RCC model has two important advantages relative

to competing specifications. First, the model guarantees that Rt is positive definite under simple

4That is, Γ
1/2 = ΠΛ

1/2Π′, where ΠΛΠ′ is the eigendecomposition of E(Rt).
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parameter restrictions that can be easily enforced during estimation. It is sufficient to ensure that

the inequality restriction αc + βc < 1 is satisfied. Second, parsimonious parameterizations of the

P t process translate into rather rich dynamics for the conditional correlation matrix. The diagonal

parameterization in equation (16), for example, implies that Qt follows a full version of the BEKK

model, i.e., a version that has dense asymmetric parameter matrices.

To motivate the specification for dt, note that the fundamental factor structure implies that

E(e′t+1et+1|It) = (N −K)dt. Thus we can view dt as the conditional expected value of the cross-

sectional average of squared errors for period t+ 1. If we assume that the cross-sectional average of

the squared errors follows an ARMA(1,1) process, then dt evolves as

dt = ωd + βddt−1 + αd

(
e′tet
N −K

)
, (17)

where ωd, βd, and αd are scalars. This approach is equivalent to specifying a univariate GARCH(1,1)

process for each of the N − K elements of et+1, and then restricting the value of each parameter

that appears in the conditional variance equation to be the same for every process.

2.5. Log likelihood calculations

The fundamental factor structure of the model greatly facilitates estimation and inference. Suppose,

for example, that the dataset consists of excess returns on N individual stocks for periods t =

1, 2, . . . , T .5 Let θ denote the vector of unknown parameters. Under the assumption rt+1|It ∼

N(mt,St), the model implies that factors and errors for period t+ 1 are distributed as

 f t+1

et+1

∣∣∣∣∣∣ It
 ∼ N

 mf,t

0

 ,
 Ht 0

0 dtI

 , (18)

where I have suppressed the dependence of mf,t, Ht, and dt on θ for notational convenience. One

can therefore estimate θ by maximizing

L(θ) =

T∑
t=1

−1

2
log |Ht−1| −

1

2
v′tH

−1
t−1vt −

N −K
2

log dt−1 −
1

2

e′tet
dt−1

, (19)

5I assume a balanced panel for ease of illustration. The same approach works if the cross-sectional dimension of
the panel changes over time.
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which is, apart from an additive constant, the log likelihood function for the model. Because L(θ)

is additively separable, the parameters that characterize the dynamics of Ht can be estimated

independently of those that characterize the dynamics of dt with no loss of efficiency.

Although the computational complexity of using numerical methods to maximize L(θ) obviously

depends on the value of N , the rate at which the complexity increases with N is quite slow provided

that the value of K is not too large. Indeed, L(θ) can be computed with little effort beyond that

required to fit a sequence of T cross-sectional regressions with sample size N , because a cross-

sectional regression of rt −mt−1 on Bt−1 delivers vt, and e′tet is given by the sum of the squared

residuals from this regression. To further reduce the computational demands of the model, I employ

a multi-step estimation procedure.

2.6. Estimation and inference

Multi-step estimation procedures are common in the MGARCH literature. Although they entail

some sacrifice in efficiency, the gains in terms of computational tractability are typically quite

substantial. I view this as a favorable trade-off because drawing inferences about the parameters

that characterize the dynamics of Ht and dt is not the main focus of the analysis. The proposed

multi-step procedure is inspired by the methods used for DCC models. However, the presence

of GARCH-in-mean effects makes it necessary to employ an iterative approach similar to that

used by De Santis and Gerard (1997) to conduct MGARCH-based tests of the conditional CAPM.

Convergence usually occurs in a reasonable number of iterations because allowing for time variation

in the conditional mean typically has little impact on the estimated dynamics of volatility. Indeed,

most MGARCH studies simply assume constant means for this reason.

I begin by fitting a simplified version of the FF-MGARCH model in which mf,t = µf and

mt = Btµf . This yields preliminary estimates of {Ht}T−1t=0 , and {dt}T−1t=0 . The procedure is as

follows (note that f t = B+
t−1rt and et = G′t−1rt for this version of the model).

1. Construct f t = (f1,t, f2,t, . . . , fK,t)
′ for t = 1, 2, . . . , T and compute µ̂f = (1/T )

∑T
t=1 f t.

Estimate ωh, βh, and αh in equation (13) by fitting a sequence of K univariate GARCH(1,1)

models, the kth of which assumes that fk,t|It−1 ∼ N(µ̂k,f , hkk,t−1). Let {ĥt}T−1t=0 denote the

vector sequence of estimated conditional factor variances.

2. Compute ẑk,t = (fk,t − µ̂k,f )/ĥ
1/2
kk,t−1 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T .
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3. Compute Γ̂ = (1/T )
∑T

t=1 ẑtẑ
′
t, the sample covariance matrix of ẑt = (ẑ1,t, ẑ2,t, . . . , ẑK,t)

′. Let

Γ̂
1/2

denote the symmetric square root of this matrix.

4. Compute ŵt = Γ̂
−1/2

ẑt for t = 1, 2, . . . , T . Estimate αc and βc in equation (16) by assuming

that ẑt|It−1 ∼ N(0,Rt−1). Let {R̂t}T−1t=0 denote the estimated sequence of conditional factor

correlation matrices.

5. Construct {et}Tt=1. Estimate ωd, βd, and αd in equation (17) by assuming that et|It−1 ∼

N(0, dt−1I). Let {d̂t}T−1t=0 denote the estimated sequence of conditional error variances.

6. Combine {ĥt}T−1t=0 with {R̂t}T−1t=0 to obtain {Ĥt}T−1t=0 , the estimated sequence of conditional

factor covariance matrices.

The time required to complete the procedure is largely governed by step four, which entails opti-

mization over 2K parameters and requires T numerical inversions of a K × K matrix in order to

compute the value of the log likelihood function implied by ẑt|It−1 ∼ N(0,Rt−1).

Once the sequence {Ĥt}T−1t=0 is in hand, a preliminary estimate of λ can be obtained by mini-

mizing the criterion

Q(λ) =

T∑
t=1

v̂′tĤ
−1
t−1v̂t, (20)

where

v̂t = f t − Ĥt−1L̂t−1λ (21)

denotes the K×1 vector of estimated factor innovations obtained by replacing Ht−1 and Lt−1 with

the preliminary estimates of these matrices. This approach maximizes the log likelihood function

in equation (19) for the case in which all the parameters except for λ are restricted to equal their

preliminary estimates. It is equivalent to pooled generalized-least-squares (GLS) estimation of a

sequence of T cross-sectional regressions of the form

rt = Ĉ
∗
t−1λ+ εt (22)

where Ĉ
∗
t−1 = Bt−1Ĥt−1L̂t−1.

6 To update {Ĥt}T−1t=0 via a second iteration, I replace µ̂k,f with the

6To see this, consider the cross-sectional regression for period t. The GLS estimator for this regression is obtained
by minimizing the criterion

Q̃t(λ) = ε′tŜ
−1

t−1εt,
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kth element of Ĥt−1L̂t−1λ̂, where λ̂ denote the preliminary estimate of λ. All subsequent updates

of {Ĥt}T−1t=0 are carried out in the same manner using λ̂ from the previous iteration.

Asymptotic standard errors for the final parameter estimates can be computed by nesting the

multi-step estimation procedure within the generalized-method-of-moments framework (see, e.g.,

Noureldin et al., 2014). But there is a simpler approach that should be adequate for assessing

the precision of the parameter estimates that characterize the dynamics of the fitted conditional

variances, fitted conditional covariances, and fitted conditional correlations. Specifically, the outer-

product and second-derivative estimates of the information matrix for the univariate GARCH(1,1)

models in step one and the RCC model in step four can be used to compute quasi maximum likelihood

standard errors for the dynamic parameters. The generalized-method-of-moments approach might

therefore be reserved for cases in which one wants to perform formal hypothesis tests.

3. Data and Preliminary Analysis

I obtain monthly data for individual stocks from the Center for Research in Security Prices (CRSP)

monthly stock file. The sample begins in July 1963, ends in December 2016, and is restricted to

ordinary common equity (CRSP share code 10 or 11) for NYSE, AMEX, and NASDAQ firms. The

monthly risk-free rate series is taken from the “Fama/French 3 factors” dataset that is posted to the

web-based data library maintained by Ken French.7 The annual data for the required accounting

variables are drawn from the Compustat annual industrial file.8

I combine the variables into a single dataset by matching accounting information for firms whose

fiscal year ends in month t with excess stock returns for months t+ 5 to t+ 16. Under this matching

strategy, the accounting variables are lagged by a minimum of four months with respect to the

start of the holding period over which the excess stock returns are measured. Four months should

be sufficient time for the accounting variables to enter the public information set. This timing

convention is also employed in the recent study of Lewellen (2015), which uses long-run averages

where Ŝ
−1

t−1 = B+′
t−1Ĥ

−1

t−1B
+
t−1 + d̂−1

t−1Gt−1G
′
t−1. By noting that Gt−1G

′
t−1Bt−1 = 0, it follows that Q̃t(κ,λ) can be

expressed as

Q̃t(λ) = (f t − Ĥt−1L̂t−1λ)′Ĥ
−1

t−1(f t − Ĥt−1L̂t−1λ) + d̂−1
t−1(r′tGt−1G

′
t−1rt).

Hence, minimizing
∑T

t=1 Q̃t(λ) produces the same estimates as minimizing Q(λ).
7See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
8I exclude firms with less than two years of Compustat data to mitigate the well-known biases that arise from the

way in which firms are added to the file.
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of the coefficient estimates from Fama and MacBeth (1973) regressions to generate out-of-sample

forecasts of the cross-section of expected excess stock returns.

The choice of firm characteristics is motivated by prior research. Table 1 described how the

characteristics are constructed. The first four variables could be called the “usual suspects” from

the recent asset pricing literature: the logarithm of market equity (log ME), the logarithm of the

book-to-market equity ratio (log BE/ME), gross profitability scaled by book assets (GP/BA), and

the logarithm of the gross growth rate of book assets (log AG). The use of the log ME and log

BE/ME variables to capture cross-sectional differences in expected excess stock returns dates to the

seminal studies of Fama and French (1992, 1993). But these variables have recently been combined

with measures of firm profitability and investment to extend the Fama and French (1993) three-

factor model (e.g., Fama and French, 2015; Hou et al., 2015). I refer to the returns on the hedge

portfolios associated with these four variables as the size, value, profitability, and investment factors.

The fifth and six variables have been widely studied in the anomalies literature: current accruals

scaled by book assets (CA/BA), and the logarithm of the gross two-year growth rate of split-

adjusted shares outstanding (log SG). Interest in the accruals anomaly dates to Sloan (1996), who

found a strong cross-sectional relation between current accruals and average stock returns. Around

the same time, Loughran and Ritter (1995) found that net stock issues are negatively related to

subsequent average stock returns. The origins of these anomalies have been the subject of much

debate. In contrast, the seventh variable — net sales scaled by market equity (NS/ME) — has

received little attention outside of a recent study by Lewellen (2015). His findings suggest that the

NS/ME variable captures cross-sectional differences in average stock returns, but the effect seems

to be largely confined to firms that have low market equity. I refer to the returns on the hedge

portfolios associated with these three variables as the accruals, offerings, and sales factors.

Table 2 reports the sample mean, sample volatility, sample skewness, and selected sample per-

centiles for the seven firm characteristics.9 The sample used to compute the statistics in panel A

contains all available NYSE, NASDAQ, and AMEX firms (the “full sample”). There is nothing in

the results that looks to be cause for concern. In most cases, the statistics are closely aligned with

9I winsorize all of the characteristics monthly at the 1st and 99th percentiles of their cross-sectional distribution.
Using winsorized or trimmed characteristics is a common approach for limiting the influence of outliers in cross-
sectional regression studies that focus on asset pricing issues. See, for example, the recent studies of Novy-Marx
(2013) and Ball et al. (2015).
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those reported by prior studies that use similar data. The log ME variable, for example, has a mean

of 4.67 and volatility 2.19. Ball et al. (2015) report values of 4.55 and 1.97 for this variable using

data for a largely-overlapping sample period.

The sample used to compute the statistics in panel B is constructed via a month-by-month

screening procedure that excludes microcap stocks (the “no-microcaps sample”). The definition

of a microcap stock, which follows Fama and French (2008), is one whose market capitalization

for the month is below the 20th percentile of the monthly cross-sectional distribution of market

capitalization for NYSE firms. Apart from the rightward shift in the distribution of the log ME

variable, the most notable change is an increase in the median excess return from 0.00% to 0.77%

per month. In general, dropping microcap stocks from the sample has relatively minor effects on the

distributional properties of most characteristics. The exception is the NS/ME variable. The sample

percentiles indicate that the right tail of its distribution shortens considerably.

3.1. Fama-MacBeth regressions

Table 3 uses Fama-MacBeth regressions to illustrate the cross-sectional explanatory power of the

characteristics for excess stock returns. The results in columns (1) to (6) are for the full sample.

Those in the remaining columns are for the no-microcaps sample. In each case, I report two sets of

estimates to show the effect of excluding financial firms (SIC codes 6000–6999) from the analysis.10

The dependent variable for the regressions is the excess percentage stock return, and all specifications

include an intercept.

First consider the results for a specification that uses the log ME and log BE/ME variables as

regressors. The average estimated slopes are −0.15 and 0.27 with t-statistics of −3.57 and 5.18 for

the full sample, or −0.16 and 0.30 with t-statistics of −3.63 and 5.68 if I exclude financial stocks.

These results are broadly consistent with those reported by Fama and French (1992) and numerous

subsequent studies. Note, however, that the results are sensitive to the sample composition. Using

the no-microcaps sample, the average estimated slopes are −0.06 and 0.14 with t-statistics of −1.59

and 2.06, or −0.06 and 0.13 with t-statistics of −1.35 and 1.89 if I exclude financial stocks. Thus the

evidence of a cross-sectional relation between the two regressors and expected excess stock returns

10The SIC codes used to screen firms are from Compustat (item SICH). If the Compustat code is missing, I replace
it with the code from CRSP (item SICCD), if available.
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is considerably weaker if we drop microcap stocks from the analysis.

The next specification adds the GP/BA and log AG variables to the set of regressors. The

average estimated slopes for these two variables are highly statistically significant, regardless of the

sample composition. Using the no-microcaps sample, for example, the average estimated slopes are

0.47 and −0.89 with t-statistics of 4.53 and −6.50, or 0.49 and −0.97 with t-statistics of 4.37 and

−6.62 if I exclude financial stocks. Adding the GP/BA and log AG variables as regressors also

leads to somewhat stronger evidence (larger absolute t-statistics) that the log ME and log BE/ME

variables are related to expected excess stock returns for the no-microcaps sample.

For the final specification, I include the entire set of seven characteristics as regressors. All of the

average estimated slopes for this comprehensive specification are statistically significant at the 1%

level using the full sample. Excluding financial firms produces some changes in the results, primarily

with respect to the accruals variable. However, the changes are relatively minor. The explanatory

power of the regressions is clearly weaker for the no-microcaps sample, but with the exception of

the accruals and sales variables, the average estimated slopes remain statistically significant. In

addition, the average estimated slope on the accruals variable becomes statistically significant if

financial firms are excluded from the regressions. I therefore follow Fama and French (1992, 1993),

and exclude financial firms for the remainder of the analysis.

3.2. Properties of the fundamental factors

Tables 4 contains descriptive statistics for the market, size, value, profitability, investment, accruals,

offerings, and sales factors. Panel A reports the sample mean, sample volatility, sample skewness,

and selected sample percentiles for the full and no-microcap samples. Panel B reports the sample

correlation matrix of the factors. For any given month, the factor realizations are simply excess

returns on well-diversified portfolios of the individual stocks. The portfolio weights sum to one for

the market factor, and to zero for each of the remaining characteristic-based factors.11

The mean of the market factor is 0.85% per month, or about 10% on an annualized basis. This

11Recall that the vector of factor realizations for month t is given by f t = (B′t−1Bt−1)−1B′t−1rt. Because the first
column of Bt−1 is a vector of ones, and the elements in each of its remaining columns have a mean of zero and a
variance of one (the characteristics are standardized in the cross-sectional dimension), it is easy to see that the first
row of (B′t−1Bt−1)−1B′t−1 sums to one, and that each of its remaining rows sums to zero. So the first element of f t is
the excess return on a unit-cost portfolio (the equally-weighted market index) and the remaining elements are excess
returns on zero-cost portfolios (characteristic-based hedge portfolios).
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is more than double the mean for any other factor in terms of magnitude. However, the market

factor is unique in the sense that it entails long positions in all of the individuals stocks. Each of the

remaining seven factors is the return on a zero-cost portfolio that has negative weights for roughly

half of the stocks and positive weights for the others. So one might anticipate finding that these

factors have smaller absolute means (and lower volatilities) than the market.

Notice that the pattern of the mean excess returns is consistent with the results of the Fama-

MacBeth regressions in Table 3. Specifically, the mean returns are positive for the market, value,

profitability, and sales factors, and negative for the size, investment, accruals, and offerings factors.

This pattern is expected because the mean excess portfolio returns are the average slope coefficients

that would be obtained by fitting Fama-MacBeth regressions using the standard values of the char-

acteristics as regressors. In other words, the mean excess return for a given factor is an estimate of

the marginal effect of a one standard deviation increase in the value of the associated characteristic

(loading) on conditional expected excess stock returns.

None of the other distributional properties of the factors stands out as especially noteworthy.

Several factors display evidence of mild skewness. The size factor, for example, has an estimated

skewness of −1.71. But the return distributions appear to be reasonably symmetric on the whole.

The sample correlations between the factors are fairly low in general. The market and offerings

factors have the largest correlation at 55%. However, the majority of the correlations are less than

20% in magnitude. The correlations are relatively weak because every factor except one is explicitly

designed to capture the marginal explanatory power of a particular characteristic for the cross-

section of excess stock returns. In general, the weak correlations are broadly consistent with the

view that each factor represents a distinct source of common variation in excess returns.

4. Parameter Estimates and the Cross-Section of Covariance Risk

Table 5 reports estimates of the parameters that determine the dynamics of the conditional variances

and conditional covariances under the FF-MGARCH model. I begin with the estimates for the

full sample, which are shown in the first six columns of the table. The upper section presents the

GARCH(1,1) estimates for the conditional factor variances. As anticipated, the results indicate that

the conditional variances are quite persistent. The sum of β̂h,k and α̂h,k (the estimated coefficients

on the lagged conditional variance and lagged squared demeaned excess return for the kth factor)
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ranges from 0.74 to 0.97. This finding is in line with evidence from the volatility modeling literature,

which overwhelmingly points to strong persistence in stock return volatility.

Note, however, that several of the α̂h,k values are larger than those usually reported in studies

that fit GARCH(1,1) models to stock returns. Together with the other estimates, these values are

indicative of autocorrelations for the squared demeaned factors that are fairly large. For example,

the estimates translate into an estimated first-order autocorrelation of 0.52 in the squared demeaned

value factor. Typically, the estimates of GARCH(1,1) parameters for stock returns imply a first-

order autocorrelation of around 0.2 or lower for squared demeaned returns. Because the factors are

excess returns on portfolios with characteristic-based weights, the results indirectly suggest that the

characteristics are cross-sectionally related to the volatility of individual excess stock returns.

The parameter estimates for the no-microcaps sample display the same general patterns, but

some changes are evident. First, the estimates of volatility persistence display less variation across

factors. The sum of β̂h,k and α̂h,k ranges from 0.90 to 0.98. Second, the estimates of α̂h,k tend to

be smaller than those obtained using the full sample. But the results still point to autocorrelations

for the squared demeaned factors that are fairly large. In the case of the value factor, for instance,

the estimates translate into an estimated first-order autocorrelation of 0.53. Overall the evidence

suggests that the volatility dynamics of the factors extracted from the no-microcaps sample are

similar to those of the factors extracted from the full sample.

The middle section of Table 5 presents the GARCH estimates for conditional error variances.

The sum of β̂d and α̂d for the full sample is 0.97, which is again consistent with strong volatility

persistence. Although the estimated value of α̂d, which is 0.42, may seem unusually large, the

interpretation of this estimate differs from that of α̂h in the GARCH(1,1) specifications. Recall

that αd determines how dt responds to an increase in e′tet/(N −K). Under the fundamental factor

structure, e′tet/(N − K) is akin to a realized variance that converges in probability to dt−1 as

N → ∞. Hence, it is not surprising to find that the weight placed on this quantity is relatively

large. Dropping microcap stocks from the sample has little impact on either of the estimates.

The lower section of Table 5 presents the estimates for the RCC specification of conditional

factor correlation matrix. The results suggest that the conditional factor correlations display a level

of persistence on par with that of the conditional factors variances. In particular, the elements

of (α̂cα̂
′
c)

1/2 + (β̂cβ̂
′
c)

1/2, which determine the estimated persistence of the conditional covariances
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between the rotated versions of the standardized factors, range from 0.57 to 1.00 (rounded to two

decimal places), with most exceeding 0.8. In addition, most of the estimated persistence measures

increase when microcap stocks are excluded from the sample.

4.1. Cross-section of covariance risk

In view of the parameter estimates, it seems likely that the elements of Ht experience long swings

away from their unconditional expected values. The FF-MGARCH model implies that, in general,

such swings are accompanied by a shift in the entire cross-section of conditional covariance risk

for individual stocks. But how well do the firm characteristics capture cross-sectional differences

in covariance risk? I use density plots to provide some initial insights on this question. First, I

randomly pick 250 stocks each month from the set of available stocks for the month. Second, I

record the estimated conditional covariances between the excess returns on the selected stocks and

the fundamental factors for every month in the sample period. Third, I estimate the unconditional

density of conditional covariances with each factor. Figure 1 plots these density estimates for both

the full and no-microcaps samples.

The plot for the market factor has some interesting implications. Under the FF-MGARCH model,

all of the cross-sectional variation in the conditional covariance of excess stock returns with the

market factor is explained by the conditional correlations between this factor and the characteristic-

based factors (the market factor has a loading of 1 for every stock). Yet the conditional covariance of

excess returns with the market displays wide variation across stocks. Indeed, it displays more cross-

sectional variation than the conditional covariance of excess returns with any other factor. Dropping

microcap stocks from the sample shifts the plot to the left, but the magnitude of the shift is relatively

small. Thus the model points to substantial cross-sectional variation in conditional CAPM betas

that is directly tied to cross-sectional differences in the values of the firm characteristics. This

implication of the model is examined in more depth later on.

Because the conditional loadings for the remaining factors are standardized, the density plots can

be used to get a rough idea of the relative importance of each factor in capturing the comovements

of excess stock returns. The size and value factors appear to display stronger explanatory power

than the other factors, although much of the strength of the size factor appears to be associated

with microcap stocks. But the plots suggest that all of the factors have some ability to capture the
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comovements of excess returns. Of course these visual comparisons are only suggestive.

To dig deeper, I compare the model-based estimates of the unconditional covariances to the

corresponding sample covariances. Consider, for example, the unconditional covariance with the

market factor. I start by forming 50 equally-weighted portfolios that are rebalanced every month.

The portfolios are constructed by sorting the set of available stocks for the month in ascending order

of the estimated conditional covariance with the market. Once I have determined the composition

of each portfolio for every month in the sample period, I use the fitted conditional moments for

individual excess stock returns to construct the fitted conditional expected excess portfolio returns

and the fitted conditional covariances of the excess portfolio returns with the market factor. Fi-

nally, I use the fitted conditional moments of the excess portfolio returns to derive estimates of the

unconditional covariances of the excess portfolio returns with the market factor.12

Figure 2 illustrates the relation between the model-based estimates of the unconditional covari-

ances and the corresponding sample covariances. If the FF-MGARCH model is correctly specified,

then the observed differences between the two sets of covariance estimates arise solely from estima-

tion error. For the most part, the model-based estimates of the unconditional covariances line up

pretty well with the sample covariances. The most notable exception is for the size factor. The

model-based estimates for this factor are larger than the sample covariances at both ends of the

spectrum. This finding suggests a moderate degree of specification error with respect to the size

factor, perhaps due to the presence of neglected nonlinearity in the relation between log ME and

covariance risk. On the whole, however, the comparisons are not unfavorable to the model.

It is also clear that the extent to which the sorting procedure spreads the unconditional covari-

ances depends very much on the factor under consideration. Sorting on the estimated conditional

covariance with the market produces a wide spread in the estimated unconditional covariances with

this factor, which is consistent with the evidence from Figure 1. The range of estimated covariances

produced by the size- and value-based sorts is also fairly large. In comparison, the accruals-based

sort produces a very modest spread in estimated covariances with the accruals factor.

Although the scatterplots in Figure 2 confirm that the FF-MGARCH model captures cross-

sectional differences in covariances risk, they do not tell us whether the differences in covariances

12This is straightforward using the relation cov(x, y) = E[cov(x, y|z)] + cov(E(x|z),E(y|z)), where x , y, and z are
random variables defined on the same probability space.
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across firms translate into cross-sectional variation in expected excess stock returns. Even if one

presumes that covariance risk is priced, the range of estimated covariances for a given factor may not

be a reliable indicator of its importance in explaining the cross-section of expected excess returns,

because the associated price-of-risk might be relatively large or quite small. Accordingly, I now turn

to an examination of the price-of-risk estimates produced by the model.

5. Covariance Risk and the Cross-Section of Expected Excess Returns

Table 6 reports the price-of-risk estimates for the fundamental factors. All of the estimates for the

full sample (panel A) are statistically significant at the 1% significance level, with t-statistics that

range from 2.93 to 8.07 in absolute value. Thus the analysis indicates that all of the conditional factor

covariances help to explain the cross-sectional variation in excess individual stock excess returns.

The magnitude of the estimates ranges from 0.08 for the market factor to 0.31 for the accruals

factor, with negative signs for the size, investment, accruals, and offerings factors. As anticipated,

the sign of each estimate matches that of the corresponding factor mean in Table 4.

Recall that under the proposed version of exact factor pricing, market risk makes the same

contribution to the conditional expected excess return of every stock. The estimated value of this

contribution is 0.08 times the estimated conditional variance of the component of the market factor

that is conditionally uncorrelated with the remaining factors. To help put this in context, the R-

squared for a time-series regression of the excess market return on the remaining factors is nearly

50%. Using this information along with the sample volatility of the excess market return (about 6%

per month) suggests that, on average, market risk contributes around 0.08 ∗ 36/2 = 1.4 percentage

points per month to expected excess stock returns. Hence the results point to a substantial reward

for bearing the component of market risk that is pervasive across all stocks.

Interestingly, however, the estimates imply that the reward for bearing other types of risk is

even higher on a per-unit basis. The estimated price of risk for the accruals factor, for example, is

almost quadruple that for the market factor. Although this finding is not necessarily inconsistent

with rational pricing, it is difficult to understand why investors would demand to be compensated so

highly for the covariance of excess stock returns with an accruals-based factor. There may ultimately

be a way to reconcile this finding with the predictions of asset pricing theory, but doing so would

require a mechanism that links accruals to systematic risk in a persuasive fashion.

26



To check the stability of the results, I compare the prices-of-risk estimates obtained using three

equal-length subperiods: July 1963 to April 1981, May 1981 to February 1999, and March 1999 to

December 2016. The estimates clearly display nonnegligible differences across subperiods. Nonethe-

less, the basic message of the results is not overly sensitive to the choice of subperiod. The sign of

the subperiod estimates is consistent for seven of the eight factors. The lone exception is the sales

factor, whose price-of-risk estimate is negative for the first subperiod, and positive for the second

and third subperiods. But the estimate for the first subperiod is statistically indistinguishable from

zero. The most recent of the three subperiods generally produces the smallest absolute t-statistic

for each factor. Nonetheless, I find that six of the eight estimates for this subperiod are statistically

significant at the 10% level, and five of these are statistically significant at the 5% level.

The price-of-risk estimates for the no-microcaps sample are generally smaller in magnitude than

those for the full sample. This finding suggests that the cross-sectional relation between the char-

acteristics and covariance risk is weaker for stocks that have relatively high market capitalization.

Even so, the estimates remain statistically significant for all but two of the factors. The lack of

significant results for the value and sales factors may to some extent reflect an overall reduction

in the precision of the price-of-risk estimates that is caused by excluding microcap stock from the

analysis. Dropping these stocks reduces the number of available observations by around 60%.

5.1. Long-term predictive ability of fitted conditional expected excess returns

As previously noted, it is questionable whether rational pricing can be regarded as a plausible expla-

nation for the results reported in Table 6. Ball et al. (2015) suggest a straightforward way to develop

additional insights in this regard. In particular, they point out that long-horizon regressions can

assist in differentiating between rational and irrational explanations for the cross-sectional predic-

tive ability of firm characteristics, such as operating profitability, for individual stock returns. Their

basic argument is that “mispricing is more likely to be corrected over longer horizons,” whereas

expected stock returns “are likely to be more stationary and, hence, the informativeness of past

profitability measures for future returns is likely to persist longer.” Because their long-horizon re-

gressions reveal that the cross-sectional relation between operating profitability and stock returns

persists for a large number of years, they conclude that the evidence is “difficult to reconcile with

market mispricing being the explanation for operating profitability’s predictive power.”
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Table 7 presents a similar analysis for the FF-MGARCH model. First, I use the model to

construct the fitted expected excess return for each stock that appears in the dataset for month

t − l, where l ∈ {1, 6, 12, 34, 36, 60, 120}. Second, I identify the subset of stocks that appear in the

dataset for every month between t − l and t. Third, I use the data for this subset of stocks to fit

cross-section regressions. The dependent variable is either the excess stock return for month t, or

the average excess stock return for months t− l + 1 to t. The explanatory variables are a constant

and the fitted conditional expected excess stock return for month t− l. I estimate the regression for

every month in which it is feasible, and report the average estimated intercept and average estimated

slope for both the full sample (panel A) and the no-microcaps sample (panel B).

The results in columns (1) to (5) of panel A are for the regressions that use monthly excess

stock returns as the dependent variable. Column (1) reports the results for one-step-ahead forecasts

(l = 1). The average estimated intercept is −0.29 with a t-statistic of −1.13, and the average

estimated slope is 0.98 with a t-statistic of 9.20. Because the former is statistically indistinguishable

from zero and the latter is statistically indistinguishable from one at conventional significance levels,

I cannot reject the hypothesis that the one-step-ahead forecasts of excess returns are unbiased and

efficient. Although the average value of the regression R2 is very low (only 1%), this is the anticipated

finding in view of previous results. Specifically, the average R2 produced by the Fama-MacBeth

regression that uses the full set of characteristics as regressors, which is shown in column (3) of

Table 3, is only 3.4%. It is not surprising, therefore, that the fitted conditional expected excess

returns explain only a small fraction of the cross-sectional variation in monthly excess returns.

The average estimated slope and average regression R2 steadily decrease as the forecast horizon

increases from one month to three years. The decline in the average estimated slope is consistent

with cross-sectional mean reversion in conditional expected excess stock returns. It indicates that

the multi-step-ahead forecasts of excess returns (the fitted values for the regression) display a lower

cross-sectional dispersion than the fitted conditional expected excess returns. One expects the

average regression R2 to fall as l increases, but it is notable that the explanatory power of the

model, as measured by the t-statistic of the average estimated slope, remains highly statistically

significant for all forecast horizons. Thus the cross-sectional relation between the fitted conditional

expected excess returns and future realized excess returns persists for at least 3 years.

The results for the regressions that use average excess returns as the dependent variable are
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shown in columns (6) to (10). Column (6) reports the results for one-step-ahead forecasts of average

annual excess returns (k = l = 12). The average estimated intercept is −0.12 with a t-statistic of

−0.43, and the average estimated slope is 0.93 with a t-statistic of 8.99. The most notable change

from results in column (1) is that the regression R2 increases to 3.1%. This increase is qualitatively

consistent with strong persistence in conditional expected excess returns. By averaging the excess

stock returns over time we reduce noise, and the reduction in noise should improve the signal-to-noise

ratio if the conditional expected excess returns are sufficiently persistent.

The average estimated slope steadily decreases as the horizon used to compute average excess

returns increases, which is again suggestive of cross-sectional mean reversion in conditional expected

excess stock returns. But the regression R2 displays the opposite behavior as k increases, steadily

rising from 3.1% for one-year average returns to 7.0% for ten-year average returns. If one looks

favorably on the argument that mispricing is more likely to be corrected over longer horizons, then

the regression evidence runs counter to typical mispricing stories. It is difficult to envision how

overreaction or underreaction could generate an increase in the regression R2 as the horizon used to

compute average excess returns increases all the way out to 10 years.

Dropping microcap stocks from the sample used to fit the regressions alters the findings to some

extent, but the general message of the results remains the same. The average estimated slope and

average regression R2 decrease as the forecast horizon increases, which is the anticipated finding if

there is cross-sectional mean reversion in conditional expected excess stock returns. Conversely, the

average regression R2 increases with the horizon that is used to compute average excess returns.

Thus the key takeaways are insensitive to the sample composition.

5.2. Properties of portfolios formed on fitted conditional estimated expected excess returns

Earlier I used portfolio sorts to investigate the implications of the FF-MGARCH model with respect

to covariance risk. A similar approach is useful for investigating the model’s pricing performance.

If the constant-price-off-risk specification captures the cross-sectional variation in expected excess

stock returns, then using the fitted conditional expected excess returns to group stocks into portfolios

should be an effective strategy for spreading average excess portfolio returns. Suppose, for example,

that we want to form 25 portfolios in month t that will be held until month t+ 1. We can use the

fitted value of mt (the one-step-ahead forecast of rt+1 under the model) to sort the available stocks
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in ascending order of estimated expected excess returns and group them accordingly (bottom 4%

in portfolio 1, next 4% in portfolio 2, etc.). By repeating the sorting and grouping process for each

month in the sample period, we obtain the desired time series of excess portfolio returns. Table 8

examines the properties of portfolios formed on fitted conditional expected excess returns.

The initial ten columns report the sample mean and sample volatility of the excess portfolio

returns, followed by their sample covariances with the market, size, value, profitability, investment,

accruals, offerings, and sales factors. The results in the first column highlight the economic signif-

icance of the cross-sectional explanatory power of the constant-price-off-risk specification. Despite

the low R-squared values reported in Table 7, the sorting scheme produces a wide spread in average

excess portfolio returns. The average excess return ranges from a low of −0.35% per month for

portfolio 1 to 2.99% per month for portfolio 25. Although the increase in the average excess return

with the portfolio number is not quite monotonic, the results leave little doubt that the estimates

of mt convey considerable information about the relative performance of stocks in period t+ 1.

The results also highlight the exceedingly poor fit of the CAPM. The sample covariance between

the excess portfolio returns and the market factor is largely flat, showing only slight variation across

most of the portfolios. It increases somewhat for portfolios at the upper end of the cross-sectional

distribution of average excess returns. But the same is true for portfolios at the lower end of the

distribution. The lack of any clear relation between the estimated market betas and average excess

portfolio returns brings the pricing performance of the CAPM into stark focus.

In contrast to the estimated market betas, the sample covariances of several of the characteristic-

based factors with the excess portfolio returns display clear cross-sectional trends. For example, the

sample covariances rise steadily as the portfolio number increases for the value and sales factors,

and fall steadily for the investment factor. In other cases there appears to be a non-monotonic

relation between the sample covariances and portfolio number. Note, however, that it is difficult to

interpret these findings in isolation because the characteristic-based factors are correlated with one

another. Altering the covariance risk of a portfolio with respect to a given factor will typically alter

its covariance risk with respect to all factors. Thus it is not yet clear whether the observed patterns

in the sample covariances are in line with the predictions of the FF-MGARCH model.

The last ten columns of the table report the estimates needed to assess the evidence in this regard.

Specifically, they contain the estimates of the unconditional expected excess portfolio returns, the
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unconditional volatilities of the excess portfolio returns, and the unconditional covariances between

the excess portfolio returns and factors that are implied by the fitted conditional means, fitted

conditional variances, and fitted conditional covarainces from the FF-MGARCH model. If the FF-

MGARCH model is correctly specified, then the fitted conditional moments can be used to construct

consistent estimators of the unconditional moments provided that the parameters of the model are

estimated consistently. Hence, the differences between the sample moments and the model-based

estimates can be used as specification diagnostics.

In general, the results paint a reasonably favorable picture of the pricing performance of the

model. Like the average excess portfolio returns, the average values of the fitted conditional expected

excess returns increase steadily as the portfolio number increases, rising from −0.91% per month

for portfolio 1 to 2.64% per month for portfolio 25. The absolute pricing error is below 20 basis

points per month for a majority of portfolios, but it increases somewhat at both ends of the cross-

sectional distribution of average excess returns. The largest absolute pricing errors are for the first

two portfolios: 56 and 47 basis points per month, respectively.

Similarly, the discrepancies between the sample covariances and the model-based estimates of the

unconditional covariances are fairly small in general. Consider, for instance, the observed pattern

for the market factor. The sample covariance with the market factor starts at 43.0 for portfolio

1, falls to 35.2 for portfolio 10, and then slowly rises to 49.1 for portfolio 25. In comparison, the

model-based estimate of the unconditional covariance starts at 46.4 for portfolio 1, falls to 37.3 for

portfolio 8, and then slowly rises to 44.9 for portfolio 25. The results for the other seven factors are

similar. It is apparent that, on the whole, the cross-sectional patterns in the model-based estimates

mirror those in the sample covariances reasonably well.

Figure 3 provides additional evidence on the pricing performance of the model. It illustrates how

the relation between the average excess returns and average fitted conditional expected excess returns

changes as the number of portfolios formed via the sorting scheme increases. Some deterioration is

apparent as the number of portfolios rises from 25 in the top-left panel to 200 in the bottom-right

panel, but the drop off in performance is relatively slow. The sample correlation of the average

excess portfolio return with the average value of the fitted conditional expected excess portfolio

return falls from 0.943 for 25 portfolios to 0.895 for 200 portfolios. Overall the subset of stocks that

have the highest estimated conditional expected excess returns appear to be the most troublesome
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from a pricing perspective. The average excess return on the portfolio that contains these stocks is

substantially higher than the corresponding model-based estimate in every case, and the magnitude

of the pricing error becomes larger as the number of portfolios increases.

5.3. Properties of portfolios formed on fitted conditional covariances

One drawback of forming portfolios on the basis of fitted conditional expected excess stock returns

is that both the low- and high-numbered portfolios tend to contain stocks that are subject to large

estimation errors. To see why, consider a scenario in which every stock has exactly the same expected

excess return. The sorting is performed purely on estimation error in this case, so it follows that

the error in estimating the expected excess portfolio return is maximized for the bottom and top

portfolios. This “error maximization” feature of the sorting scheme is undesirable because it is likely

to produce large pricing errors for the bottom and top portfolios that are not an accurate reflection

of the true performance of the model.

I therefore consider a second set of 25 portfolios that are formed by sorting on the fitted con-

ditional covariances with the market factor. The motivation for this alternative sorting scheme is

simple. Under the FF-MGARCH model, the conditional covariances with the market (or, equiva-

lently, the conditional market betas) have no direct bearing on conditional expected excess stock

returns. To the extent that a relation exists, it arises indirectly due to correlations between the

market factor and the other factors in the model. Hence, sorting on the fitted conditional covari-

ances should distribute the estimation error more evenly than sorting on fitted conditional expected

excess returns. Table 9 summarizes the properties of the resulting portfolios.

The general pattern of the results gives the initial impression of lending support to the CAPM.

First, the sample covariance between the excess portfolio returns and the market factor increases

monotonically from a low of 20.1 for portfolio 1 to a high of 57.3 for portfolio 25, which translates

into the estimated market beta rising from 0.5 to 1.5 based on the estimated volatility of this factor

(Table 4). Second, the average portfolio excess return increases from a low of 0.58% per month for

portfolio 1 to a high of 1.25% per month for portfolio 25. The increase is not quite monotonic, but

it lines up with the estimated market betas pretty well.

However, it is apparent that most — if not all — of the cross-sectional variation in the estimated

market betas is explained by firm characteristics. Firms with low estimated market betas tend to
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have high market capitalizations, low book-to-market ratios, high profitability, low asset growth, low

accruals, low share growth, and low sales-to-market ratios, while those with high estimated market

betas tend to have the opposite characteristics. The estimated volatility of the excess portfolio

returns displays the same general pattern, increasing from a low of 4.15% per month for portfolio

1 to a high of 10.43% per month for portfolio 25. So sorting on the estimated conditional betas is

clearly effective from the standpoint of spreading portfolio volatility.

The estimates of the unconditional moments implied by the fitted conditional means, condi-

tional variances, and conditional covariances provide further evidence that the firm characteristics

capture the cross-sectional variation in the estimated market betas. The model-based estimate of

the unconditional covariance between the excess portfolio returns and the market factor increases

monotonically from 24.2 for portfolio 1 to 62.5 for portfolio 25. This pattern mimics that displayed

by the sample covariances with the market factor. The correspondence is somewhat looser for the

model-based estimates of unconditional expected excess returns. The average value of the fitted

conditional expected excess return undergoes a fairly sharp decline from portfolio 20 to portfolio 25,

while the average excess portfolio return shows no such pattern. On the whole, however, the model

has a good deal of success in replicating the cross-sectional patterns in both the sample covariances

with the factors and the average excess portfolio returns.

5.4. Fundamental factors in the APT framework

In view of the evidence from the portfolio sorts, one might wonder how the pricing performance

of the FF-MGARCH model compares to that of other models that feature prominently in the

asset pricing literature. For instance, the Fama and French (2015) five-factor model, which is an

unconditional specification of the form envisioned by the APT of Ross (1976), has recently attracted

a lot of attention. It is a natural benchmark in the present setting because the factors consist of

the excess value-weighted market return along with the excess returns on four characteristic-based

hedge portfolios. Tests of the model typically focus on the statistical significance of the estimated

intercepts obtained by regressing excess stock or portfolio returns on the five factors.

To benchmark the performance of the FF-MGARCH model against that of the five-factor model,

I regress excess portfolios returns on the fundamental factors, and compare the resulting intercepts

to those obtained by fitting analogous regressions for the Fama and French (2015) factors. Table
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10 presents the side-by-side comparison. I report results for both the 25 portfolios formed on fitted

conditional expected excess stock returns (Table 8) and the 25 portfolios formed on fitted conditional

covariances of excess stock returns with the market factor (Table 9). The table omits the estimated

slope coefficients and associated t-statistics to conserve space. The estimated intercept for each

regression is shown first, followed by its t-statistic and the regression R2.

Columns (1) to (6) present the results for the 25 portfolios formed on fitted conditional ex-

pected excess returns. The specifications that use the fundamental factors as regressors produce a

statistically-significant intercept for most of the portfolios. Thus there is ample evidence against

exact factor pricing in the APT framework. In addition, the estimated intercepts display an easily

discernible pattern across portfolios. Portfolios that have either relatively low or quite high average

excess returns produce positive estimated intercepts, while those that have intermediate average

excess returns produce negative estimated intercepts.

The results obtained using the Fama and French (2015) factors help to put these findings in

perspective. The estimated intercepts for these factors generally have smaller absolute t-statistics

that those for the fundamental factors. Indeed, the estimated intercepts are statistically insignificant

at the 10% level for all but eight of the portfolios. But a reduction in the statistical significance of

the estimated intercepts is not necessarily an indication of an improvement in pricing performance.

Note in particular that the R2 value using the Fama and French (2015) factors is always lower than

that obtained with the fundamental factors. Consequently, the standard errors of the estimated

intercepts tend to be substantially larger than those obtained with the fundamental factors.

The picture that emerges if we assess goodness of fit using the mean absolute pricing error

(MAPE) is considerably more favorable to the FF-MGARCH model. The five-factor model produces

a MAPE of 29.3 basis points per month, which is larger than the 21.7 basis points per month obtained

with the fundamental factors. In addition, the average pricing error for the five-factor model is 16.6

basis points per month, while that for the fundamental factor specification is less than 0.1 basis

points per month. Thus the fundamental factors fare reasonably well in explaining the cross-section

of average excess stock returns in a relative sense.

A potential concern with such comparisons is that the portfolios are formed on the fitted condi-

tional expected excess returns produced by the FF-MGARCH model. Perhaps the five-factor model

is at an inherent disadvantage in this context because the sorting scheme is designed to maximize
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the dispersion in average excess returns based on the characteristic-based patterns in the data.

This should be less of a concern for the portfolios formed on the estimated conditional covariances

of excess returns with the market factor, because the market factor plays no role in explaining

cross-sectional differences in expected excess returns under the FF-MGARCH model.

Columns (7) to (12) of Table 10 present the results for this second set of portfolios. It is apparent

that the fundamental factors perform better in this case. First, all but three of the estimated

intercepts are statistically insignificant at the 10% level. Second, the MAPE is only 8.3 basis points

per month. These improvements may seem unremarkable given the reduced spread in the average

excess returns relative to the first set of portfolios. But consider the results for the five-factor model.

Nine of the estimated intercepts are statistical significant at the 10% level, and the MAPE is 17.8

basis points per month. So we again conclude that the fundamental factors fare reasonably well in

explaining the cross-section of average excess stock returns.

6. Conclusions

The three-factor model of Fama and French (1993) has been a mainstay of the empirical asset

pricing literature for over 20 years. Building on the idea of using the returns on characteristic-

based portfolios as risk factors, I develop a new type of MGARCH model that has a fundamental

factor structure for individual excess stock returns. Because the model assumes that the loadings on

the fundamental factors are observable firm characteristics, it can easily be estimated for systems

that contain thousands of individual stocks. Although it is first and foremost a risk model, exact

factor pricing can be incorporated and tested by adopting a suitable specification for the vector of

conditional expected excess stock returns.

My empirical investigation of the model’s performance reveals some evidence of misspecification.

But it would be very surprising if this were not the case. One can hardly expect a parsimoniously-

parameterized MGARCH model to unerringly capture the dynamics of excess returns for thousands

of individual stocks. The question is not whether the proposed model is misspecified, but whether it

provides a reasonably accurate description of the process that generates excess stock returns. The ev-

idence is quite encouraging from this perspective. Accordingly, the FF-MGARCH model represents

a promising addition to the small set of existing MGARCH models that are designed to capture time-

series changes in conditional variances, covariances, and correlations in high-dimensional settings.
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In view of its tractability and demonstrated performance, it is likely to find a host of applications

in empirical asset pricing, portfolio selection, risk management, and related areas.
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Table 1
Firm characteristics used as factor loadings

log ME The first characteristic is the logarithm of market equity (ME). The ME of a firm is its
stock price (CRSP item PRC) multiplied by the number of shares outstanding (CRSP item
SHROUT). It is measured in millions of dollars. This characteristic is updated monthly,
and is assumed to be known immediately (i.e., the loading on the size factor for month t+ 1
depends on the ME for month t).

log BE/ME The second characteristic is the logarithm of book equity (BE) to market equity. The
BE of a firm is shareholders equity (Compustat item SEQ), plus balance-sheet deferred
taxes and investment tax credit (Compustat item TXDITC), if available, minus the book
value of preferred stock, which is either its redemption value (Compustat item PSTKRV),
liquidation value (Compustat item PSTKL), or par value (Compustat item PSTK), in this
order of preference. This definition follows Fama and French (1992). The BE is updated
annually, and is assumed to be known four months after the fiscal year end (i.e., the loading
on the value factor for month t + 1 depends on the BE for month t − 4 or earlier). If the
shareholders equity is missing, I substitute common equity plus preferred stock (Compustat
item CEQ plus item PSTK), if available, or total assets minus total liabilities (Compustat
item AT minus item LT), if available, in this order of preference.

GP/BA The third characteristic is gross profits (GP) to beginning-of-year book assets (BA). The
GP of a firm is the difference between total revenue and cost of goods sold (Compustat item
REVT minus item COGS). The BA of a firm is its total assets (Compustat item AT). This
characteristic is updated annually, and is assumed to be known four months after the fiscal
year end (i.e., the loading on the profitability factor for month t+ 1 depends on the GP for
month t− 4 or earlier).

log AG The fourth characteristic is the logarithm of the gross asset growth rate over the fiscal year
(AG). Assets are book assets (Compustat item AT). This characteristic is updated annually,
and is assumed to be known four months after the fiscal year end (i.e., the loading on the
investment factor for month t+ 1 depends on the AG for month t− 4 or earlier).

CA/BA The fifth characteristic is current accruals (CA) to beginning-of-year book assets. The CA
of a firm is the annual change in working capital. Working capital is current assets net
of cash (Compustat item ACT minus item CHE) minus current liabilities net of long-term
debt (Compustat item LCT minus item DLC). This characteristic is updated annually, and
is assumed to be known four months after the fiscal year end (i.e., the loading on the accruals
factor for month t+ 1 depends on the CA for month t− 4 or earlier).

log SG The sixth characteristic is the logarithm of the gross growth rate of split-adjusted common
shares over the prior two fiscal years (SG). Split-adjusted common shares is common shares
outstanding times the factor to adjust shares for stock splits (Compustat item CSHO multi-
plied by item AJEX). This characteristic is updated annually, and is assumed to be known
four months after the fiscal year end (i.e., the loading on the offerings factor for month t+ 1
depends on the SG for month t− 4 or earlier).

NS/ME The seventh characteristic is net sales (NS) to market equity (NS is Compustat item SALE).
The numerator is updated annually, and is assumed to be known four months after the fiscal
year end (i.e., the loading on the sales factor for month t+ 1 depends on the NS for month
t− 4 or earlier.

The table describes the CRSP and Compustat data items that define the firm characteristics. The standardized values
of the characteristics are used as factor loadings in the FF-MGARCH model. I refer to the returns on the associated
hedge portfolios as the size, value, profitability, investment, accruals, offerings, and sales factors, respectively.
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Table 2
Descriptive statistics for individual stock returns and firm characteristics

Panel A: All firms
Percentiles

Mean Vol Skew 1st 10th 25th 50th 75th 90th 99th

Return (%) 1.24 18.01 6.71 −38.60 −15.28 −6.67 0.00 7.29 17.36 57.32
log ME 4.67 2.19 0.30 0.33 1.93 3.06 4.52 6.17 7.63 10.12
log BE/ME −0.72 1.16 −0.90 −4.02 −2.28 −1.24 −0.52 0.04 0.52 1.44
GP/BA 0.36 0.42 0.70 −0.74 0.02 0.11 0.32 0.56 0.85 1.67
log AG 0.12 0.38 1.91 −0.79 −0.19 −0.02 0.08 0.20 0.47 1.67
CA/BA −0.11 0.28 −3.37 −0.86 −0.45 −0.15 −0.05 0.00 0.09 0.47
log SG 0.11 0.40 4.58 −0.35 −0.16 −0.01 0.01 0.11 0.39 2.10
NS/ME 2.34 4.01 4.94 0.00 0.13 0.42 1.06 2.52 5.53 20.10

Panel B: No microcaps
Percentiles

Mean Vol Skew 1st 10th 25th 50th 75th 90th 99th

Return (%) 1.08 12.32 1.21 −31.66 −11.63 −4.97 0.77 6.75 13.93 36.61
log ME 6.62 1.56 0.41 3.68 4.67 5.47 6.53 7.60 8.71 10.72
log BE/ME −0.84 0.97 −0.96 −3.88 −2.07 −1.32 −0.70 −0.19 0.22 0.92
GP/BA 0.38 0.37 1.15 −0.46 0.05 0.13 0.32 0.55 0.83 1.58
log AG 0.16 0.31 3.03 −0.60 −0.05 0.03 0.10 0.20 0.42 1.46
CA/BA −0.11 0.26 −4.18 −0.84 −0.44 −0.12 −0.05 −0.01 0.05 0.32
log SG 0.09 0.34 5.66 −0.31 −0.09 −0.01 0.01 0.10 0.29 1.74
NS/ME 1.48 2.13 6.31 0.00 0.18 0.41 0.87 1.74 3.25 9.98

The table reports the sample mean (Mean), sample volatility (Vol), sample skewness (Skew), and selected sample
percentiles for the dataset variables. The statistics in panel A are computed using all available firm-month observations
(the “full sample”). The statistics in panel B are computed using the subset of firm-month observations obtained by
excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms (the “no-microcaps sample”). The characteristics are the logarithm of
market equity in millions (log ME), the logarithm of the ratio of book equity to market equity (log BE/ME), the
ratio of gross profits to book assets (GP/BA), the logarithm of the growth in book assets over the year (log AG),
the ratio of current accruals to book assets (CA/BA), the logarithm of the growth in split-adjusted common shares
over two years (log SG), and the ratio of sales to market equity (NS/ME). All accounting variables are updated four
months after the end of the firm’s fiscal year, and all of the characteristics are winsorized monthly at the 1st and 99th
percentiles of their cross-sectional distribution. The sample period is July 1963 to December 2016.
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Table 5
Estimates of dynamic parameters for the FF-MGARCH model

All nonfinancial stocks No microcaps

Estimates Std. Errors Estimates Std. Errors

Factors βh αh βh αh βh αh βh αh

h
MAR

0.83 0.09 0.050 0.037 0.83 0.09 0.054 0.037
h

SIZ
0.46 0.28 0.263 0.089 0.82 0.11 0.048 0.032

hVAL 0.54 0.34 0.097 0.066 0.62 0.30 0.080 0.057
hPRO 0.58 0.20 0.158 0.058 0.77 0.13 0.131 0.050
h

INV
0.77 0.19 0.047 0.038 0.77 0.19 0.049 0.037

h
ACC

0.88 0.09 0.032 0.022 0.88 0.10 0.034 0.025
h

OFF
0.77 0.20 0.068 0.054 0.79 0.15 0.078 0.051

hSAL 0.83 0.14 0.038 0.030 0.84 0.12 0.058 0.039

Spherical errors βd αd βd αd βd αd βd αd

d 0.55 0.42 0.110 0.100 0.57 0.41 0.044 0.043

Standardized &
rotated factors βc αc βc αc βc αc βc αc

P
MAR,MAR

0.91 0.09 0.031 0.025 0.93 0.05 0.049 0.029
PSIZ ,SIZ 0.76 0.06 0.085 0.031 0.88 0.04 0.153 0.033
PVAL,VAL 0.86 0.05 0.093 0.031 0.87 0.09 0.054 0.033
P

PRO,PRO
0.98 0.02 0.019 0.008 0.85 0.04 0.080 0.021

P
INV ,INV

0.70 0.08 0.114 0.036 0.65 0.13 0.082 0.054
P

ACC ,ACC
0.91 0.04 0.052 0.021 0.92 0.05 0.047 0.019

P
OFF,OFF

0.85 0.04 0.107 0.025 0.88 0.04 0.051 0.016
PSAL,SAL 0.50 0.07 0.154 0.042 0.97 0.03 0.050 0.014

The table reports estimates of the dynamic parameters for the FF-MGARCH model. I assume that each element of

ht, the vector of conditional variances for the market, size, value, profitability, investment, accruals, offerings, and

sales factors, follows a GARCH(1,1) process, and incorporate exact factor pricing via GARCH-in-mean effects. The

coefficients on the lagged conditional variances are reported under βd and the coefficients on the lagged squared factor

innovations are reported under αd. I assume that the conditional covariance matrix of the errors, dtI, is described by a

GARCH process in which dt takes the form implied by specifying an ARMA(1,1) model for the cross-sectional average

of the squared errors. The coefficient on the lagged value of dt is reported under βd and the coefficient on the lagged

cross-sectional average of the squared errors is reported under αd. I assume that the conditional correlation matrix of

the factors, Rt, follows a multivariate rotated conditional correlation (RCC) process. The dynamics of Rt are specified

in terms of a recurrence relation for an auxiliary matrix P t that evolves as a function of the vector of standardized and

rotated factors, wt. The recurrence relation for diagonal elements of P t takes the same general form as that for the

condition GARCH(1,1) variances. The coefficients on the lagged diagonal elements of P t are reported under βc and the

coefficients on the lagged squared values of the standardized and rotated factors are reported under αc. The dynamics

of P t are fully determined by these parameters. I estimate the FF-MGARCH model via an iterative, multi-step,

likelihood-based procedure that assumes that individual excess stock returns follow a conditional multivariate normal

distribution. First, I obtain preliminary estimates of the dynamic parameters by treating the vector of conditional

factor means as constant (no GARCH-in-mean effects). Second, I use the fitted conditional variances and fitted

conditional correlations to obtain a preliminary estimate of the price-of-risk vector that characterizes the GARCH-in-

mean effects. Third, I use the preliminary estimate of the price-of-risk vector to update the estimates of the dynamic

parameters. Fourth, I use the updated estimates of the dynamic parameters to update the estimate of the price-of-risk

vector. The iterations continue in this fashion until convergence. I report two sets of parameter estimates: one for the

full set of NYSE, AMEX, and NASDAQ firms, and another obtained by excluding firms whose market equity for the

month is less than the 20th percentile of the monthly cross-sectional distribution of market equity for NYSE firms.

I use the quasi maximum likelihood estimator of the asymptotic covariance matrix to compute standard errors. The

sample period is July 1963 to December 2016.
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Table 6
Estimates of price-of-risk parameters for the FF-MGARCH model

Panel A: All firms

λ
MAR

λ
SIZ

λ
VAL

λ
PRO

λ
INV

λ
ACC

λ
OFF

λ
SAL

0.08 −0.17 0.11 0.27 −0.28 −0.31 −0.17 0.11
(8.07) (−7.25) (3.67) (5.45) (−7.08) (−4.15) (−2.96) (2.93)

Subperiod results

Jul 63 to Apr 81 0.09 −0.27 0.07 0.16 −0.23 −0.43 −0.55 −0.13
(5.56) (−6.51) (1.19) (1.88) (−2.55) (−3.62) (−4.32) (−1.60)

May 81 to Feb 99 0.09 −0.15 0.20 0.52 −0.71 −0.52 −0.05 0.27
(5.05) (−3.93) (3.47) (6.80) (−8.68) (−3.56) (−0.37) (3.75)

Mar 99 to Dec 16 0.07 −0.11 0.09 0.16 −0.19 −0.09 −0.09 0.10
(3.87) (−2.93) (2.33) (1.97) (−4.17) (−0.76) (−1.18) (1.91)

Panel B: No microcaps

λMAR λSIZ λVAL λPRO λIV λACC λOFF λSAL

0.07 −0.18 −0.03 0.12 −0.27 −0.21 −0.30 −0.03
(5.91) (−4.82) (−1.07) (2.76) (−6.21) (−3.41) (−4.28) (−0.52)

Subperiod results

Jul ‘63 to Apr ‘81 0.05 −0.29 0.03 0.06 −0.17 −0.09 −0.64 −0.16
(2.46) (−4.45) (0.58) (0.82) (−1.88) (−1.03) (−5.01) (−1.77)

May 81 to Feb 99 0.10 −0.08 −0.10 0.27 −0.45 −0.74 −0.32 0.04
(4.90) (−1.20) (−1.88) (3.73) (−5.13) (−5.83) (−2.33) (0.38)

Mar 99 to Dec 16 0.06 −0.17 0.00 0.02 −0.23 −0.06 −0.14 −0.03
(2.99) (−2.95) (0.05) (0.26) (−4.05) (−0.51) (−1.39) (−0.41)

The table reports estimates of the price-of-risk vector, λ, that appears in the conditional mean specification for the
FF-MGARCH model. The model assumes that each element of the vector of conditional variances for the market, size,
value, profitability, investment, accruals, offerings, and sales factors follows a GARCH(1,1) process. It incorporates
exact factor pricing via GARCH-in-mean effects. The price of risk for a factor is the incremental contribution to
conditional expected excess stock returns per unit of exposure to covariance risk with the factor. I estimate the FF-
MGARCH model via an iterative, multi-step, likelihood-based procedure that assumes that individual excess stock
returns follow a conditional multivariate normal distribution. First, I obtain preliminary estimates of the dynamic
parameters by treating the vector of conditional factor means as constant (no GARCH-in-mean effects). Second, I use
the fitted conditional variances and fitted conditional correlations to obtain a preliminary estimate of the price-of-risk
vector that characterizes the GARCH-in-mean effects. Third, I use the preliminary estimate of the price-of-risk vector
to update the estimates of the dynamic parameters. Fourth, I use the updated estimates of the dynamic parameters
to update the estimate of the price-of-risk vector. The iterations continue in this fashion until convergence. I report
two sets of parameter estimates: one for the full set of NYSE, AMEX, and NASDAQ firms, and another obtained
by excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms. I use the quasi maximum likelihood estimator of the asymptotic
covariance matrix to compute standard errors. The sample period is July 1963 to December 2016.
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Table 7
Cross-sectional forecasting performance of estimated expected stock returns

Panel A: All firms
1

k

k∑
j=1

rn,t+j−k = ρ1 + ρmm̂n,t−l + εn,t

Monthly returns (k = 1) Average of monthly returns (k = l)

l = 1 l = 6 l = 12 l = 24 l = 36 l = 12 l = 24 l = 36 l = 60 l = 120

¯̂ρ1 −0.29 −0.14 0.02 0.27 0.32 −0.12 0.04 0.15 0.31 0.58
(−1.13) (−0.53) (0.10) (1.10) (1.28) (−0.49) (0.18) (0.62) (1.30) (2.46)

¯̂ρm 0.98 0.88 0.84 0.66 0.57 0.93 0.89 0.83 0.69 0.49
(9.20) (7.50) (7.70) (6.25) (5.00) (8.99) (8.71) (8.28) (7.29) (5.36)

R̄2(%) 1.0 0.9 1.0 0.8 0.7 3.1 4.4 5.4 6.5 7.0
N̄ 3435. 3293. 3134. 2846. 2595. 3134. 2846. 2595. 2178. 1465.

Panel B: No microcaps

Monthly returns (k = 1) Average of monthly returns (k = l)

l = 1 l = 6 l = 12 l = 24 l = 36 l = 12 l = 24 l = 36 l = 60 l = 120

¯̂ρ1 0.09 0.23 0.14 0.23 0.48 0.17 0.22 0.28 0.32 0.44
(0.38) (1.03) (0.67) (1.04) (2.11) (0.78) (1.04) (1.33) (1.57) (2.16)

¯̂ρm 0.79 0.68 0.67 0.65 0.45 0.88 0.82 0.76 0.70 0.49
(4.91) (4.23) (4.05) (3.97) (2.76) (5.87) (5.66) (5.41) (5.35) (4.08)

R̄2(%) 1.5 1.4 1.4 1.2 1.0 2.9 3.7 3.9 4.5 5.4
N̄ 1408. 1283. 1194. 1066. 971. 1194. 1066. 971. 833. 612.

The table reports time-series averages of selected statistics for monthly cross-sectional regressions. The dependent
variable for the regressions is either the excess percentage stock return for month t, or the average excess percentage
stock return for months t − l + 1 to t. The explanatory variables are a constant and the fitted conditional expected
excess percentage stock return for month t− l. I fit the regressions as follows. First, I use the FF-MGARCH parameter
estimates to compute the fitted conditional expected excess return for each stock that has data for month t− l, where
l ∈ {1, 6, 12, 34, 36, 60, 120}. Second, I identify the subset of stocks that appear in the dataset for every month between
t − l and t. Third, I use the data for this subset of stocks to fit a cross-section regression for month t via OLS. I fit
the regression for every month from July 1963 to December 2016 for which it is feasible (the number of months with
available data depends on the values of k and l), and report the average values of the estimated coefficients, R-squared
statistic, and number of cross-sectional observations. Autocorrelation-robust versions of Fama and MacBeth (1973)
t-statistics are shown below the average estimated coefficients in parentheses (the monthly estimates of the coefficients
are serially correlated by construction for k > 1). The estimates reported in panel A are for the full set of NYSE,
AMEX, and NASDAQ firms. The estimates reported in panel B are for the subset of firm-month observations obtained
by excluding firms whose market equity for the month is less than the 20th percentile of the monthly cross-sectional
distribution of market equity for NYSE firms.

46



T
a
b
le

8
P

ro
p

e
rt

ie
s

o
f

e
x
c
e
ss

re
tu

rn
s

o
n

2
5

p
o
rt

fo
li
o
s

fo
rm

e
d

b
y

so
rt

in
g

o
n

e
st

im
a
te

d
c
o
n
d
it

io
n
a
l

e
x
p

e
c
te

d
st

o
ck

re
tu

rn
s

S
am

p
le

es
ti

m
at

es
of

u
n

co
n

d
it

io
n

al
m

o
m

en
ts

F
F

-M
G

A
R

C
H

es
ti

m
a
te

s
o
f

u
n

co
n

d
it

io
n

a
l

m
o
m

en
ts

C
ov

ar
ia

n
ce

s
w

it
h

fu
n

d
am

en
ta

l
fa

ct
o
rs

C
ov

ar
ia

n
ce

s
w

it
h

fu
n

d
a
m

en
ta

l
fa

ct
o
rs

�
M

ea
n

V
ol

f M
A
R

f S
IZ

f V
A
L

f P
R
O

f I
N
V

f A
C
C

f O
F
F

f S
A
L

M
ea

n
V

o
l

f M
A
R

f S
IZ

f V
A
L

f P
R
O

f I
N
V

f A
C
C

f O
F
F

f S
A
L

1
−

0.
35

8.
09

43
.0

1
−

6
.1

7
−

6.
30
−

1.
8
5

3.
0
7

0.
6
2

3.
7
2

0.
9
1

−
0.

9
1

9.
1
9

4
6
.3

5
−

4.
0
6
−

6
.9

2
−

1.
4
7

6.
1
3

0.
7
5

3.
7
4

0
.2

5
2

0
.1

5
7.

34
40
.7

6
−

5
.2

1
−

5.
17
−

1.
3
6

2.
5
3

0.
4
9

3.
2
3

1.
0
4

−
0.

3
2

7.
7
3

4
1
.5

2
−

3.
0
1
−

5
.6

8
−

0.
8
8

4.
2
8

0.
6
3

2.
9
9

0
.4

0
3

0
.1

1
6.

73
37
.7

8
−

4
.6

9
−

4.
70
−

1.
1
8

2.
3
7

0.
4
7

2.
9
2

0.
8
8

−
0.

0
4

7.
0
8

3
9
.5

2
−

2.
7
4
−

4
.9

9
−

0.
6
9

3.
4
1

0.
5
8

2.
6
5

0
.5

2
4

0
.2

8
6.

44
36
.7

3
−

4
.4

3
−

4.
40
−

1.
0
7

1.
9
9

0.
5
5

2.
6
8

0.
9
3

0.
1
6

6.
6
9

3
8
.3

7
−

2.
6
7
−

4
.4

6
−

0.
5
9

2.
8
5

0.
5
6

2.
4
3

0
.6

3
5

0
.3

5
6.

26
36
.6

1
−

4
.4

5
−

3
.9

5
−

0.
98

1
.8

4
0.

5
4

2.
5
1

1.
0
9

0.
3
1

6.
4
7

3
7
.8

3
−

2.
8
1
−

4
.1

2
−

0.
5
4

2.
4
8

0.
5
5

2.
3
1

0
.7

3
6

0
.3

9
6.

21
36
.1

9
−

4.
24
−

3
.9

5
−

0.
8
1

1
.7

0
0.

5
8

2.
4
4

0.
9
8

0.
4
3

6.
3
4

3
7
.4

9
−

2.
9
6
−

3
.8

6
−

0.
5
3

2.
1
9

0.
5
4

2.
2
4

0
.8

2
7

0
.4

8
6.

00
35
.3

5
−

3.
87
−

3
.4

2
−

0.
68

1
.6

1
0.

4
7

2.
2
4

1.
2
1

0.
5
2

6.
2
5

3
7
.3

1
−

3.
1
7
−

3
.6

3
−

0.
5
2

2.
0
0

0.
5
4

2.
1
9

0.
9
0

8
0
.5

3
5.

99
35
.5

3
−

4.
14
−

3
.2

8
−

0.
7
2

1
.4

1
0.

5
2

2.
2
0

1.
3
1

0.
6
1

6.
2
0

3
7
.2

7
−

3.
4
1
−

3
.4

6
−

0.
5
4

1.
8
4

0.
5
4

2.
1
7

0
.9

8
9

0
.5

6
6.

01
35
.7

8
−

4.
07
−

3
.2

2
−

0.
68

1
.3

7
0.

5
7

2.
1
6

1.
3
4

0.
6
8

6.
1
8

3
7
.3

1
−

3.
6
8
−

3
.3

1
−

0.
5
6

1.
7
1

0.
5
4

2.
1
7

1.
0
6

10
0
.6

0
5.

90
35
.1

5
−

3.
89
−

2
.7

9
−

0.
6
3

1
.0

7
0.

5
6

2.
0
9

1.
4
0

0.
7
5

6.
1
7

3
7
.4

4
−

3.
9
6
−

3
.2

0
−

0.
5
9

1.
6
1

0.
5
4

2.
1
8

1
.1

4
11

0
.6

9
6.

04
36
.1

3
−

4.
35
−

2
.8

0
−

0.
68

1
.1

0
0.

5
2

2.
2
0

1.
6
1

0.
8
2

6.
1
7

3
7
.5

0
−

4.
1
9
−

3
.0

8
−

0.
5
9

1.
5
1

0.
5
4

2.
1
7

1.
2
1

12
0
.7

2
6.

07
36
.4

3
−

4.
66
−

2
.8

0
−

0.
7
7

1
.0

2
0.

5
4

2.
1
9

1.
6
5

0.
8
9

6.
2
0

3
7
.7

5
−

4.
5
2
−

2
.9

9
−

0.
6
3

1.
4
3

0.
5
5

2.
2
0

1
.3

0
13

0
.7

8
6.

08
36
.3

5
−

4.
68
−

2
.4

7
−

0.
66

0
.9

9
0.

5
3

2.
1
1

1.
7
0

0.
9
5

6.
2
1

3
7
.8

4
−

4.
7
6
−

2
.8

8
−

0.
6
5

1.
3
5

0.
5
5

2.
2
1

1.
3
8

14
0
.7

8
6.

05
36
.1

6
−

4.
89
−

2
.6

0
−

0.
7
4

0
.8

7
0.

5
5

2.
1
2

1.
8
7

1.
0
1

6.
2
6

3
8
.1

4
−

5.
1
1
−

2
.8

1
−

0.
6
9

1.
2
8

0.
5
5

2.
2
4

1
.4

7
15

0
.9

1
6.

19
37
.0

4
−

5.
39
−

2
.6

5
−

0.
86

0
.8

2
0.

6
0

2.
2
3

1.
9
1

1.
0
8

6.
3
2

3
8
.4

2
−

5.
4
5
−

2
.7

3
−

0.
7
2

1.
2
1

0.
5
6

2.
2
8

1.
5
6

16
0
.8

7
6.

11
36
.3

7
−

5.
18
−

2
.2

1
−

0.
7
4

0
.7

9
0.

5
3

2.
1
4

1.
9
9

1.
1
4

6.
3
6

3
8
.5

9
−

5.
7
3
−

2
.6

4
−

0.
7
6

1.
1
4

0.
5
5

2.
3
0

1
.6

5
17

0
.8

9
6.

12
36
.3

9
−

5.
58
−

2
.1

1
−

0.
73

0
.8

2
0.

5
1

2.
1
4

2.
1
8

1.
2
1

6.
4
2

3
8
.8

5
−

6.
0
4
−

2
.5

5
−

0.
7
8

1.
0
7

0.
5
6

2.
3
2

1.
7
5

18
1
.0

4
6.

32
37
.3

7
−

6.
06
−

2
.1

7
−

0.
9
7

0
.6

7
0.

5
5

2.
2
5

2.
3
2

1.
2
8

6.
4
9

3
9
.1

6
−

6.
4
0
−

2
.4

7
−

0.
8
2

1.
0
0

0.
5
6

2.
3
6

1
.8

6
19

1
.0

4
6.

32
37
.3

7
−

6.
42
−

2
.3

2
−

0.
91

0
.6

9
0.

5
8

2.
2
8

2.
3
8

1.
3
6

6.
5
8

3
9
.4

9
−

6.
7
6
−

2
.3

7
−

0.
8
5

0.
9
3

0.
5
5

2.
4
0

2.
0
0

20
1
.0

6
6.

38
37
.4

7
−

6.
75
−

2
.3

0
−

0.
9
7

0
.5

6
0.

5
5

2.
3
1

2.
4
5

1.
4
4

6.
6
9

3
9
.8

5
−

7.
1
5
−

2
.2

6
−

0.
8
9

0.
8
5

0.
5
5

2.
4
4

2
.1

6
21

1
.2

2
6.

69
39
.1

0
−

7.
46
−

2
.1

9
−

1.
17

0
.6

4
0.

4
9

2.
5
2

2.
7
6

1.
5
4

6.
8
1

4
0
.2

5
−

7.
5
5
−

2
.1

4
−

0.
9
2

0.
7
6

0.
5
4

2.
4
9

2.
3
5

22
1
.3

7
6.

95
40
.1

6
−

8.
14
−

2
.2

4
−

1.
1
7

0
.6

4
0.

5
1

2.
6
5

2.
9
5

1.
6
5

6.
9
7

4
0
.7

0
−

7.
9
9
−

1
.9

8
−

0.
9
6

0.
6
5

0.
5
3

2.
5
3

2
.6

0
23

1
.5

9
7.

26
41
.1

1
−

8.
98
−

2
.2

8
−

1.
35

0
.4

0
0.

5
9

2.
9
2

3.
2
3

1.
8
1

7.
1
9

4
1
.3

2
−

8.
4
7
−

1
.7

5
−

1.
0
0

0.
5
0

0.
5
0

2.
5
9

3.
0
1

24
2
.0

9
7.

82
43
.4

9
−

9.
90
−

2
.0

9
−

1.
5
9

0
.5

1
0.

3
5

3.
1
3

4.
0
2

2.
0
4

7.
5
7

4
2
.2

6
−

9.
0
6
−

1
.4

0
−

1.
0
5

0.
2
6

0.
4
5

2.
6
5

3
.7

3
25

2
.9

9
9.

58
49
.1

1
−

11
.9

9
−

1
.9

4
−

1.
84

0
.6

2
0.

2
0

3.
8
9

6.
5
6

2.
6
4

8.
9
3

4
4
.8

6
−

1
0.

0
3
−

0
.4

9
−

1.
0
8
−

0.
3
1

0.
2
6

2.
7
2

6
.1

1

T
h
e

ta
b
le

su
m

m
a
ri

ze
s

th
e

p
ro

p
er

ti
es

o
f

a
se

t
o
f

2
5

p
o
rt

fo
li
o
s

th
a
t

a
re

fo
rm

ed
u
si

n
g

th
e

fi
n
a
l

p
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
th

e
F

F
-M

G
A

R
C

H
m

o
d
el

.
F

o
r

ea
ch

m
o
n
th

in

th
e

sa
m

p
le

p
er

io
d
,

I
so

rt
th

e
st

o
ck

s
in

a
sc

en
d
in

g
o
rd

er
o
f

th
ei

r
fi
tt

ed
co

n
d
it

io
n
a
l

ex
ce

ss
re

tu
rn

s,
a
n
d

u
se

th
e

re
su

lt
in

g
p

er
ce

n
ti

le
b
re

a
k
p

o
in

ts
to

fo
rm

2
5

g
ro

u
p
s.

T
h
e

fi
rs

t
g
ro

u
p

co
n
ta

in
s

th
e

st
o
ck

s
th

a
t

a
re

b
el

ow
th

e
4
th

p
er

ce
n
ti

le
a
ft

er
so

rt
in

g
,

th
e

se
co

n
d

g
ro

u
p

co
n
ta

in
s

th
e

st
o
ck

s
th

a
t

a
re

b
et

w
ee

n
th

e
4
th

a
n
d

8
th

p
er

ce
n
ti

le
s

a
ft

er
so

rt
in

g
,

a
n
d

so
fo

rt
h
.

O
n
ce

I
h
av

e
th

e
2
5

g
ro

u
p
s

fo
r

a
g
iv

en
m

o
n
th

,
I

a
ss

ig
n

eq
u
a
l

w
ei

g
h
ts

to
th

e
st

o
ck

s
co

n
ta

in
ed

in
ea

ch
o
f

th
e

2
5

g
ro

u
p
s

to
o
b
ta

in
ex

ce
ss

p
o
rt

fo
li
o

re
tu

rn
s.

T
h
e

in
it

ia
l

te
n

co
lu

m
n
s

o
f

th
e

ta
b
le

re
p

o
rt

th
e

sa
m

p
le

m
ea

n
a
n
d

sa
m

p
le

v
o
la

ti
li
ty

o
f

th
e

ex
ce

ss
p

o
rt

fo
li
o

re
tu

rn
s,

fo
ll
ow

ed
b
y

th
ei

r
sa

m
p
le

co
va

ri
a
n
ce

s
w

it
h

th
e

m
a
rk

et
,

si
ze

,
va

lu
e,

p
ro

fi
ta

b
il
it

y,
in

v
es

tm
en

t,
a
cc

ru
a
ls

,
o
ff

er
in

g
s,

a
n
d

sa
le

s
fa

ct
o
rs

.
T

h
e

fi
n
a
l
te

n
co

lu
m

n
s

re
p

o
rt

th
e

co
rr

es
p

o
n
d
in

g
m

o
d
el

-b
a
se

d

es
ti

m
a
te

s
o
f

th
es

e
u
n
co

n
d
it

io
n
a
l

m
o
m

en
ts

a
n
d

co
m

o
m

en
ts

.
T

h
e

sa
m

p
le

p
er

io
d

is
J
u
ly

1
9
6
3

to
D

ec
em

b
er

2
0
1
6
.

47



T
a
b
le

9
P

ro
p

e
rt

ie
s

o
f

2
5

p
o
rt

fo
li
o
s

fo
rm

e
d

o
n

e
st

im
a
te

d
c
o
n
d
it

io
n
a
l

c
o
v
a
ri

a
n
c
e

w
it

h
th

e
m

a
rk

e
t

fa
c
to

r

S
am

p
le

m
om

en
ts

of
p

or
tf

o
li

o
re

tu
rn

s
E

st
im

a
te

s
im

p
li

ed
b
y

fi
tt

ed
co

n
d

it
io

n
a
l

m
o
m

en
ts

C
ov

ar
ia

n
ce

s
w

it
h

fu
n

d
a
m

en
ta

l
fa

ct
o
rs

C
ov

a
ri

a
n

ce
s

w
it

h
fu

n
d

a
m

en
ta

l
fa

ct
o
rs

�
M

ea
n

V
ol

f M
A
R

f S
IZ

f V
A
L

f P
R
O

f I
N
V

f A
C
C

f O
F
F

f S
A
L

M
ea

n
V

o
l

f M
A
R

f S
IZ

f V
A
L

f P
R
O

f I
N
V

f A
C
C

f O
F
F

f S
A
L

1
0.

58
4.

15
20
.1

3
0.

33
−

0
.5

9
−

0
.1

6
0
.6

1
0.

0
8

0.
9
4

1
.0

4
0.

5
4

5.
7
2

2
4
.2

2
3.

4
9
−

0.
5
7

0.
5
6

0
.9

6
0.

0
9

0
.5

9
0
.6

5
2

0.
67

4.
50

23
.6

6
−

0
.1

5
−

0
.6

7
−

0.
1
4

0
.6

5
0.

1
3

1.
1
1

1
.2

7
0.

6
3

5.
5
3

2
7
.6

2
1.

4
9
−

1.
1
4

0.
2
6

1
.1

1
0.

1
9

1
.0

0
0
.8

3
3

0.
65

4.
70

25
.6

5
−

0
.6

8
−

1
.0

5
−

0.
1
7

0
.6

9
0.

1
8

1.
2
0

1
.3

2
0.

7
1

5.
4
9

2
9.

4
6

0.
2
6
−

1
.4

2
0.

0
8

1
.1

6
0.

2
6

1
.2

2
0
.9

5
4

0.
71

4
.9

9
28
.0

1
−

1
.2

2
−

1.
27
−

0.
22

0
.7

7
0.

2
6

1.
3
8

1
.5

2
0.

7
7

5.
5
1

3
0.

8
4
−

0.
7
2
−

1
.6

3
−

0
.0

5
1
.1

7
0.

3
0

1.
4
0

1
.0

5
5

0.
78

5
.1

5
29
.3

9
−

1
.6

8
−

1.
44
−

0.
18

0
.8

2
0.

2
6

1.
4
4

1
.4

9
0.

8
2

5.
5
7

3
2.

0
0
−

1
.4

7
−

1
.7

9
−

0.
1
6

1
.2

0
0.

3
4

1.
5
4

1
.1

3
6

0.
78

5
.3

3
30
.9

3
−

2.
31
−

1.
74
−

0.
3
4

0
.8

4
0.

3
6

1.
5
9

1
.6

1
0.

8
7

5.
6
3

3
2.

9
9
−

2
.1

7
−

1.
9
3
−

0.
2
5

1
.2

1
0.

3
8

1.
6
6

1
.2

2
7

0.
76

5.
45

31
.9

1
−

2.
67
−

1.
91
−

0.
31

0
.9

5
0.

4
0

1.
7
0

1
.5

7
0.

9
1

5
.7

1
3
3.

9
0
−

2
.7

6
−

2.
0
8
−

0.
3
3

1
.2

3
0.

4
1

1.
7
7

1
.2

8
8

0.
83

5.
68

33
.4

4
−

3.
18
−

2.
15
−

0.
43

0
.9

9
0.

4
5

1.
8
4

1
.4

4
0.

9
4

5
.8

0
3
4.

7
4
−

3.
2
9
−

2.
1
9
−

0.
4
1

1
.2

6
0.

4
5

1.
8
7

1
.3

5
9

0.
84

5.
83

34
.5

8
−

3.
64
−

2.
25
−

0
.4

7
0
.9

7
0.

5
1

1
.9

6
1
.6

4
0.

9
7

5
.8

9
3
5.

5
3
−

3.
8
0
−

2.
3
3
−

0.
4
8

1
.2

7
0.

4
7

1.
9
6

1
.4

0
10

0.
87

5.
91

35
.0

0
−

3.
99
−

2
.2

4
−

0
.5

7
0
.9

7
0.

4
8

2
.0

1
1
.7

5
1.

0
0

5.
9
8

3
6
.2

7
−

4.
2
8
−

2.
4
5
−

0.
5
4

1
.2

8
0.

5
0

2.
0
5

1
.4

5
11

0.
90

6.
12

36
.6

0
−

4.
75
−

2
.6

4
−

0
.6

5
0
.9

8
0.

5
7

2
.2

3
1
.6

8
1.

0
3

6.
0
9

3
7
.0

0
−

4.
7
2
−

2.
5
6
−

0.
6
1

1
.3

0
0.

5
2

2.
1
4

1
.5

0
12

0.
85

6.
21

37
.2

9
−

4.
99
−

2
.6

6
−

0
.7

0
1
.0

1
0.

5
9

2.
2
6

1
.7

3
1.

0
5

6.
2
0

3
7
.7

4
−

5.
1
5
−

2.
6
9
−

0
.6

7
1
.3

1
0.

5
4

2
.2

3
1
.5

5
13

0.
88

6.
46

38
.9

2
−

5
.5

7
−

2
.8

3
−

0.
7
7

1
.2

9
0.

5
9

2.
4
0

2
.0

1
1.

0
7

6.
3
1

3
8
.5

0
−

5.
5
8
−

2.
8
1
−

0
.7

3
1
.3

4
0.

5
6

2
.3

2
1
.6

1
14

0.
84

6.
49

39
.1

2
−

5
.8

7
−

3
.1

1
−

0.
87

1
.2

5
0.

5
8

2.
4
2

1
.8

3
1.

0
9

6.
4
3

3
9.

2
4
−

5.
9
9
−

2
.9

3
−

0
.8

0
1
.3

7
0.

5
8

2
.4

1
1
.6

7
15

0.
83

6
.5

9
39
.5

3
−

6
.4

2
−

3.
24
−

1.
02

1
.2

8
0.

6
2

2.
5
5

2
.1

7
1.

1
0

6.
5
6

4
0.

0
1
−

6.
4
2
−

3
.1

1
−

0
.8

7
1
.3

9
0.

6
1

2.
5
0

1
.7

1
16

0.
95

6
.8

2
41
.0

1
−

6
.8

5
−

3.
44
−

0.
97

1
.3

5
0.

6
1

2.
6
6

1
.9

9
1.

1
1

6.
7
0

4
0.

8
3
−

6
.8

2
−

3
.2

5
−

0.
9
4

1
.4

4
0.

6
3

2.
6
0

1
.7

7
17

0.
91

7
.1

6
42
.8

5
−

7.
91
−

3.
74
−

1.
3
8

1
.3

6
0.

6
6

2.
9
4

2
.2

4
1.

1
2

6.
8
6

4
1.

6
9
−

7
.2

6
−

3.
4
5
−

1.
0
1

1
.4

8
0.

6
5

2.
7
0

1
.8

2
18

0.
95

7.
17

42
.8

9
−

8.
14
−

3.
88
−

1.
19

1
.3

8
0.

6
9

3.
0
4

2
.2

0
1.

1
1

7
.0

2
4
2.

6
2
−

7
.6

6
−

3.
6
4
−

1.
0
8

1
.5

8
0.

6
7

2.
8
1

1
.8

6
19

0.
84

7.
37

43
.6

1
−

8.
66
−

4.
33
−

1.
51

1
.4

2
0.

7
7

3.
0
9

2
.0

7
1.

1
0

7
.2

1
4
3.

6
6
−

8.
0
9
−

3.
8
7
−

1.
1
7

1
.6

8
0.

7
0

2.
9
4

1
.9

2
20

0.
86

7.
57

44
.5

8
−

9.
33
−

4.
33
−

1
.5

4
1
.4

8
0.

7
7

3
.3

2
2
.3

1
1.

0
8

7
.4

4
4
4.

8
5
−

8.
5
2
−

4.
1
1
−

1.
2
5

1
.8

1
0.

7
2

3.
0
8

1
.9

8
21

0.
94

8.
00

46
.6

8
−

10
.1

7
−

4
.7

1
−

1
.8

8
1
.6

4
0.

7
0

3
.5

6
2
.5

9
1.

0
3

7.
7
0

4
6
.2

7
−

8.
9
8
−

4.
4
5
−

1.
3
7

2
.0

4
0.

7
4

3.
2
6

2
.0

4
22

0.
89

8.
19

47
.5

1
−

10
.7

0
−

5
.1

5
−

1
.8

8
1
.6

5
0.

6
8

3.
7
6

2
.4

6
0.

9
4

8.
0
5

4
8
.0

8
−

9.
4
3
−

4.
8
8
−

1
.4

9
2
.3

9
0.

7
7

3
.4

9
2
.1

1
23

0.
83

8.
67

49
.9

6
−

10
.8

5
−

5
.2

4
−

2.
1
5

1
.6

2
0.

7
0

4.
0
3

2
.7

7
0.

8
3

8.
5
6

5
0.

5
5
−

1
0.

0
1
−

5
.4

3
−

1
.6

6
2
.8

8
0.

7
9

3
.8

1
2
.2

6
24

0.
93

9.
25

52
.4

2
−

11
.7

9
−

5.
46
−

2.
47

2
.0

9
0.

6
2

4.
5
5

3
.2

0
0.

6
7

9.
3
6

5
4.

2
9
−

1
0.

8
4
−

6
.2

0
−

1
.9

0
3
.5

9
0.

8
2

4.
3
0

2
.5

4
25

1.
25

10
.4

3
57
.2

7
−

14
.4

3
−

6.
28
−

3.
15

2
.0

4
0.

7
3

5.
3
0

4
.7

5
0.

5
6

1
1.

2
5

6
2.

5
0
−

1
2
.9

6
−

7
.2

6
−

2.
4
3

4
.6

7
0.

8
6

5.
3
5

3
.9

5

T
h
e

ta
b
le

su
m

m
a
ri

ze
s

th
e

p
ro

p
er

ti
es

o
f

a
se

t
o
f

2
5

p
o
rt

fo
li
o
s

th
a
t

a
re

fo
rm

ed
u
si

n
g

th
e

fi
n
a
l

p
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
th

e
F

F
-M

G
A

R
C

H
m

o
d
el

.
F

o
r

ea
ch

m
o
n
th

in

th
e

sa
m

p
le

p
er

io
d
,

I
so

rt
st

o
ck

s
in

a
sc

en
d
in

g
o
rd

er
o
f

th
e

fi
tt

ed
co

n
d
it

io
n
a
l
co

va
ri

a
n
ce

o
f

th
ei

r
ex

ce
ss

re
tu

rn
s

w
it

h
th

e
m

a
rk

et
fa

ct
o
r,

a
n
d

u
se

th
e

re
su

lt
in

g
p

er
ce

n
ti

le

b
re

a
k
p

o
in

ts
to

fo
rm

2
5

g
ro

u
p
s.

T
h
e

fi
rs

t
g
ro

u
p

co
n
ta

in
s

th
e

st
o
ck

s
th

a
t

a
re

b
el

ow
th

e
4
th

p
er

ce
n
ti

le
a
ft

er
so

rt
in

g
,

th
e

se
co

n
d

g
ro

u
p

co
n
ta

in
s

th
e

st
o
ck

s
th

a
t

a
re

b
et

w
ee

n
th

e
4
th

a
n
d

8
th

p
er

ce
n
ti

le
s

a
ft

er
so

rt
in

g
,

a
n
d

so
fo

rt
h
.

O
n
ce

I
h
av

e
th

e
2
5

g
ro

u
p
s

fo
r

a
g
iv

en
m

o
n
th

,
I

a
ss

ig
n

eq
u
a
l

w
ei

g
h
ts

to
th

e
st

o
ck

s
co

n
ta

in
ed

in

ea
ch

o
f

th
e

2
5

g
ro

u
p
s

to
o
b
ta

in
ex

ce
ss

p
o
rt

fo
li
o

re
tu

rn
s.

T
h
e

in
it

ia
l

te
n

co
lu

m
n
s

o
f

th
e

ta
b
le

re
p

o
rt

th
e

sa
m

p
le

m
ea

n
a
n
d

sa
m

p
le

v
o
la

ti
li
ty

o
f

th
e

ex
ce

ss
p

o
rt

fo
li
o

re
tu

rn
s,

fo
ll
ow

ed
b
y

th
ei

r
sa

m
p
le

co
va

ri
a
n
ce

s
w

it
h

th
e

m
a
rk

et
,

si
ze

,
va

lu
e,

p
ro

fi
ta

b
il
it

y,
in

v
es

tm
en

t,
a
cc

ru
a
ls

,
o
ff

er
in

g
s,

a
n
d

sa
le

s
fa

ct
o
rs

.
T

h
e

fi
n
a
l

te
n

co
lu

m
n
s

re
p

o
rt

th
e

co
rr

es
p

o
n
d
in

g
m

o
d
el

-b
a
se

d
es

ti
m

a
te

s
o
f

th
es

e
u
n
co

n
d
it

io
n
a
l

m
o
m

en
ts

a
n
d

co
m

o
m

en
ts

.
T

h
e

sa
m

p
le

p
er

io
d

is
J
u
ly

1
9
6
3

to
D

ec
em

b
er

2
0
1
6
.

48



Table 10
Pricing performance of fundamental factors in the unconditional APT framework

Eight fundamental factors Five Fama-French factors (2 x 3)

Table 8 portfolios Table 9 portfolios Table 8 portfolios Table 9 portfolios

� Int t-stat R2(%) Int t-stat R2(%) Int t-stat R2(%) Int t-stat R2(%)

1 0.30 2.23 89.2 0.23 2.50 83.0 −0.49 −3.27 84.0 −0.01 −0.19 89.1
2 0.37 3.22 90.9 0.15 2.09 91.2 −0.13 −1.08 87.2 −0.01 −0.18 90.4
3 0.30 3.17 92.8 0.04 0.64 92.9 −0.18 −1.72 89.5 −0.07 −1.10 89.
4 0.30 3.50 93.0 0.06 0.92 94.4 −0.10 −1.08 90.5 −0.04 −0.66 91.1
5 0.17 2.55 95.1 0.04 0.80 94.9 −0.09 −1.18 92.5 0.03 0.44 91.0
6 0.17 2.39 94.8 0.04 0.61 95.0 −0.09 −1.29 92.9 0.01 0.08 91.9
7 0.12 1.89 95.6 0.02 0.41 95.0 −0.08 −1.15 93.1 −0.01 −0.12 92.1
8 0.02 0.37 95.2 0.05 0.82 94.9 −0.10 −1.35 92.3 0.06 0.88 92.2
9 0.03 0.52 95.9 0.02 0.30 95.3 −0.09 −1.38 93.8 0.07 0.93 92.3
10 −0.08 −1.34 95.7 −0.00 −0.04 94.0 −0.14 −1.97 93.2 0.09 1.07 90.9
11 −0.08 −1.27 95.4 −0.00 −0.03 95.0 −0.06 −0.65 91.3 0.15 1.79 91.5
12 −0.12 −2.14 95.6 −0.08 −1.30 95.5 −0.03 −0.44 91.9 0.08 0.98 91.7
13 −0.18 −2.78 95.0 −0.02 −0.34 95.6 −0.01 −0.14 90.6 0.13 1.22 89.9
14 −0.20 −2.93 94.6 −0.09 −1.49 95.7 0.00 0.00 90.3 0.12 1.29 89.9
15 −0.12 −1.64 94.6 −0.09 −1.24 94.7 0.11 1.14 88.4 0.11 1.09 87.9
16 −0.25 −3.88 94.2 −0.04 −0.63 95.0 0.02 0.19 87.7 0.24 2.07 87.9
17 −0.30 −4.69 94.6 −0.10 −1.22 95.2 0.05 0.43 86. 0.24 1.82 85.4
18 −0.24 −3.23 94.0 −0.05 −0.79 95.6 0.17 1.52 85.1 0.30 2.19 84.4
19 −0.24 −3.38 94.0 −0.10 −1.31 94.4 0.20 1.55 83. 0.21 1.48 83.7
20 −0.32 −4.41 93.9 −0.12 −1.37 94.3 0.19 1.57 82.3 0.30 2.10 82.5
21 −0.27 −3.62 94.3 −0.06 −0.53 93.8 0.35 2.38 79.4 0.38 2.25 78.9
22 −0.21 −2.56 93.8 −0.11 −1.15 93.9 0.50 2.97 76.1 0.35 1.99 79.
23 −0.10 −1.01 93.0 −0.17 −1.47 92.0 0.77 4.44 73.0 0.28 1.56 78.2
24 0.17 1.95 93.9 0.09 0.66 91.3 1.25 6.03 67.2 0.45 2.11 75.2
25 0.77 6.89 93.0 0.31 2.46 93.0 2.12 6.65 52.8 0.70 2.52 66.4

The table reports the results of regression-based pricing tests for the portfolios examined in Tables 8 and 9. The
footnotes to these tables describe the sorting schemes used to form the portfolios. I conduct the tests by fitting
time-series regressions to the excess portfolio returns. The regressors are either a constant and the eight fundamental
factors that appear in the FF-MGARCH model, or a constant and the five Fama and French (2015) factors. I fit each
regression by OLS, and report the estimated intercept (Int), its t-statistic (t-stat), and the regression R-squared (R2).
The t-statistics are robust to conditional heteroskedasticity. The sample period is July 1963 to December 2016.
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Figure 3. Average returns vs average fitted conditional expected returns for portfolios formed on fitted 
conditional expected returns.  The figure compares average excess returns to model‐based estimates of 
unconditional expected excess returns (those implied by the fitted conditional expected excess returns) 
for several sets of equally‐weighted portfolios. To construct the ܰ ∈  (25, 50, 100, 200) portfolios used 
for a given plot, I sort stocks on their fitted conditional expected excess returns for each month in the 
sample period.  Stocks  that  fall  below  the 1/N  quantile  for  a  given month are assigned  to portfolio 1, 
those  that  fall  between  the  1/N  and  2/N  quantiles  are  assigned  to  portfolio  2,  and  so  on.  The  fitted 
conditional  expected  excess  returns  are  based  on  the  final  parameter  estimates  produced  by  the 
iterative estimation procedure for the FF‐MGARCH model using all NYSE, AMEX, and NASDAQ firms.  
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