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1. Introduction

Is the relation between firm characteristics and expected stock returns consistent with the predictions
of asset pricing theory? Kelly et al. (2019) use an innovative modeling strategy called instrumented
principal components analysis (IPCA) to address this question. In effect, they extend traditional
methods of factor analysis to a dynamic setting in which firm characteristics are cross-sectionally
correlated with the conditional loadings on one or more latent risk factors. The IPCA estimates
are essentially obtained by constructing the linear projections of individual stock returns and their
conditional factor loadings on the set of characteristics under consideration. This yields evidence
on the extent to which the cross-sectional differences in covariance risk that are captured by the
characteristics explain the cross-section of conditional expected stock returns.

The main findings of Kelly et al. (2019) can be summarized succinctly. First, the set of firm
characteristics that have incremental explanatory power for the cross-section of expected stock re-
turns is relatively small (around ten in total). Second, a latent factor specification with five factors
performs considerably better than existing factor models in asset pricing tests. Because the latent
factor specification generally produces pricing errors that are statistically indistinguishable from
zero, the evidence suggests that firm characteristics help to explain the cross-section of expected
stock returns by capturing cross-sectional differences in priced covariance risk.

However, the IPCA evidence is subject to a potentially noteworthy caveat. Under the maintained
assumptions of IPCA, individual stock returns are described by a conditional factor model that has
time-varying intercepts and time-varying factor loadings. Although the model seems quite flexible
at first glance, it inherently imposes strong restrictions on the set of characteristic-based managed
portfolios that determine the nature of the IPCA estimates. Specifically, it implies that the returns
for these portfolios are described by a static factor model that has constant intercepts and constant
loadings. Thus the IPCA estimates fail to account for the possibility that the means, variances, and
covariances of the portfolio returns evolve through time. This feature of the IPCA framework has
the potential to alter the outcome of the associated asset pricing tests.

To develop insights in this regard, I propose a more flexible version of IPCA that allows the

means, variances, and covariances of the managed portfolio returns to differ across economic regimes.



I adopt a regime-switching approach for several reasons. First, the idea of regime changes is both
conceptually simple and intuitively appealing. The regimes could be associated with the business
cycle, as in Hamilton (1989), or related to other phenomena such as “bull’ and “bear” markets.
Second, the nonlinear dynamics associated with regime changes can have interesting asset pricing
implications. If the changes induce large shifts in the investment opportunity set, then they can give
rise to unanticipated effects, such as a non-monotonic relation between risk and expected returns
(see, e.g., Whitelaw, 2000). Third, it turns out that the econometric methods of IPCA can easily be
generalized to a regime-switching framework.

The first step of the empirical analysis is to specify the characteristics. One possibility would
be to use those that have statistically-significant explanatory power in the Kelly et al. (2019) tests.
However, their tests emphasize linearity in the relation between firm characteristics and expected
stock returns. Because Kirby (2019a) shows that the nonlinear aspects of this relation appear to have
important asset pricing implications, I employ a set of 16 characteristics that are chosen based on
the results of Freyberger et al. (2019), who apply advanced variable selection techniques to a fairly
comprehensive set of 62 firm-specific variables in order to identify those that provide incremental
information about the cross-section of expected stock returns. Although there are other recent stud-
ies, such as Green et al. (2017), that have a similar focus, Freyberger et al. (2019) use nonparametric
methods that do not impose strong a priori assumptions regarding functional form.

I begin by considering the results produced by the single-regime version of [IPCA. The sample
covers May 1967 to December 2018 (620 months of individual stock returns). First I examine the
case in which the relation between firm characteristics and expected stock returns is modeled as
linear. The results obtained in this case are broadly consistent with those reported by Kelly et al.
(2019). The estimated root mean squared pricing error (RMSE) declines as the number of latent
factors increases and there are instances in which it is statistically insignificant at the 1% level for
specifications with five or six latent risk factors. I then examine the case in which the relation
between firm characteristics and expected stock returns is modeled as nonlinear. Although I again
find that the magnitude of the pricing errors falls as the number of latent risk factors increases, I

do not find any instances in which a specification with six or fewer factors produces a statistically



insignificant estimate of the RMSE. Thus the preliminary evidence suggests that it is important to
account for nonlinearity in IPCA-based pricing tests.

Next I turn to the regime-switching analysis, which yields a number of new and interesting
insights. The analysis centers on simple two-regime models in order to highlight how the results
compare to those of prior studies, such as Maheu and McCurdy (2000), that investigate bull and
bear market regimes. Like these studies, I find that analyzing market index returns in isolation
produces evidence of two persistent regimes: one that has low volatility and a high mean return (the
bull regime) and one that has high volatility and a low mean return (the bear regime). However, 1
also find that analyzing market index returns in conjunction with the returns for characteristic-based
managed portfolios produces marked changes in the regime-switching estimates.

First, both regimes have a lower estimated expected duration. The estimate for the high-volatility
regime, for example, is only about three months. Second, the time intervals for which the estimated
probability of the high-volatility regime is close to one do not correspond to bear market periods, as
defined by a common ex-post classification rule. Third, the estimated expected excess return on the
market is much higher in the high-volatility regime than in the low-volatility regime. Using stocks
of all capitalization levels, for example, the results produced by a six-factor specification imply that
the estimated expected excess return on the equally-weighted market index is 0.16% per month in
the low-volatility regime and 2.53% per month in the high-volatility regime. Thus the estimates are
consistent with a positive relation between the market risk premium and market volatility.

As might be anticipated from these findings, the asset pricing tests indicate that the performance
of the conditional factor model differs across regimes. Regardless of the number of risk factors,
I find that the estimated RMSE for the high-volatility regime exceeds that for the low-volatility
regime by a considerable margin. But it is important to interpret this finding within the broader
context of the results. Using zero factors, for example, the estimated RMSE is much larger for
the high-volatility regime than for the low-volatility regimes: 0.97% per month versus 0.23% per
month using stocks of all capitalization levels. Hence the high-volatility regime clearly poses a
pricing challenge. Fitting a six-factor specification of the model reduces the estimated RMSE to

0.23% per month for the high-volatility regime. But this still exceeds the value of 0.09% per month



obtained for the low-volatility regime. Using formal regime-specific tests, I find that all of the
estimated RMSEs are statically significant at the 1% level for both regimes.

More broadly, the regime-specific pricing tests suggest that the linkages between characteristics,
covariances, and expected stock returns are stronger in the high-volatility regime than in the low-
volatility regime. This is evidenced in several ways. For example, I find that the risk factors explain
a larger fraction of the time-series variation in the managed portfolio returns in the high-volatility
regime. [ also find that the IPCA analog of the second pass regression for the familiar two-pass
methodology generally produces high R-squared statistics for the high-volatility regime, especially
for the case in which micro-cap stocks are included in the analysis. Those produced by the six-factor
specification, for instance, range from 89% to 93% in this case.

To assess the potential implications of these findings for investors, I investigate the out-of-sample
performance of the conditional factor model that underpins regime-switching IPCA. I start by ex-
amining the ability of recursively-updated estimates of the regime probabilities to predict the excess
returns for the characteristic-based managed portfolios. My approach is straightforward. I regress
the excess monthly portfolio returns for month 7 on the estimated probability of the high-volatility
regime for month ¢, where the regressor is constructed by fitting the regime-switching model to
the data observed through month ¢ — 1. Although a substantial fraction of the managed portfolios
display statistically-significant evidence of predictability, the explanatory power of the predictive
regressions is fairly low. All of the R-squared statistics are less than 5%.

But low R-squared statistics do not necessarily preclude the construction of profitable dynamic
trading strategies. I therefore consider the evidence from portfolio sorts that are designed to isolate
the contribution of the predictable variation in the managed portfolio returns to the explanatory
power of the conditional factor model for individual stocks. The sorts are conducted using two
competing estimates of the vector of excess individual stock returns, both of which are constructed
using information available to investors in real time. The first corresponds to the IPCA framework
of Kelly et al. (2019) and the second corresponds to my regime-switching version of IPCA.

Because the cross-sectional correlation between the competing estimates of the vector of ex-

pected excess returns for a given month is typically fairly high, I use a residual-based sorting scheme



to isolate the effect of regime changes. First, I regress the estimated expected excess stock returns
produced by the regime-switching model for the month on those produced by the single-regime
model of Kelly et al. (2019) and save the resultant vector of residuals. Next, I conduct two inde-
pendent quintile sorts using the set of available stocks for the month: one in ascending order of the
single-regime estimates and one in ascending order of the saved residuals. Finally, I form a set of
25 equally-weighted portfolios by finding the intersections of the quintile groups.

Using the single-regime estimates to sort stocks is quite effective at spreading average returns.
Nonetheless, it is clear that the regime-switching estimates provide substantial incremental infor-
mation about conditional expected stock returns. This is evidenced by the large spread in average
returns that is generated by sorting on the regression residuals. Regardless of the level of estimated
expected excess returns produced by the single-regime model, the average excess returns obtained
by investing in stocks that have high residuals and shorting stocks that have low residuals are pos-
itive and statistically significant at the 1% level. The smallest of these high-low spreads is 0.98%
per month, which has a z-statistic of 3.37. Notably, the findings are robust to excluding micro-cap
stocks from the analysis and using value weights to construct the portfolios. This highlights the
potential benefits of accounting for regime-switching behavior in investment management.

Overall the analysis lends a good deal of support to the view that firm characteristics display
explanatory power in Fama and MacBeth (1973) regressions because they capture cross-sectional
variation in priced covariance risk. But the results are less favorable to the hypothesis of exact
factor pricing than those of Kelly et al. (2019). Perhaps the most striking finding is that the relation
between characteristics and individual stock returns is indicative of the presence of latent regimes
that are quite different than those identified by studies that focus only on broad market returns. The
evidence points to a relatively short-lived regime in which return volatility is high, expected excess
stock returns are high, and there is a strong cross-sectional relation between firm characteristics and
priced covariance risk. In addition, it suggests that regime changes are associated with substantial
shifts in the investment opportunity set that have a range of important asset-pricing implications.
Beyond producing this intriguing set of empirical findings, regime-switching IPCA extends all of

the methodological benefits of [PCA to a wider class of estimation problems.



2. Methodology

The IPCA framework of Kelly et al. (2019) generalizes traditional methods of factor analysis to a
dynamic setting in which the factor loadings are cross-sectionally correlated with observable firm
characteristics (instruments). To illustrate, let r, = (ry,...,ry,)" and f, = (fis ..., fk,)" denote the
period ¢ values of an N X 1 vector of individual stock returns that are measured in excess of the risk
free rate (excess returns) and a K X 1 vector of latent risk factors.! The IPCA methodology assumes

that r,,; is described by a conditional linear factor model of the form

K
Fryp =a; + Z bk,tfk,t+1 + €141, (1)

k=1

where a, is a N x 1 vector of time-varying intercepts, by, is an N X 1 vector of time-varying loadings
on the kth factor, and €,,; is an N X 1 vector of errors.

As it stands, the model does not place any restrictions on the dynamics of the intercepts or
loadings. Suppose, however, that the values of a, and {by,} | are cross-sectionally correlated with
one or more firm characteristics whose values are predetermined with respect to the realizations of
{ ﬁc,m},’le and €,,1. More specifically, suppose that a, and {bk,t}f:1 can be decomposed as

a = Cé+v, 2

bk,t = Ctyk + Uk,,, k = 1, e ooy K, (3)

where C; is an observable N X J matrix whose nth row contains the values of the characteristics for
the nth firm. Under the maintained assumptions of IPCA, the elements of v, and {vk,t}sz , behave like
the errors in a cross-sectional regression model. They represent time-varying components of a, and
{bk,,}f:1 that are assumed to be cross-sectionally unrelated to the values of the characteristics in the
sense that Cv, % 0 and Cuy, %, 0as N — oo for all £ and k.

Kelly et al. (2019) develop an alternating least squares (ALS) algorithm that can be used to fit

I'The discussion in this section treats N as fixed to avoid unnecessarily complicating the notation. The extension to
the case in which the cross-sectional dimension of the data varies through time is obvious. In subsequent sections and
the table descriptions, I use N, to denote the number of stocks for period 7.
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the IPCA model to individual stock returns and extract estimates of the latent risk factors. First,

they combine equations (1), (2) and (3) to obtain

r =Co+ Cl‘rft+] + &+l “)
where I' = (y,,...,¥k) 1s an J X K matrix of coeflicients and
K
El =Vt Z Uier firs1 + €Enpl )
k=1
is an N X 1 vector of composite errors. Next, they construct estimators of 8, I', and F = (f,..., f7)

by minimizing the average squared composite error across all observations. This entails solving an

optimization problem of the form

1 ,
?}{2 ﬁ ;('} —C16-C\I'f)(r,—C.16 - C,_I'f) (6)

under identification restrictions like those typically employed in traditional principal components

analysis (PCA). The details of the ALS algorithm are provided in Appendix A.

2.1. Relation to Fama and MacBeth (1973) regressions

It turns out that the IPCA methodology has close ties to Fama and MacBeth (1973) regressions.
To see the nature of these ties, consider the typical case in which C, is a rank J matrix that has a
left pseudoinverse of the form C; = (C,C,)"'C;. In this case, the vector of excess stock returns for
period 7 + 1 has an additive decomposition of the form r;,; = C;r}, ;11 + €11, Where r,, ;. = C'ryis
a J x 1 vector. As the notation suggests, r,,; represents a J X 1 vector of excess returns for a set of
managed portfolios whose weights are chosen by regression methods. Specifically, the weights are
obtained by fitting a Fama and MacBeth (1973) regression of the excess individual stock returns for
period ¢ + 1 on the firm characteristics for period ¢.

Because Cje,,; = 0 by construction, it follows by straightforward algebra that the optimization



problem in equation (6) can be expressed as

T T
. 1 'YX 1 4

min - ;m,z =8 =Tf Y Wei(rps =6 =Tf ) + 5 Z‘ e (M

where Wt—l = (1/N)C;_,C,-, is the estimated cross-sectional second moment matrix of the charac-

teristics for period t — 1. Hence, the ALS estimators of §, I', and F are obtained by fitting a static
factor model to {r,,}", via a type of weighted least squares (WLS). Back et al. (2015) refer to the
elements of r, ., as returns for “pure play portfolios” because C;, the J x N matrix of portfolio
weights, satisfies C;C, = 1. Thus the portfolio associated with the jth characteristic has a unit expo-
sure to this characteristic and zero exposure to the other J — 1 characteristics. This property makes
pure play portfolios an appealing choice for use in asset pricing tests. Following Kelly et al. (2019),
I henceforth assume that the leading column of C, is an N X 1 vector of ones, which is equivalent to

assuming the Fama and MacBeth (1973) regression used to construct r, .| includes an intercept.

2.2. Asset pricing tests in the IPCA framework

The model in equation (4) implies that § = 0 if exact factor pricing holds. Following Kelly et al.
(2019), I test this hypothesis using an approach that is akin to the two-pass regression methodology
of Black et al. (1972). The similarities to two-pass methodology arise from the need to impose
identification restrictions in the IPCA framework. Suppose, for example, that 3, I, and F denote the
set of estimates obtained by solving the minimization problem in equation (6) for a given dataset.
Now suppose that some arbitrary K X 1 vector p is used to create a new set of estimates by replacing
dwithd =8+ Iy and replacing jA”l with f: = f‘, — p for all values of 7. Because 6"+ IA“]A‘,* has
the same value as & + ff,, the two sets of estimates produce the same value of the IPCA objective
function. Hence, the values of ¢ and E(f,) are unidentified due to the latent nature of the factors.
The lack of identification can be overcome by imposing a set of K(K + 1) restrictions on the pa-
rameters of the conditional factor model. I impose restrictions that mirror those typically employed
for PCA. Specifically, I restrict the expected value of each element of f, to be zero, the covariance

matrix of f, to be an identity matrix, and I'"T" to be a diagonal matrix with descending diagonal



elements.? Estimating 8, I, and F under this set of restrictions is only a first step toward construct-
ing a suitable test statistic. Although the estimate of I' can be used to draw inferences about the
explanatory power of the factors for excess stock returns, the estimate of 4 tells us nothing about
the pricing errors for the model. This follows because the estimate of 6 embodies the restriction
E(f,) = 0, which implies the compensation for bearing factor risk is zero.

Note that a similar situation arises if the factors are observed but not traded. The factor loadings
can be estimated by regressing excess returns on the demeaned factors, but doing so tells us nothing
about the pricing errors. As in this analogous case, a simple way forward is to estimate the pricing
errors via a second-pass regression. Under the restriction E(f,) = 0, equation (4) implies that the
vector of expected excess returns for the pure play portfolios is given by E(r,,;) = 6 + E(g,,), where
g,, = C;&,. Recall, however, that &, % 0 as N — co under the maintained assumptions of IPCA.
Because this result implies that & is a consistent estimator of E(r,,) under large-N asymptotics,
it follows that 1 = (I'T)'16 is a natural regression-based estimator of the vector of factor risk
premiums. I therefore use & = & —I'j1, which is the vector of residuals for the second-pass regression

of §onT, as my estimator of the vector of pricing errors for the pure play portfolios.

2.2.1. Test statistics and inference

The statistical significance of estimated pricing errors is most easily assessed using bootstrap meth-
ods. One strategy, which exploits the structure of the IPCA problem in equation (7), would be to
hold {W,_l}tT: , fixed and generate bootstrap samples by drawing randomly with replacement from

{er}tT: ,- Because equation (4) implies that r,,, = o+ ff‘, + &, by construction, drawing a value r,,

*

ALK
.- Where {f,, &} denotes a random

at random from {rp,t}tT:1 is equivalent to setting r,, = K} +1A“f;k +&
draw from {j‘,, &,,)1_,. This is akin to bootstrapping pairs in linear regression, a well-established ap-

proach for capturing conditional heteorskedasticity (Freedman, 1981). A related strategy would be

2 Appendix A explains how to impose these restrictions, which identify the loadings and factors up to arbitrary sign
changes, on the ALS estimates for a given dataset. To identify the signs, I restrict the estimates of the factor risk
premiums used for the asset pricing tests to be positive.

3 Another point to note is that & = (I— (0’1178 is identical to the estimate of & that would result from specifying
I6 = 0 as part of the identification restrictions. In effect, therefore, the second-pass regression is used to impose K
restrictions on the vector u = E(f,) that maximize the explanatory power of I' from a factor pricing perspective.
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T
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to draw randomly from {r,, Wt—]} or equivalently, from {r;, C,_,},_,, which is the approach that I
use for the empirical analysis. It is similar to one used for panel data regressions — drawing entire
cross-sections of residuals at random — that is designed to capture the cross-sectional correlation
in the errors (see, e.g., Gonalves, 2011).*

The tests are conducted using the RMSE for the pure play portfolios. To illustrate, let 6" and
I denote estimates of & and I for a given bootstrap sample. Using these estimates, I construct
& =6 - I ¥, where ii* = @TH'T76". Because the data generating process for the bootstrap
samples implies that @ and RMSE = (&'&/J)"* are the population values of the vector of pricing
errors and RMSE, I use the centered value of @" and the associated RMSE to test the null hypothesis
of exact factor pricing for a given number of factors. Specifically, I use the observed distribution of
RMSE* = (& — &)'(&" — &)/J)"* across 500 bootstrap trials to compute 10%, 5%, and 1% critical

values for the RMSE under the null hypothesis.

2.3. Recasting IPCA as a likelihood-based procedure

It should be apparent at this point that using IPCA to conduct pricing tests for the cross-section of
individual stocks is similar to using PCA to conduct pricing tests for pure play portfolios. I now
show that the connection between the IPCA and PCA methodologies is even closer than it might
seem. Indeed, one can easily formulate PCA-based estimators of § and I' that can be constructed
without the use of iterative optimization methods. This strategy plays a key role in the subse-
quent generalization of IPCA because it implies that the IPCA procedure can be embedded within
a likelihood-based framework for estimation and inference.

The first step is to build on an insight that is implicit in a couple of previous arguments. That is,

the conditional factor model in equation (4) can be multiplied by C; to obtain

Fpivl = 0+ rf,+1 + Epitls (8)

which is a static linear factor model for the excess returns on the pure play portfolios. One of the

4These procedures could be extended to capture serial correlation by sampling blocks of data. But this has little
impact empirically because there is little serial correlation in the managed portfolio returns.
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immediate implications of equation (8) is that § and I' can be estimated via conventional PCA.
Specifically, the estimates can be obtained by setting 6=1/T) > r,,; and setting the columns of
I" equal to the leading K orthonormal eigenvectors of the sample covariance matrix of rp,. Irefer to
this strategy for constructing IPCA estimators as the direct solution method for the IPCA problem
because it does not rely on any type of iterative estimation scheme.

The direct solution method embodies the same basic assumptions as the ALS algorithm of Kelly
et al. (2019). In fact, the arguments that are used to motivate the ALS algorithm are drawn from
Kelly et al. (2017), who develop the asymptotic theory for IPCA estimators under circumstances in
which W, = I for all ¢. There is an obvious link between IPCA and PCA in this case because the
IPCA estimators are constructed by applying PCA to the sample covariance matrix of the vector
of managed portfolio returns given by (1/N)C,_,r,. Although Kelly et al. (2017) do not explicitly
address the case in which W, # I, their arguments can be extended to cover this case by making

suitable assumptions about the limiting behavior of W, as N — 0.

2.3.1. Maximum likelihood estimators

The next step is to link the estimators produced by the direct solution method to the maximum
likelihood estimators for a closely related problem. Following Tipping and Bishop (1999), I con-
sider a scenario in which g,,,; ~ N(0, ¢’I) and f,., ~ N(0,¥), where identification is achieved
by assuming that I'T is a diagonal matrix with descending diagonal elements and that ¥ = 1. Un-

der the static factor model in equation (8), the identification restrictions in conjunction with the

By combining equations (5) and (8), the factor model for the vector of excess returns on the pure play portfolios
can be expressed as

1
rpz+1—6+rfr+1+W ZVt+ szkt.ﬁcHl >

where VAVI_I/2 is the symmetric square root of W, and Z, = C,VAV;1 * satisfies (1/N)Z,Z, = 1. Kelly et al. (2017) consider
the case in which W, = I and show that applying PCA to the sample covariance matrix of rp,+1 delivers consistent
estimators provided that the term inside the brackets is O,(N ~'2). To extend their asymptotlc arguments to cover the
more commonly encountered case in which W, # I, one could assume, for instance, that W, converges in probability to
W, as N — oo for all 7, where W, displays stationary dynamics and has suitable distributional properties.

11



distributional assumptions for €,,,; and f,,, imply that
Fpirt ~ N8, TT + &), ©)

It is easy to see the maximum likelihood estimator of 4 is given by 7, = (1/7) Zthl r,;. Hence the

concentrated log likelihood function can be expressed as

LT, = —% log(27) — glog x| - gtr(E‘lS), (10)

where £ = ITT" + ¢’ and S = (1/7) Z,Tzl(rp,t — F,)(r,; — 7))’ denote the population and sample
covariance matrix of r,,, respectively.

Now let I' = UDV’ denote the singular value decomposition (SVD) of the loading matrix for
the pure play portfolios. The first-order conditions (FOCs) obtained by differentiating £(T', ¢*) with
respect to I' imply that SE™'T" = T (see, e.g., Lawley and Maxwell, 1971). Building on this result,
Tipping and Bishop (1999) show that the FOCs for I' imply that

Sui = (di +sHuy, k=1,...,K, (11)

where u; is the kth column of U and d, is the kth diagonal element of D.® Equation (11) implies
that u is an eigenvector of S and that its associated eigenvalue is given by I, = d; +¢*. Thus the kth
column of the maximum likelihood estimator of I" is given by 9, = u,(l,—&*)"?, where I, denotes the
kth largest eigenvalue of S and ¢&? denotes the maximum likelihood estimator of ¢2, which Tipping
and Bishop (1999) show is given by &* = (J — K)™! ZJJ.:KH L.

There are two key takeaways from these results: (i) the maximum likelihood estimator of ¢ is
identical to the PCA estimator of § and (i1) the maximum likelihood of I" has the same column space

as the PCA estimator of I'. It therefore follows that implementing the asset pricing tests using the

®The first step in deriving equation (11) is to note that (I'T" + ¢2I)"'T = T@X'T + ¢*I)~'. Thus X' =
UDV'(VDU'UDV' + ¢’I)~!. Because I'I' = VD?V’, it follows that V = I under the imposed set of identification
restrictions. The rest is simple algebra using the properties of orthonormal matrices.
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maximum likelihood estimators will yield the same outcome as implementing the tests using the
PCA estimators. Although there is no inherent advantage to employing the maximum likelihood
estimators in the Kelly et al. (2019) framework, the ability to recast IPCA as a likelihood-based

procedure paves the way for generalizing IPCA to other settings.

2.4. Regime-switching IPCA and regime-specific pricing tests

The assumption that § and I' are constant is central to all of the foregoing results. As discussed
earlier, however, modeling these parameters as constant is equivalent to assuming that the excess
returns for the pure play portfolios are described by a static linear factor model. This aspect of IPCA
seems overly restrictive in view of the overwhelming evidence that variances and covariances of
excess portfolio returns vary through time. It also leaves little room for time-varying risk premiums
to play a role in the analysis. To address these issues, I propose a regime-switching generalization
of IPCA that allows both the mean vector and covariance matrix of the excess portfolio returns to
differ across unobserved economic and/or market regimes.

I favor a regime-switching approach over other potential modeling strategies for several reasons.
First, the idea of regime changes is both conceptually simple and intuitively appealing. The regimes
could be associated with phases of the business cycle, as in Hamilton (1989), or related to other
phenomena such as the familiar notion of “bull’ and “bear” markets. Second, the nonlinear dynamics
associated with regime changes have the potential to generate interesting asset pricing implications.
If the changes induce large shifts in the investment opportunity set, for example, then they can give
rise to unanticipated effects, such as a non-monotonic relation between risk and expected returns
(see, e.g., Whitelaw, 2000). Third, it turns out that regime-switching models have the advantage of

being highly tractable from a computational perspective.

2.4.1. The regime-switching model

I develop my regime-switching generalization of IPCA by building on the regime-switching PCA
framework of Kirby (2019b). Let s, € (1,2,..., M) denote an integer-valued state variable that
follows a stationary, ergodic, first-order Markov chain. The basic idea behind the proposed approach

is to assume that r,, s, ~ N(d,,, X,,) for all ¢, where 6; and Z; = I'.I"; + gl.zl denote the mean vector
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and covariance matrix of the excess portfolio returns in the ith regime. It is well known that a first-
order Markov chain can be conveniently described in terms of a vector autoregressive process (see,

e.g., Hamilton, 1989). Specifically, the state transitions are governed by a process of the form

&1 = P’é:t + Ns (12)

where &, is an M X 1 vector whose ith element is given by 1,-; for all i, P is an M X M transition
matrix with typical element p;; = Pr(s,.; = jls; = i), and n,,, is a vector martingale difference
sequence, i.e., E(n,|€,&, ..., &) =0.

Fitting this type of model is straightforward. Let € denote a vector that contains all of the
unknown parameters. Following Hamilton (1990), one can compute the maximum likelihood es-
timator of @ using a simple expectation-maximization (EM) algorithm. A detailed example of the
algorithm is contained in Appendix A.” The EM algorithm implies that the maximum likelihood

estimator of d; is . A
5 = Z;:;'fi,ﬂT(a)Arp,t’ (13)
D=1 & (6)
where .f,;,g(@) is the estimated smoothed probability that s, = i in period 7 (i.e., the estimated proba-
bility that s, = i given {r,,}"_,). It also implies that the maximum likelihood estimator of I’; satisfies

S,-ﬁi_lfi =T, where ) A
S Ear BT — 8y, — 6
Z[T=] fi,t\T(é)

Hence, the kth column of the maximum likelihood estimator of T; is given by ¥, = u;x(lix — ¢,

S

(14)

where /;; is the kth largest eigenvalue of S;, u;; is the associated orthonormal eigenvector, and gA'l.z
is the maximum likelihood estimator of ¢?, which is given by ¢ = (J — K)™! ij.z x+1 lij. Because
these estimates can be computed without resorting to a secondary layer of iterative optimization, the

overall computational demands of the EM algorithm are generally quite low.

"The example is for a model that is specified in terms of 7,, = w" *rp., where W = (1/T) X, W,. This model is
discussed in Section 2.6.
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2.4.2. Regime-specific test statistics and inferences

The parameter estimates produced by the EM algorithm can be used to conduct regime-specific
asset pricing tests. Let fi; = (IA“;IA“,-)‘llA‘ZS,- denote the J x 1 vector of second-pass coefficients that
result from projecting &; on I';. The J x 1 vector of estimated pricing errors for regime i is given by
&; = 6; — fiﬂi. Thus the regime-specific estimates of the RMSE are given by RMSE; = /& &;/J
fori = 1,..., M. Although the limiting distribution of RMSE; is unavailable, the computational
tractability of the EM algorithm makes it easy to implement a parametric bootstrap procedure.

The basic steps for generating a bootstrap sample of size T are as follows. First, generate s} from

the M-point discrete distribution implied by the estimated ergodic probabilities (i.e., unconditional

T

probabilities) of the first-order Markov chain. Next, generate {s},_,

using the M-point discrete dis-
tribution of s,|s,_; implied by the estimated transition probabilities of the first-order Markov chain.
Finally, generate r),, from a multivariate normal distribution with mean vector &; and covariance
matrix ):“,S; = f‘v;f‘;j + éfjl fort=1,2,...,T.

The regime-specific pricing tests are conducted in the same fashion as the single-regime pricing
tests. Let 8? and f‘j denote the estimates of &; and I'; obtained by fitting the regime-switching
model to a given bootstrap sample. The associated vector of estimated pricing errors is given by
A% N

& = & - i, where i = (I7'T

1

/T,)"'T}'8,. Thus the observed distribution of RMSE! = (&' —
&) (&; — @&;)/J)""* can be used to obtain critical values for testing the null hypothesis of exact factor
pricing in the ith regime. Similarly, the observed distribution of the second-pass R-squared statistic
for the ith regime can be used to construct confidence intervals on the regime-specific explanatory

power of the model for expected excess returns under the alternative hypothesis.

2.5. Capturing nonlinear effects

Recent studies point to nonlinearity as an important feature of the relation between firm charac-
teristics and expected stock returns. For example, Freyberger et al. (2019) combine nonparamet-
ric regressions with advanced variable selection techniques to identify characteristics that provide
incremental information about the cross-section of expected stock returns. They find that their
nonparametric regressions outperforms linear regressions by a substantial margin in out-of-sample

applications. Nonlinearity is also important in asset pricing tests. Kirby (2019a), for instance, uses
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regression-based managed portfolios that capture nonlinearity to test a range of recently-developed
asset pricing models. None of the models, including those of Kroencke (2017), He et al. (2017),
Stambaugh and Yuan (2017), and Lettau et al. (2019), explain more than a small fraction of the
cross-sectional variation in the average portfolio returns.

Fortunately, the IPCA framework can easily be extended to capture nonlinear effects. Although
the conditional factor model assumes that the cross-sectional relation between the instrumental vari-
ables and factor loadings is linear, it provides a great deal of flexibility in how the instruments are
defined. As a consequence, it is compatible with nonparametic methods that rely on basis func-
tion expansions to accommodate departures from linearity. I employ an approach that combines the
features of additive regression models with those of characteristic-based portfolio sorts.

Let{gijs &2js - --»81j} denote a set of L disjoint groups of stocks that are formed by using the jth
characteristic to sort stocks for period # and grouping those with similar values of the characteristic
together. If N is evenly divisible by L, for example, then g;;, contains the N/L stocks that have
the lowest values of the jth characteristic for period 7, g,;, contains the N/L stocks that have next
lowest values of the jth characteristic for period ¢, and so forth.® Next, let 1 i denote an N X L
matrix of indicator variables whose values are defined on the basis of the groups. In particular, let
the nth element of the ith column of I, be equal to one if the nth firm is in g;;, and equal to zero
otherwise. Finally, let I, = (I, I5,,...,1;,) denote an N X Q matrix that contains the full set of
indicator variables for period ¢, where Q = L(J — 1). °

Now consider the implications of specifying the elements of I, as instrumental variables for
period ¢. Under this approach, the associated pure play portfolio returns for period ¢ + 1 are the

estimated coefficients for a Fama and MacBeth (1973) regression of the form

i = Xp+ey, (15)

where X; = (1,1,) and p is an (Q+1) X1 coeflicient vector. This is a simple nonparametric regression

81f N is not evenly divisible by L, then the groups are constructed such that the stocks are as evenly distributed across
groups as possible.
9The indicators are indexed starting with j = 2 because j = 1 corresponds to the constant instrument.
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specification: an additive model that employs zero-degree B-splines with quantile-based knots. But
it is not identified because 1 is in the column space of I, for every value of j. One way to achieve
identification would be to set the coefficient for one column of I, to be zero for all j. Although this
is a common way to avoid the “dummy variable trap” in regressions that employ indicator variables,
the estimated coeflicients are easier to interpret under the following identification strategy.

Let R denote a (Q + 1) X (J — 1) matrix used to impose restrictions of the form R’p = 0. I specify
R such that the L elements of p that correspond to I ;, are constrained to sum to zero for every value
of j € (2,...,J). As aresult, the restricted ordinary least squares (OLS) estimate of the intercept
(i.e., the first element of p) is simply the excess return on the equally weighted market index (EWM)
for the set of stocks under consideration. In addition, the restricted OLS estimate of the coefficient
associated with the ith column of I, has a simple interpretation. It is the estimated marginal effect
for period #+ 1 of changing the value of the jth characteristic from its average value across all stocks
in period ¢ to its average value for the stocks in group g;j;.

Note that R’p = 0 implies that the restricted OLS estimator must lie in the column space of
the orthogonal complement of R, whichis a (Q + 1) X (Q — J + 2) matrix. This property implies
that the estimator has a tractable closed-form representation (Faliva and Zoia, 2002). In particular,
one can show that p = R, (X,;R,)"r,;, where R, denotes the orthogonal complement of R and
(X,R.)" = (R XX,R,)"'R’ X, denotes the left pseudoinverse of X,R,. Because the columns of
R, form a basis for the null space of R’, they are given by the orthonormal eigenvectors associated
with the non-zero eigenvalues of the symmetric and idempotent matrix I - R(R'R)"'R’.

In view of these results, equation (15) implies that the (Q + 1) X 1 vector of excess returns for
the nonparametric pure play portfolios can be expressed as R, r,;.1, where r,,.; = (X,R,)"ru.
is a lower-dimensional vector of excess portfolio returns. Because R, is constructed such that
R R, =1, it follows that r,,,; can be used in place of R,r,,,; to conduct the asset pricing tests.
If, for example, the vector of estimated pricing errors for the lower-dimensional set of managed
portfolios is given by @, then the vector of estimated pricing errors for the pure play portfolios is
given by R, &. Because the value of @ R’ R, & is numerically identical to that of & &, I simply use

the RMSE for the lower-dimensional set of managed portfolios to conduct the tests.
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2.6. Additional modeling issues

Before turning to the empirical analysis, I address a couple of additional modeling issues. One
relates to the interpretation of the parameter estimates. Suppose by way of illustration that C, is
replaced with C;A for all ¢, where A is a nonsingular J X J matrix. Because this is a full rank
transformation, it will not have any effect on the fitted values for the Fama and MacBeth (1973)
regressions. Thus it will not affect the outcome of the asset pricing tests. But it will change the
nature of the managed portfolios and the estimates of the factor loadings. As a result, something
as innocuous as changing units of measurement will affect the magnitude of the estimated pricing
errors. This suggests that some type of standardization would be beneficial.

To address this issue, I standardize every column of C, except the first to have a mean of zero
and variance of one for each time period. Thus the estimated intercept in the Fama and MacBeth
(1973) regression for period ¢ is given by (1/N) 22’:1 Tny, the excess EWM return. Standardizing the
columns of C, has two primary benefits. It implies that all of the characteristics are measured in the
same units, thereby promoting direct comparisons across characteristics. In addition, it implies that
the cross-sectional distribution of the pure play portfolio weights has a constant mean vector and
constant covariance matrix, so the weights should be well behaved for cases in which some of the
characteristics display time trends or other forms of nonstationary behavior.'”

The other issue has to do with the relation between the parameter estimates obtained via the
direct solution method and those obtained via the ALS algorithm of Kelly et al. (2019). To see the
nature of this relation more clearly, consider a scenario in which W, takes the same value for every

time period. In this case, the problem in equation (7) is equivalent to
I v 1«
min = 3 (1 =6 ~Tf Y W(rp =6 ~Tf ) + = > eien. (16)
o =1 =1

where W = (1/7) Zthl W,. Thus the estimates of ¢ and I' can be obtained solving a PCA problem

10Using indicator variables to construct nonparametric pure play portfolios delivers the same benefits. But standard-
ization is still useful in this case in order to facilitate comparisons between the parametric and nonparametric results.
Hence, I standardize the columns of I; to have a unit cross-sectional second moment before constructing the managed
portfolios used for the asset pricing tests.
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of the form
1> .
min — Z(rp,t —-k—=Af) (Fp,—k—=Af), (17)

«xAF T
t=1

where 7,, = W''r,,, K = W6, and A = W"T. Specifically, they can be obtained by setting
6= W_l/ Rand T = W_l/zf\, where & and A solve the PCA problem. Note, however, that reproducing
the ALS results would require a nonstandard choice of identification restrictions. For example, if
the goal is to construct an ALS estimate of I' such that T is diagonal with descending diagonal
elements, then the PCA estimate of A would have to be constructed such that AW 'As diagonal
with descending diagonal elements.

Because I want to compare the results produced by the ALS and direct solution methods, I use
the following procedure to conduct the econometric analysis for the single-regime version of IPCA.

First, I multiply equation (8) by W to obtain a static factor model of the form
?p,t+1 =K+ Aft+1 + ép,t+1’ (18)

where &, = Wl/zsp,m. Next, I construct the PCA estimates of x and A, which should be similar
to the estimates of ¢ and I' obtained by solving the minimization problem in equation (7) as long as
the values of W, are reasonably stable over the sample period. Finally, I multiply the PCA estimates
by W~ to obtain the estimated pricing errors for the pure play portfolios under the direct solution
method and implement the asset pricing tests as discussed in Section 2.2.

The approach used for the regime-switching generalization of IPCA is similar. First, I fit a
regime-switching model to {i'p,,}tT:1 by assuming that 7, ,|s; ~ N(k,,, £,,), where Q, = AS,A;, + Til
has an underlying factor structure (see Appendix A for additional details).!' Next, I multiply the
estimates {k;}”’, and {A;}”, by W™ to obtain the estimates of {6}, and {T'}}, for the pure play
portfolios. Finally, I carry out the asset pricing tests using regime-specific estimates of the vector of
pricing errors for the pure play portfolios. I also conduct tests using the managed portfolios used to

fit the the model to assess whether the results are sensitive to the choice of portfolios.

T fit the model to {i*p,,}tT:1 instead of to {rp,,}tT:1 for the sake of promoting comparisons to the single-regime results

produced by the ALS algorithm. The latter approach is an obvious choice more broadly.
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3. Data and Preliminary Analysis

Researchers have identified a host of firm-specific variables over the past three decades that appear
to have some ability to capture cross-sectional variation in expected stock returns (see, e.g., Harvey
et al., 2016). This raises an important question. Which of these characteristics should be employed
as instruments in the [PCA framework? I use a relatively small set of characteristics that are chosen
based on the results of Freyberger et al. (2019). These authors apply an advanced variable selection
procedure to a fairly comprehensive set of 62 characteristics in order to identify those that provide
incremental information about the cross-section of expected returns. Their analysis is distinguished
from earlier efforts along these lines, such as that of Green et al. (2017), by their use of nonpara-
metric methods that do not impose strong functional-form assumptions.

Freyberger et al. (2019) report that only 13 of the 62 characteristics survive the selection proce-
dure using data for 1965 to 2014. I use all of these characteristics and include three others that are
identified in various subperiod tests.'? Specifically, I use the log of market equity (LME), the log
of the book-to-market equity ratio (LBM), an eleven-month stock return (MOM), a six-month stock
return (IMOM), a one-month stock return (REV), the log of realized monthly volatility (LVOL), the
log of monthly share turnover (LTO), standardized unexpected monthly volume (SUV), the annual
growth rate of total assets (IN'V), the ratio of annual sales to market equity (SM), the ratio of annual
net operating assets to total assets (NOA), the stock price relative to its 52 week high price (P52H),
the annual industry-adjusted profit margin (APM), the annual return on cash (ROC), a fiscal-year-
based measure of annual share issuance (NSFY), and a measure of annual share issuance for the
most recent 12 months (NSTY). Variable definitions are given in Appendix B, which also describes
how I match characteristics that depend on balance sheet items with stock returns.

The data are drawn from standard sources. I obtain monthly stock returns for the Center for
Research in Security Prices (CRSP), annual balance sheet items from the Compustat Annual In-

dustrial file, and the monthly risk free rate from the Ken French data library. Firms are required

12There are a few cases in which I employ a transformed version of the characteristic used by Freyberger et al. (2019).
For example, I use the logarithm of realized volatility rather than the volatility itself because the log transformation
reduces the influence of values in the long right tail of this characteristic’s cross-sectional distribution.
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to have at lest two years of data on Compustat to alleviate backfilling bias. The sample period is
April 1967 to December 2018.!% Table 1 reports descriptive statistics for the firm characteristics.
These statistics are for the sample used to conduct the baseline empirical tests.!* To assess whether
my findings are sensitive to sample composition, I also employ a secondary sample (the “no-micro-
caps” sample) that excludes stocks whose market equity is smaller than the 20th percentile of the
NYSE market-equity distribution. Stocks that have a missing return or a missing value for any of

the 16 characteristics for a given month are excluded from the analysis for that month.

3.1. Fama and MacBeth (1973) regressions

Table 2 summarizes the results obtained by fitting monthly cross-sectional regessions of excess
stock returns on the characteristics and on characteristic-based indicator variables for the L = 4 case
(i.e., quartile indicators). The findings are in line with those of prior research. In particular, the
regression evidence provides broad support for the view that the characteristics provide incremental
information about the cross-section of expected returns. Using the characteristics as regressors, for
example, all but three of the Fama and MacBeth (1973) #-statistics for the average estimated slope
coeflicients are statistically significant at the 5% level. The exceptions are the average estimated
slopes for the IMOM, LTO, and APM characteristics. Although this finding suggests that these
characteristics have negligible incremental explanatory power, it is not dispositive given that the
regressions in question impose a strong a priori assumption on the functional form of the relation
between the characteristics and expected stock returns.

Indeed, the results for the additive regressions indicate that all 16 characteristics provide in-
cremental information about the cross-section of expected returns. There are certainly instances
in which one or more of the indicators for a given characteristic is statistically insignificant at the
5% level. But at least one of the indicators is statistically significant for every characteristic. Al-

though the indicators for the first and fourth quartiles tend to have the largest absolute z-statistics,

13Because the nonparametric regressions have a large number of regressors, I require the no-micro-caps sample to
contain at least 500 stocks for every month considered. This screen results in an April 1967 start date.

14The statistics are similar to those reported in prior studies that examine one or more of the characteristics. Exact
matches are unlikely for a variety of reasons, such as differences in sample periods, winsorization or trimming at
different levels, minor differences in variable definitions, and differences in the treatment of missing values.
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there are exceptions. For example, the #-statistics for the log realized volatility are 0.45, 6.77, 3.42,
and —4.98, which suggests that the cross-sectional relation between realized volatility and expected
stock returns is not monotonic. On the whole, the results of the nonparametric regressions appear to

be broadly consistent with those reported by Freyberger et al. (2019).

3.2. Baseline asset pricing tests

Table 3 examines the pricing performance of various specifications of the single-regime version of
the IPCA factor model. This provides a baseline set of results that can be compared with those
produced by the regime-switching model. Panels A and B report estimates of the RMSE for two
sets of managed portfolios. The estimates in the first seven columns are for the 17 pure play port-
folios obtained via linear Fama-MacBeth regressions (the “linear pure play portfolios™). Those in
the remaining columns are for the 49 portfolios obtained via additive regressions that use quartile
indicator variables and restrict the four coefficients associated with each characteristic to sum to
zero (the “additive pure play portfolios”).

First I discuss the results for the linear pure play portfolios. Panel A shows the results obtained
using the ALS algorithm of Kelly et al. (2019). The K = 0 column reports the estimated RMSE
with zero factors in the model (i.e., the value of (3'3 /17)'?). Tt is 0.36% per month using the sample
that includes all stocks and 0.22% per month using the sample that excludes micro-cap stocks. The
next six columns show the estimated RMSE for values of K that range from one to six.

The estimated RMSE for the one-factor model is 0.29% per month, which suggests that the
first factor does relatively little to explain the cross-section of average portfolio returns. Adding a
second factor to the model reduces the estimated RMSE to 0.27% per month. Although there is no
additional reduction in the estimated RMSE for the K = 3 or K = 4 specifications, moving to a
five-factor model causes the estimated RMSE to fall to 0.15% per month. With the addition of a
sixth factor, it falls again to 0.11% per month. The same general pattern is evident for the no-micro-
caps sample. The estimated RMSE for the one-factor specification is 0.17% per month, which again
suggests that the first factor does relatively little to explain the cross-section of average returns. The
estimated RMSEs for the two-, three-, and four-factor specifications are slightly lower, but larger

reductions occur with the addition of the fifth and sixth factor to the model.
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Panel B replicates the analysis of panel A using the direct solution method. The differences in
the estimated RMSEs across the two panels are very minor, which is the expected finding in light of
the discussion in Sections 2.3 and 2.6. Using all stocks, for example, the estimated RMSE produced
by the direct solution method is 0.29% per month for the one-factor model and 0.12% per month
for the six-factor model. Because the estimated RMSEs in panel B closely mirror those in panel A,
it appears that the direct solution method represents a promising alternative to ALS for estimating
parameters and conducting IPCA-based asset pricing tests.

The critical values in panel C lend additional context to these findings. The critical values are
based on the bootstrap distribution of the estimated RMSE under the null hypothesis of exact factor
pricing. As might be anticipated, the results indicate that the one-factor model is sounded rejected.
The critical values for the 1% significance level are only 0.06% (ALS method) and 0.05% (direct
solution method) per month. However, the critical values rise as more factors are added, which
causes the evidence against exact factor pricing to become weaker as K increases. Indeed, using all
stocks yields 1% critical values for the six-factor model that exceed the estimated RMSEs for the
model. Of course some might question how well a six-factor model aligns with the conventional
view that the number of sources of priced risk should be fairly small. Nonetheless, the general
thrust of the evidence is reasonably favorable to the hypothesis that the 16 firm characteristics serve
as proxies for priced covariance risk.

Turning to the results for the additive pure play portfolios, I find that the K = 0 values of the
estimated RMSE are a good deal smaller than those for the linear-regression portfolios: 0.19%
per month using all stocks and 0.13% per month using the no-micro-caps sample. This finding
appears to be driven by the portfolios associated with the indicator variables for the middle two
quartiles. Because these portfolios generally have average excess returns that are closer to zero than
the portfolios associated with the indicator variables for the top and bottom quartiles, they help to
bring down the average value of the squared deviations of the elements of & from zero.

The general pattern of the estimated RMSEs with K > 0 is similar to that observed for the linear
pure play portfolios. The ALS method yields an estimated RMSE for the one-factor model of 0.15%

per month using all stocks and 0.10% per month using the no-micro-caps sample. In comparison,
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the corresponding values under the direct solution method are 0.15% and 0.09% per month. But all
of the estimated RMSEs fall as K increases. With six factors, for example, the estimated RMSEs
falls to 0.10% (all stocks) and 0.07% (no micro-caps) using the ALS method, whereas the direct
solution method yields values of 0.10% (all stocks) and 0.06% (no micro-caps).

More broadly, however, there is some divergence between the inferences for the additive pure
play portfolios and those for the linear pure play portfolios. Using the additive pure play portfolios,
the estimated RMSEs for the five- and six-factor parameterizations exceed the 1% critical values
in almost every case. Although this finding suggests that the conditional factor model is ultimately
unsuccessful in explaining the nonlinear effects captured by the additive regressions, the results still

point to substantial linkages between firm charactersitics and priced covariance risk.

3.3. An initial look at the regime-switching evidence

Table 4 reports selected results for a two-regime version of the regime-switching model. I fit the
model to {i'p,,}lT:1 using values of K from one to six as described in Section 2.4.1. However, my dis-
cussion focuses on the estimates of the regime-specific means and volatilities for a single portfolio:
the equally-weighted market index. These estimates are of particular interest because the literature
contains a number of prior studies that use two-state Markov switching models to characterize bull
and bear market regimes (see, e.g., Gordon and St-Amour, 2000; Maheu and McCurdy, 2000; Pagan
and Sossounov, 2003; Guidolin and Timmermann, 2005; Kole and van Dijk, 2017). I can therefore
use the results of these studies as a frame of reference for assessing my findings.

The one-factor parameterization of the model clearly yields evidence of two distinct market
regimes. The mean and volatility of the excess market returns are estimated to be 0.11% and 4.92%
for the first regime and 2.77% and 7.66% for the second regime. These figures translate into annual-
ized values of 1.3% and 17.0% for the first regime and 33.2% and 26.5% for the second regime. The
95% confidence intervals for the regime-specific means indicate that the estimates are reasonably
precise. The upper confidence limit for regime one is 0.53%, which is well below the lower confi-
dence limit of 1.48% for regime two. Note, however, that the spread between the estimated means is
considerably smaller for the no-micro-caps sample, which suggests that market capitalization may

play a meaningful role in the subsequent asset pricing tests.
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Moving to a two-factor parameterization causes the estimated mean for regime one to rise and
that for regime two to fall. The estimates are 0.50% and 1.88% for the sample that includes all stocks
and 0.61% and 0.93% using the no-micro-caps sample. Moving to a three-factor parameterization
leads to a further narrowing of the spread between the estimated means. But the spread widens with
the addition of the fourth, fifth, and sixth factors. The six-factor parameterization therefore produces
estimated means that are similar to those produced by the one-factor parameterization.

Regardless of the choice of K, the estimated mean and estimated volatility for the first regime
are lower than the estimated mean and estimated volatility for the second regime. This finding
contrasts sharply with those of prior studies that fit univariate two-regime specifications to market
index returns. Their model fitting results imply that one of the regimes displays a high mean and
low volatility (the bull regime) and the other displays a low mean and high volatility (the bear
regimes). For example, Maheu and McCurdy (2000, p. 104) report that “the bull-market label refers
to the high-return, low-volatility state, whereas the bear-market label refers to the low-return, high-
volatility state of the stock market.”” However, I find that the picture changes once the relation
between firm characteristics, expected returns, and volatility is taken into account.

To investigate further, I consider the estimated smoothed probabilities of the high-volatility
regime that are obtained by fitting a univariate two-regime specification to the excess monthly re-
turns on the equally-weighted market index. These probabilities are plotted in the top panel of
Figure 1. The rectangular shaded areas on the plot show ex-post bear market periods under a com-
mon classification rule that relies strictly on observed market returns (Lunde and Timmermann,
2004). The rule is to declare the start of a bear market once the month-end value of the market index
falls by at least 15% from its most recent high and to declare the start of a bull market once the
month-end value of the market index rises by at least 20% from its most recent low.

The pattern of the estimates produced by the univariate fit is consistent with that reported by
prior studies. The mean and volatility of excess market returns are estimated to be 1.16% and
3.96% in regime one and 0.09% and 8.37% in regime two for the sample that includes all stocks. In
addition, the periods during which the estimated smoothed probability of the high volatility regime

is close to one line up well with the ex post bear market periods. This finding is also consistent with
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the results reported in prior studies (see, e.g., Kole and van Dijk, 2017).

The remaining two panels of Figure 1 show the estimated smoothed probabilities of the high-
volatility regime that correspond to the Table 4 results. The middle panel is for the K = 1 case and
the bottom panel is for the K = 6 case. These plots look quite different than the plot produced by
the univariate fit to monthly excess market returns. Not only do the estimated regimes appear to
be considerably less persistent than those identified by the univariate fit, there also appears to be a
much weaker correlation between the estimated smoothed probabilities of the high volatility regime
and the bear market periods identified by the ex-post classification rule.

Figure 2 helps to explain the contrast between the model fitting results for the univarate and mul-
tivariate specifications. It plots the regime-specific estimates of the expected excess returns for the
linear pure play portfolios side by side to highlight the magnitude of the differences across regimes.
In almost all cases, the estimated expected excess return for the high-volatility regime is larger in
magnitude than that for the low-volatility regime. The estimates suggest that market portfolio un-
dergoes the largest shift in expected excess returns across regimes. However, the evidence points to
substantial shifts for the LME, REV, SUV, LTO, INV, and P52H portfolios as well.

The main takeaways from the preliminary analysis of the regime-switching evidence can be
summarized succinctly. The model fitting results point to the presence of a regime in which the
linear-regression portfolios have both high volatility and high expected excess returns. In addition,
they indicates that this regime is relatively short lived. Using all stocks, for example, the estimated
expected regime durations in Table 4 range from a low of 2.3 months for K = 1 to a high of 3.2
months for K = 5. The estimates are slighted higher for the no-micro-caps sample. Still, the upper

end of the 95% confidence interval for expected duration never exceeds 5.1 months.

4. Main Empirical Results

The analysis thus far has yielded several interesting insights. First, there are stretches of time dur-
ing which individual stocks have both high volatility and high expected excess returns. Because
this insight emerges from the dynamics of returns for managed portfolios that have characteristic-

dependent weights, it seems to be broadly consistent with the view that the characteristics proxy
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for factor loadings, thereby capturing cross-sectional differences in priced covariance risk. Second,
any link between the explanatory power of characteristics and the familiar concept of bull and bear
markets is relatively weak. The high-volatility regime has a relatively short expected duration and
fails to display any of the features typically associated with bear markets. Third, regime changes
are associated with substantial shifts in the investment opportunity set.

I now look more closely at the asset pricing implications of the regime-switching evidence by
conducting regime-specific analogs of the baseline asset pricing tests. Table 5 reports the results
of the regime-specific pricing tests for the managed portfolios constructed via linear cross-sectional
regressions. Panel A is for the 17 portfolios used to fit the regime-switching model and panel B
is for the 17 linear pure play portfolios. The first two columns report the average value of the R-
squared statistics that capture the regime-specific explanatory power of the factors for the excess
portfolio returns.!> The remaining columns report regime-specific values of the estimated RMSEs,
the associated 1% critical values for testing the hypothesis of exact factor pricing, and regime-
specific 95% confidence intervals for the second-pass R? statistic.

I begin by discussing the results for the managed portfolios used to fit the model (panel A). Sev-
eral aspects of the results obtained using all stocks stand out immediately. First, the estimated RMSE
with zero factors in the model, which measures the distance of the estimated expected portfolio re-
turns from the origin, is much larger in the high-volatility regime than in the low-volatility regime:
0.97% versus 0.23% per month. Second, the one-factor parameterization of the model explains a
substantial fraction of the cross-sectional variation in the estimated expected excess portfolio re-
turns, but its explanatory power is confined to the high-volatility regime. The estimated RMSE for
this regime is 0.48% per month, which is about half as large as that for the K = 0 case, whereas the
estimated RMSE for the low-volatility regime is the same as that obtained with K = 0. Third, the
second-pass R-squared statistics are considerably higher for the high-volatility regime than for the

low-volatility regime, which points to a stronger cross-sectional relation between the characteristics

SFor example, the jth diagonal element of f;f‘i represents the estimated variance of the explained component of the
excess return for the jth pure play portfolio in the ith regime. This estimated explained variance can be divided by the
jth diagonal element of S;() to obtain an R-squared statistic for the jth portfolio in the ith regime. The values reported
in the tables are obtained by averaging the regime-specific R-squared statistics computed in this manner.
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and estimated expected excess returns in the high-volatility regime.

The estimated RMSEs produced by the two-, three-, and four-factor parameterizations of the
model do not vary much for a given regime. The values range from 0.22% to 0.23% per month for
the low-volatility regime and from 0.40% to 0.42% per month for the high-volatility regime. But
the estimated RMSE:s fall by a substantial amount when the fifth and sixth factors are included in
the model. The six-factor parameterization, for instance, produces an estimated RMSE of 0.09%
per month for the low-volatility regime and 0.23% per month for the high-volatility regime.

The critical values reported next to the estimated RMSEs indicate that the hypothesis of exact
factor pricing is rejected at the 1% significance level for both regimes, regardless of the choice
of K. This is an initial indication that the regime-specific tests produce more definitive evidence
against this hypothesis than the single-regime tests. Despite this finding, the results still point to a
fairly strong linkage between firm characteristics and covariance risk in each of the regimes. It is
true that the six-factor parameterization of the model produces an estimated RMSE for the high-
volatility regime that is more than double that for the low-volatility regime. In both absolute and
proportional terms, however, moving from zero to six factors leads to a more pronounced reduction
in the estimated RMSE for the high-volatility regime than for the low-volatility regime.

As anticipated, the estimated RMSEs are generally lower for the sample that excludes micro-
cap stocks. The second-pass R-squared statistics also show an increase in most cases for the low-
volatility regime and a small decrease for the high-volatility regime. But there is nothing in the
results to indicate that micro-cap stocks drive the outcome of the pricing tests. For example, the
estimated RMSE for K = 0 is 0.19% per month for the low-volatility regime and 0.48% per month
for the high-volatility regime. Using a one-factor parameterization, the values fall to 0.16% and
0.28% per month, respectively. So the explanatory power of the first factor is largely confined to the
high-volatility regime, as is the case using all stocks.

Similarly, the estimated RMSEs decline as the second, third, fourth, and fifth factors are added
to the model. The main deviation from the pattern observed using all stocks is that adding the fourth
factor produces a larger decline in the estimated RMSE for the low-volatility regime and adding the

fifth factor produces a smaller decline in the estimated RMSE for the high-volatility regime. Using
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six factors, the estimated RMSE is 0.06% per month for the low-volatility regime and 0.18% per
month for the high-volatility regime. These figures are statistically significant at the 1% level, which
is the same finding obtained with six factors using all stocks.

Now consider the results for the linear pure play portfolios (panel B). In general, they look
similar to those for the managed portfolios used to fit the model. The estimated RMSE with K = 0
is much larger in the high-volatility regime than in the low-volatility regime: 0.93% versus 0.23%
per month. In addition, the explanatory power of the one-factor parameterization is confined to the
high-volatility regime, where it again produces an estimated RMSE that is about half as large as that
for the K = 0 case. The two-, three-, and four-factor parameterizations perform only slightly better
than the one-factor parameterization, but the estimated RMSEs fall by a substantial amount when
the fifth and sixth factors are included in the model. For example, the six-factor parameterization
produces an estimated RMSE of 0.09% per month for the low-volatility regime and 0.26% per
month for the high-volatility regime. Both estimates are statistically significant at the 1% level.

Although there are some minor differences in the results across panels, none of them are partic-
ularly noteworthy. The values of the average R-squared statistics reported in the first two columns
are a little lower in panel B than in panel A, as are the values of the second-pass R-squared statistics.
But this finding is not surprising given that the results in panel A are for the portfolios whose excess
returns are used to fit the model. In short, the tests for the linear pure play portfolios convey the
same message as those for the portfolios used to fit the model.

Table 6 reports the results of the regime-specific pricing tests for the managed portfolios con-
structed via additive cross-sectional regressions using quartile-based indicator variables. The results
in panel A are for the 49 portfolios used to fit the regime-switching model. The estimated RMSE
with K = 0 1s 0.13% per month for the low-volatility regime and 0.48% per month for the high-
volatility regime. These values are about half as large as the corresponding values in panel A of
Table 5, which mirrors the finding produced by the single-regime model (see Table 3).

Increasing the value of K causes the estimated RMSE:s to fall in a now familiar manner: slowly
with the addition of the second, third, and fourth factors and then somewhat more rapidly with the

addition of the fifth and sixth factors. The estimated RMSEs for the six-factor parameterization are
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0.08% per month for the low-volatility regime and 0.14% per month for the high-volatility regime.
These figures are statistically significant at the 1% level. The results for the additive pure play
portfolios in panel B are similar, both in terms of the values of the estimated RMSEs and the overall
pattern of the estimates. Thus all of the results are broadly consistent with those in Table 5.

But further comparisons reveal a couple of signs that the portfolios constructed via additive re-
gressions may pose a more difficult pricing challenge than those constructed via linear regressions.
Take the results obtained for the six-factor parameterization using all stocks. The second-pass re-
gression for the low-volatility regime produces R-squared statistics of 86% (panel A) and 84%
(panel B) in Table 5, whereas the corresponding statistics in Table 6 are 59% and 45%. In addition,
the ratio of the estimated RMSE to the 1% critical value is higher for additive regression portfolios
than for the linear regression portfolios. Although the differences are not dramatic, they are another
indication that it may be important to account for nonlinear effects in assets pricing tests.

In the end, two main conclusions emerge from the regime-specific pricing tests that are summa-
rized in Tables 5 and 6. The first is that the findings are less favorable to the hypothesis of exact
factor pricing than those of Kelly et al. (2019). This hypothesis is rejected at the 1% significance
level for any regime-switching parameterization of the conditional factor model that includes six
or fewer factors. The second is that despite these rejections, the evidence indicates that a sub-
stantial fraction of the explanatory power of firm characteristics for expected stock returns stems
from their ability to capture cross-sectional variation in exposures to latent risk factors. The tests
also suggest that the relation between the characteristics and priced covariance risk is stronger in the

high-volatility regime, especially for the case in which micro-cap stocks are included in the analysis.

4.1. A closer look at the factors

One of the features of the regime-switching model is that it allows the factors themselves to differ
across regimes. Thus it should be possible to lend further context to the results by constructing
regime-specific estimates of the latent factor realizations. Using the linear pure play portfolios,
for example, the OLS estimator of f, for the ith regime can be expressed as IA’:rer, where lA“; =

AL A

@a,r i)‘lf; denotes the left pseudoinverse of the matrix of loadings for the ith regime. This is just

i

a regime-specific analog of the vector of estimated factor realizations that would be obtained by
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applying PCA to the sample covariance matrix of r,;. I examine the estimates implied by the
identification restriction IA“;IA“i = I. Hence, the jth row of f‘;, which contains the weights placed on
the various portfolios to estimate the realization of the jth factor for the ith regime, has unit length
for all j.

Figure 3 contains six panels that show the weights used to compute the estimated factor real-
izations for the low-volatility regime (i.e, each panel plots a row of f‘;). Several of the plots lend
themselves to straightforward interpretation. For example, it is apparent that the first factor is es-
sentially just the excess return on the EWM. This finding is consistent with the evidence from prior
PCA studies, which typically report that market-wide movements are a dominant factor in explain-
ing common variation in individual stock returns (see, e.g., Ait-Sahalia and Xiu, 2019). In addition,
the interpretation of the weights for the second, third, and fourth factors is reasonably clear. It ap-
pears that the second factor is closely associated with firm size (market capitalization), the third
factor is closely associated with momentum, and the fourth factor is is closely associated with the
closeness of the stock price to its 52 week high price.

In comparison, the weights for the fifth and sixth factors are much less transparent. Those for
the fifth factor imply relatively large long positions in the LBM and MOM portfolios that are coun-
terbalanced by relatively large short positions in the REV and P52H portfolios. This combination
does not seem particularly intuitive. The weights for the sixth factor also entail substantial positions
in a range of portfolios. There are relatively large short positions in the REV, LVOL, LTO, SM,
and NOA portfolios that are counterbalanced by long positions in the SUV and INV portfolios. It
appears, therefore, that the fifth and sixth factors, which play a crucial role in boosting the pricing
performance of the model in the low-volatility regime, defy easy interpretation.

Figure 4 shows the analogous plots for the high-volatility regime. Once again it appears that
the first factor is essentially just the excess return on the EWM. For the second factor, however, the
weights look quite different than those for the low-volatility regime. Almost all of the weight is
placed on the linear pure play portfolio for the P52H characteristic. Because the estimated expected
excess return for this portfolio is positive in the high-volatility regime (see Figure 2), it appears that

the second factor for this regime is tied to some type of price momentum that is distinct from that
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captured by the linear pure play portfolio for the MOM characteristic.

The weights for the third through sixth factors are also notably different than in the low-volatility
regime. But this finding is not particularly surprising. Suppose for the sake of illustration that the
true unobserved factors were the same in each regime. Because the identification restriction I'T; = I
implies that the estimated factors are ordered according to their estimated variance (from high to
low), there still might not be a direct correspondence between the estimated factors across regimes.
If sorting the true factors by their regime-specific variances produces a different ordering in each
regime, then this alone could result in a reordering of the estimated factors across regimes.

The fifth and sixth factors are again of particular interest because of the role that they play in
boosting the pricing performance of the model. Unlike in the low-volatility regime, it is arguable
that the weights for these factors have a reasonably clear interpretation. They suggest that fifth
factor is tied to return reversals and that the sixth factor is tied to price momentum as it is typically
measured in the asset pricing literature. Therefore, three out of the six factors for the high volatility

regime appear to be primarily associated with past price behavior.

4.2. Firm-level correlations between characteristics and subsequent returns

Up to now the analysis has focused on the cross-sectional relation between firm characteristics and
expected stock returns. But what are the implications of the evidence with respect to the explanatory
power of the characteristics in the time-series dimension? To lay the foundation for addressing this
question, I examine the estimated firm-level correlations between the characteristics and subsequent
excess stock returns. Let ¢ € ¢, indicate that 7 corresponds to a month for which the nth firm has a
non-missing excess return. Under the regime-switching model, the estimated regime i correlation

between the firm’s jth characteristic and its subsequent excess stock return is given by

et fi,z|T(9)(an,z—1 = Cpji)(Tny = Ti)
Crer, €O Cnjumt = Cuj) V(e Enar @)y — Friy )2

Onji = 19)

where ¢, is the value of the jth characteristic for month ¢ — 1, r,, is the excess stock return for

month #, &,;; = Y, £t O Cnji—1] Suer, Ear (@) and Ty = Se, Eir(Orns] Sie,, Enir (D).

Panel A of Table 7 reports selected percentiles of the cross-sectional distribution of 9, ;. The first
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set of results is for the low-volatility regime and the second is for the high-volatility regime. I use all
available stocks to estimate 6, but exclude those that have fewer than 60 non-missing excess returns
when estimating the correlations to ensure that they display reasonable precision.'® The median
value of the estimated correlations is close to zero for most of the characteristics. It ranges from
—0.05 to 0.05 for the low-volatility regime and from —0.08 to 0.08 for the high-volatility regime.
However, the cross-sectional dispersion in the estimated correlations is also fairly large. The spread
between the Sth and 95th percentiles of the cross-sectional distribution ranges from 0.29 to 0.41 for
the low-volatility regime and from 0.50 to 0.64 for the high-volatility regime. This finding hints at
substantial return predictability for a sizable fraction of individual stocks.

Panel B of the table provides additional insights on the predictability issue. It examines the
regime-specific distributions of the R-squared statistic produced by time-series regressions of excess
stock returns on the full set of firm characteristics. These statistics are constructed as follows for
stocks with at least 60 non-missing excess returns. Let ¢,,_; denote a row vector that contains the

month 7 — 1 values of the characteristics for the nth firm. First, I solve the WLS regression problem

min > (ru, = €18, 617 (9) (20)

ety

fori = 1,2 to obtain fin , and //\3,1’2, the regime-specific estimates of the coefficients.!” Next, I compute

52 = > (rng = CoaBu €@ and 67, = > 1y — T 617 (9) @1

tet, tet,

fori =1,2, where r,,; = 3¢, r,,,tg,-,”T(@). Finally, I compute the R-squared statistic for the ith regime

2 _ AD yAD
asR; = 1-(6,,/07).

1*More specifically, I estimate @ using 7,, = WL/ ZC:’_lrt, where r; is the N, X 1 vector of excess stock returns for
month ¢, C;:l is the left pseudoinverse of an N, x 17 matrix C;_; whose nth row contains a 1 along with the values of 16
predetermined characteristics for the nth firm, and W, = (X, N)™' L, C_,C,_;.

This strategy is inspired by standard results for Markov-switching regressions. A Markov-switching regression
with Gaussian errors for each regime would yield FOCs for 8, ; of the form 3¢, (rns — €us-18,)éiqr(-) = 0, where
&iqr(+) denotes the smoothed probability of regime i for period ¢ implied by the full set of model parameters. The FOCs
for the WLS problem take the same form except that the smoothed probability of regime i for period ¢ is replaced by the
estimated probability produced by the regime-switching IPCA model.
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The median R-squared is 44% for the low-volatility regime and 63% for the high-volatility
regime. These values may seem implausibly high at first glance. But it is important to bear in
mind that the R-squared statistic is an upward-biased estimate of the fraction of the return variance
that is explained by the characteristics. For example, if the error term for a regression is serially
uncorrelated and conditionally homoskedastic, then TR*> — the sample size times the R-squared
statistic — has a well-known limiting distribution (see, e.g., Kirby, 1997). For the case in which
population R-squared is equal to zero, it converges to a chi square random variable whose degrees of
freedom equals the number of regressors (excluding the intercept). Thus the R-squared statistic for
a regression with an intercept, 16 characteristics, and the minimum allowed number of observations
has an expected value of around 16/60 = 27% under the null hypothesis that excess returns are
unpredictable. Furthermore, the 95th percentile of its distribution is around 26.3/60 = 48%.

Although the cross-sectional distribution of the R-squared statistic in the current setting is un-
known, the influence of the upward bias is likely to be quite substantial. To get a better idea of
the extent to which the characteristics capture time-series predictability, I examine how the dis-
tributional properties of the R-squared statistic change as I increase the lower bound on number
of observations used to fit the regressions. Figure 5 uses histograms to illustrate the findings. I
construct the histograms by requiring that stocks have a minimum of either 120 or 240 monthly
observations to be included in the analysis. The top row of plots is for the low-volatility regime and
the bottom row is for the high volatility regime. In each case, I show the results obtained using all
stocks and those obtained using the no-micro-caps sample.

As expected, increasing the sample size for the predictive regressions shifts the cross-sectional
distribution of the R-squared statistic to the left. Consider the results for the low-volatility regime.
The average R-squared using a minimum of 120 observations is 15.3% whereas that using a mini-
mum of 240 observations is 9.6%. Excluding micro-cap stocks leads to a further reduction in the
average R-squared, but the changes are relatively minor. It falls to 13.1% using a minimum of 120
observations and 8.4% using a minimum of 240 observations. Under the null of no predictability, the
expected R-squared for a regression with 240 observations is around 6.7% if the errors are serially

uncorrelated and conditionally homoskedastic. The evidence therefore suggests that the predictable
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component of returns for a typical stock is reasonably small in the low-volatility regime.

But the results for the high-volatility regime are more striking. The average R-squared is 32.7%
using a minimum 120 observations and 21.0% using a minimum 240 observations. Thus the ev-
idence points to a surprisingly high level of predictability. Notably, this finding is not driven by
micro-cap stocks. The average R-squared for the predictive regressions that exclude these stocks is
34.8% using a minimum 120 observations and 21.9% using a minimum 240 observations. Thus the
results point to a strong relation between firm characteristics and conditional expected returns in the
high-volatility regime for stocks of all capitalization levels.

Despite the intriguing nature of these findings, their implications for investors are as yet unclear.
One obvious caveat is that the regime-specific estimates of the predictable variation in returns cor-
respond to unobserved regimes. Hence there is no way to construct a feasible trading strategy that
fully captures regime-specific levels of predictability. In addition, it is unclear whether the regime-
specific R-squared statistics are at all indicative of the out-of-sample performance of any type of
implementable trading strategy. This is an empirical question that can only be answered by con-
ducting out-of-sample tests. Fortunately, the tractability of the regime-switching estimators allows

for a straightforward assessment of the out-of-sample evidence.

4.3. Predictive regressions for pure play portfolios

As a first step in assessing the evidence, I examine the ability of recursively-updated estimates of the
regime probabilities to predict the excess returns for the linear pure play portfolios. The estimates
are constructed as follows. Let {i‘,,,t}ﬁ’:1 denote the sequence of observations that constitutes the

initial holdout sample (i.e., 1 < h < T). First, I estimate @ by fitting the regime-switching model

h

., and denote the resultant estimate by ,. Second, I compute 52,h+1|h(91), the estimated

to {F,,}
probability of the high-volatility regime in period & + 1 conditional on observing {i'p’,}f‘: ,- 1 then
repeat these steps for each remaining observation by, for example, redefining the holdout sample to

be {F,,}"*! and refitting the model to obtain & po41 0,).

After computing the time series of recursively-updated probability estimates, I use OLS to fit
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predictive regressions of the form

Tpje = M1 + A12§2,tlt—1(9t—h) +u, t=h+1,...,T, (22)

where r,;, is the excess return for the jth linear pure play portfolio. The results for 7 = 120 are
summarized in Table 8. It reports the OLS estimates of the coefficients, their #-statistics, and the
regression R-squared. The #-statistics are based on heteroskedasticity-robust standard errors.

The estimate of w; for a given portfolio represents its estimated expected excess return for the
case in which §2J|t_1(gt_h) = 0. Thirteen of the estimates are statistically significant at the 10%
significance level (as are twelve at the 5% level), which is consistent with the evidence that the
characteristics help to explain the cross-sectional of expected returns in the low-volatility regime.
More notably, however, seven of the estimates of A, are statistically significant at the 5% level. So
almost half of the linear pure play portfolios display evidence of out-of-sample predictability.

On the other hand, the R-squared statistics for the portfolios that produce statistically significant
estimates of Ay, are fairly small. They range from 1.4% for the EWM and APM portfolios to
4.9% for the P52H portfolio. In addition, the evidence of predictability is weaker for the case in
which micro-cap stocks are excluded from the analysis. Six of the estimates of A, are statistically
significant at the 5% significance level, and the associated R-squared statistics range from 1.3% to
3.7%. These findings make it tempting to conclude that little can be gained by exploiting the regime-
switching forecasts of the excess portfolio returns. But prior research suggests that low R-squared
statistics do not necessarily preclude the construction of profitable trading strategies. I investigate

this possibility by considering the evidence from portfolio sorts.

4.4. Evidence from portfolios sorts

Let m, denote the conditional mean of the vector of fitted values produced by the Fama and MacBeth
(1973) regression for month ¢ + 1. That is, m; = E(#,,,|Z,), where #,,; = C;r, . and 1, denotes the
month ¢ information set. Because C, € 1, it follows that m; = C;m,,, where m,,; = E(r,,.117,).
The results reported in Table 8 point to predictable variation in r,,,; and hence a time-varying

value of m,,,. The portfolio sorts are designed to isolate the contribution of this predictability to the
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explanatory power of the conditional factor model that underpins IPCA.

I start by constructing recursively-updated estimates of {m,,}"_, for two separate cases. The
first corresponds to the IPCA framework of Kelly et al. (2019). Because their version of IPCA
treats m,,, as constant, the associated estimate of m,,, is simply 7, = (1/h) Zﬁ;l rp,. The second
corresponds to the regime-switching version of IPCA. Under the two-regime model, the estimate of
m,,;, is computed as ), = 25:1 & j,h+1|h(91)3 i1, where 8, and K] ;1 denote the estimates of @ and ¢
that result from fitting the regime-switching model to {i'p,,}ﬁ’zl.

This procedure, which uses only the information available to investors in real time, delivers two
competing estimates of m, for each value of # > h. Because the cross-sectional correlation between
the two estimates is likely to be fairly high, I employ residual-based portfolio sorts to isolate the
effect of regime changes. To see the basic idea, suppose that 7y, = Cin,, ) is the estimate of my,
produced by the regime-switching model. First, I regress iy, on C,F ;) and save the resultant vector
of residuals. Next, I conduct two independent quintile sorts using the set of available stocks for
month /: one in ascending order of the elements of C,F,, and one in ascending order of the saved
residuals. Finally, I form 25 portfolios by finding the intersections of the quintile groups. These
portfolios are formed at the end of month /4 and held until the end of month 4 + 1.

Table 9 examines the performance of portfolios formed in this fashion. The results in panel A
are for equally-weighted portfolios that include all stocks. Those in panel B are for value-weighted
portfolios that exclude micro-cap stocks. In each case, the initial group of columns reports the
results obtained by regressing the regime-switching estimate of m, on that implied by the single-
regime model of Kelly et al. (2019), and the remaining group of columns reports the results obtained
by regressing the single-regime estimate of m, on that implied by the regime-switching model.

Panel A tells a clear-cut story. First consider the results obtained by regressing the regime-
switching estimate of m, on that implied by the single-regime model. The average excess returns
for the high and low portfolios in each column are markedly different, and the high-minus-low
portfolio has an average excess return that is positive and statistically significant at the 1% level in
every case. The smallest of the column-wise high-low differences is 1.77%, which has a z-statistic

of 9.03. So using the single-regime estimates to sort stocks is very effective at spreading average
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returns. At the same time, however, the high and low portfolios in each row also produce markedly
different average excess returns. The smallest of these row-wise high-low differences is 0.98%,
which has a t-statistic of 3.37. Thus the evidence indicates that the regime-switching estimates
provide substantial incremental information about conditional expected stock returns.

The key point is that the row-wise differences in average returns are driven by differences be-
tween the regime-switching and single-regime estimates of m,,,. There is no reason to expect the
differences in average returns to be positive and statistically significant unless the regime-switching
estimates capture predictable variation in r,,.;. Although the evidence suggests that predictable
component of r, . is relatively small, it is sufficient to generate substantial gains in the context of
portfolio sorts. This finding highlights the potential relevance of regime switching for investment
management applications that exploit the explanatory power of firm characteristics.

The same conclusions emerge from the results obtained by regressing the single-regime estimate
of m, on that implied by the regime-switching model. The high and low portfolios in each column
produce markedly different average excess returns, and the high-minus-low portfolio has an average
excess return that is positive and statistically significant at the 1% level in every case. The smallest
of the column-wise high-low differences is 1.96%, which has a ¢-statistic of 8.99. Hence, using the
regime-switching estimates to sort stocks is very effective at spreading average returns.

Note, however, that the residual sorts produce a very different pattern than that seen previously.
First, the differences in average excess returns between the high and low portfolios in each row are
not as pronounced. Second, the high-minus-low portfolios have negative average excess returns in
every case. To understand these findings, consider a stock that has a high estimated expected excess
return according to the regime-switching model. If the single-regime estimates are less informative
than the regime-switching estimates about conditional expected stock returns, then this stock will
be more likely to have a negative residual than a positive residual. Consequently, the residuals will
tend to display a negative cross-sectional correlation with conditional expected stock returns.

Panel B shows that these findings are robust to excluding micro-cap stocks and using value
weights instead of equal weights to form the portfolios. Consider the results obtained by regress-

ing the regime-switching estimate of m, on that implied by the single-regime model. Although the
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sorts produce lower spreads between the average excess portfolio returns those that use all available
stocks, I still find that the average excess returns for the high-minus-low portfolios are statisti-
cally significant at the 5% level in every case. In addition, the smallest of the row-wise high-low
differences is 0.58%, which has a z-statistic of 2.05. Thus the residuals still provide substantial
incremental information about conditional expected stock returns. This bolsters the prior findings
regarding the likely relevance of regime switching in investment management applications.

In summary, the picture that emerges from the out-of-sample tests is unambiguous. Not only
does the evidence show that the regime-switching estimates capture time variation in the conditional
expected excess returns for the linear pure play portfolios, it also reveals that the entire cross-section
of expected excess stock returns displays statistically and economically significant out-of-sample
predictability. Importantly, these findings are robust to the exclusion of micro-cap stocks from
the analysis. In view of the evidence from the portfolio sorts, further study of the asset pricing

implications of time-varying risk premia for pure play portfolios would be a worthwhile endeavor.

5. Conclusions

The recent study of Kelly et al. (2019) finds that using a small set of firm characteristics to instrument
for the loadings on latent risk factors delivers a conditional factor model that largely explains the
cross-sectional relation between characteristics and conditional expected stock returns. However,
the managed portfolios that play a crucial role in their IPCA framework are implicitly assumed to
follow a static factor model. I relax this strong assumption by introducing regime-switching IPCA,
which allows both the factors and loadings to differ across economic regimes. Implementing this
generalized version of IPCA yields a number of noteworthy findings.

First, the managed portfolio returns display clear evidence of regime-switching dynamics. But
the properties of the estimated regimes are very different from those obtained by fitting regime-
switching models to market returns. Instead of the usual pattern of bull and bear regimes reported in
prior studies, the estimates indicate that are stretches of time with a typical duration of around three
months during which individual stocks have both high volatility and high expected excess returns.

This is suggestive of a scenario in which the magnitudes of the factor loadings are large in the high-
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volatility regime, the prices of risk are high in the high-volatility regime, and the firm characteristics
capture cross-sectional differences in priced covariance risk.

Second, the results of regime-specific asset pricing tests are less favorable to the hypothesis of
exact factor pricing than those of the single-regime tests implemented by Kelly et al. (2019). I find
that the hypothesis is rejected at the 1% significance level for any regime-switching parameterization
of the conditional factor model that includes six or fewer factors. But the decline in the magnitude of
the estimated pricing errors as more factors are added to the model is substantial. Thus the evidence
indicates that much of the explanatory power of firm characteristics for expected stock returns stems
from their ability to capture cross-sectional variation in exposures to latent risk factors.

Third, the regime-switching estimates display an impressive degree of predictive ability in out-
of-sample tests. Portfolio sorts that isolate the incremental contribution of regime-switching dy-
namics to the explanatory power of out-of-sample estimates of conditional expected stock returns
produce economically and statistically-significant spreads in average returns. The spread in average
returns declines if I use value weighting and exclude micro-cap stocks from the analysis. Nonethe-
less, it remains both economically and statistically significant. This finding highlights the potential
benefits of accounting for regime switching in investment management applications.

Beyond these findings, regime-switching IPCA extends all of the methodological benefits of
IPCA to a more general setting. For example, Kelly et al. (2019, p. 523) note that IPCA “allows
investors and managers to easily assess a firm’s cost of capital without relying on the obviously
misspecified CAPM beta or other factor loadings that may be infeasible to estimate with time series
regression.” The same is true of regime-switching IPCA, which produces cost of capital estimates
that capture the predictable variation in expected returns associated with predictable variation in

latent economic regimes. It is easy to envision many other uses of the methodology as well.
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Appendix A. Estimation Algorithms for IPCA and Regime-Switching IPCA

Much of the econometric analysis relies on iterative methods for solving optimization problems.
In particular, I use an ALS algorithm to jointly estimate the parameters and factors in the IPCA
framework, and an EM algorithm to estimate the parameters of the Markov switching process that
governs the dynamics of the mean vector and covariance matrix of the excess managed portfolio

returns under my regime-switching generalization of IPCA. These algorithms are presented below.

A.l1. ALS algorithm for IPCA

Following Kelly et al. (2019), the IPCA estimators of 4, I', and F are obtained by minimizing
(NT)' 3L, & &,. The FOCs imply that the estimators satisfy

-1

) V1 of T . Coyr
= Z A i, ® (C;_lct_]) A —1C =1 p D
¥ =\ S S =1\ (f,®(C_,C)r,,
and
jt = (f‘/c;—lct—lf‘)_l(f/C;—lcz—l)(rp,t - 8), t=1,...,T, (A2)

where 9 = vec(I') and ® denotes the Kronecker product. Under the maintained assumptions of the
IPCA model, the estimators of § and I are consistent provided that C;_, &, L 0as N - oo for all ¢
(see Kelly et al., 2017, for a discussion of regularity conditions).

The ALS algorithm delivers estimates of 4, I', and F that satisfy equations (Al) and (A2) for
a given dataset. Let F ©" denote an initial estimate (guess) for the matrix of factor realizations.
Substituting F © into equation (Al) yields 5" and 71, the estimates of the parameter vectors for

: . el .
M into equation (A2) yields 7', an updated estimate

. . .. oD N
iteration one. Similarly, substituting 6 ~ and ¥
of the matrix of factor realizations. This completes the first iteration. The iterations continue in the
same fashion until the reduction in the value of the objective function from one iteration to the next

falls below a specified tolerance, such as machine precision.
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A.l.1. Identification restrictions

Suppose that &, I', and F satisfy equations (A1) and (A2) for a given dataset. If these estimates
are obtained via ALS, then they will not, in general, satisfy any particular set of identification
restrictions. But this is easily remedied. Let f = (1/T) X", f. H = (1/T) XL, (f,- )(f, - f), and
G = T'H'"”. Further, let G = UDV’ denote the singular value decomposition of G. Identification can
be achieved by replacing 3, f, and F with alternative estimates of the form &~ = & + f‘f, I"=v D,
and f: = V’H‘l/z(f, —f)fort=1,2,...,T. Itis easy to see that doing so leaves the sum of squares
that defines the IPCA estimators unchanged, and it is easy to verify that the alternative estimates
satisfy a set of identification restrictions that mirror those typically imposed in PCA. Specifically,
the sample mean of f: is zero, the sample covariance matrix of f: is an identity matrix, and T P

is diagonal with descending diagonal elements.

A.2. EM algorithm for the Markov switching process

The EM algorithm for the Markov switching process is adapted from Kirby (2019b). Let F, =
{Fp1,Fp2,...,Fp,) contain the excess managed portfolio returns observed though period ¢. Four sets
of conditional probabilities must be computed in order to implement the algorithm. The first and
second set are &,,(0) = E(§,[7;0) and £,,,,(0) = E(§,,,|F;0) fort = 1,2,..., T, where 8 denotes
a vector that contains the parameters of the model. These are computed using a pair of simple

recursions (Hamilton, 1989, 1990). Specifically, §,,,,(6) = P'&,,(6) and

£1-1(0) © ¢,(F)

0) = ,
6l = T e @0 6@

(A3)

where © denotes the Hadamard product, 1 is an M X 1 vector of ones, ¢,(}) = (¢1,(P), ..., oy, (D))

is an M x 1 vector of Gaussian densities whose ith element is given by

1
¢u(d) = exp| =5 (Fp. = ) Q7 (Fps — ;) (A4)

enr

with ; = A;A] + 771, and ¢ denotes a column vector that contains the density function parameters

(i.e., all elements of k;, A;, and Tl-z fori = 1,...,M). The third and and fourth sets are Er(0) =
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E( |Fr;0) fort=1,2,...,T and §,;(0) = E(§,_ & |Fr; 0) fort = 2,...,T. Kim (1994) shows that

Er(0) = £1,(0) © (P'(§,,17(0) @ §,,,,(8))), (AS)

and

$ir(0) = (€11 (0)(E () @&, (6))) O P, (A6)
where @ denotes element-by-element division.
Because the only restriction placed on the transition probabilities is that they sum to one, the
equations that determine the maximum likelihood estimators for the model take a relatively simple
form (Hamilton, 1990). For example, the maximum likelihood estimator of ¢ satisfies

o [ 0p, )
> (%

=1

J=i

)&ﬂ®=0, (A7)

where ¢,(§) = (log ¢1,(®), . .., log pu,(#))’, and

N s Lijar(9)

ij = —, (A8)
by ZtT=2 ‘fi,t—1|T(0)

where ¢; MT(@) is the ijth element of { tlT(@) and fi’,_”T(@) is the ith element of ft—ur(@)- The EM
algorithm finds the maximum likelihood estimators via fixed-point iteration. It is initiated with a
guess at the solution, say 9(0), and the four sets of conditional probabilities implied by this guess are
used to compute an updated estimate of € that increases the value of the log likelihood function (see
Hamilton, 1990, for further elaboration).

Let 8" denote the estimate of @ at the end of the nth iteration. It is easy to show that equation

(A7) implies that the updated estimate of «; is given by

T ONS
R 2=t Siar (0 W

i INONES
S Ear@™)

(A9)

The updated estimates of A; and 77 follow from equation (A7) by noting that the maximum likeli-
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hood estimators of these parameters satisfy probability-weighted versions of the FOCs for the static
factor model considered by Tipping and Bishop (1999).'* Specifically, the updated estimates are

obtained from the spectral decomposition of the probability-weighted covariance matrix

r 7 RAe NON (1)
D=1 §inr (0 )(rp,t - l-n )(I‘p’t — in )

Si(é(n)) _ - L
2= &iar(0)

(A10)

Let ZE’;) denote the jth largest eigenvalue of S i(é(n)) and let uf"j) denote the corresponding orthonormal
. : At A(n+1) N .
eigenvector. The jth column of A\ is given by AET = u")(I" - #2040y where 7D =

J-K)! Z‘;: Kil ZEZ.). Finally, the updated estimate of p;; is given by

T % ~(n)
cnl) a2 Gijar (@)

ij - NN
2= Simr(077)

(A11)

) . . . A(n+1
Stacking the full set of updated parameter estimates into a vector yields oY,

This version of the algorithm assumes that &, is set equal to a fixed value that is unrelated to
0. If &), is regarded as a separate vector of unknowns to be estimated by maximum likelihood,

~(n+1)

then &y ~ = fHT(@)(”)) is added to the updating equations. The algorithm terminates when either
||9(n+1) - 9(n)|| or the increase in the value of the log likelihood from one iteration to the next falls
below a specified tolerance. Because the log likelihood is given by 3", log 1'(€,,1(0) © ¢,()), its

value can easily be computed at each iteration.

Appendix B. Variable Definitions

All of the data items used to construct the firm characteristics are drawn from CRSP and Compustat.
I exclude firms with less than two years of Compustat data to mitigate the impact of backfilling and
I winsorize each characteristic on a month-by-month basis at the 0.5th and 99.5th percentiles of its
cross-sectional distribution. To account for the delay between the end of a firm’s fiscal year and the

release of its annual report, I match balance sheet information for firms whose fiscal years end in

18A detailed treatment of the first-order conditions for static factor models can be found in Lawley and Maxwell
(1971).
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month # — 16 with stock returns for months 7 — 11 to . Hence, all annual balance sheet items are
lagged by a minimum of four months with respect to the interval that is covered by the returns.
The definitions of the LME, LBM, MOM, IMOM, REV, LVOL, LTO, SUV, INV, SM, NOA,
P52H, APM, ROC, NSFY, and NSTY characteristics are provided in the enumerated list below.
CRSP items names and Compustat mnemonics are shown in roman capital letters. The function
lag(-) denotes the first annual lag of the argument. Because of the timing convention used to match
annual data items with stock returns, a 7 subscript for a Compustat-based variable indicates that it is

constructed using data for fiscal years that end in month ¢ — 5 or earlier.

1. LME;, denotes the logarithm of the market equity of firm i in month #. Market equity is
[PRC| x (SHROUT/1000), where PRC is the stock price from the monthly stock file. LME is
updated monthly.

2. LBM;, denotes the logarithm of the book-to-market equity ratio for stock i in month ¢. Mar-
ket equity is [PRC| x (SHROUT/1000). Book equity is defined as in Fama and French
(1992): shareholders equity (SEQ), plus balance-sheet deferred taxes and investment tax
credit (TXDITC), if available, minus the book value of preferred stock, which is either its
redemption value (PSTKRV), liquidation value (PSTKL), or par value (PSTK), in this order
of preference. If SEQ is missing, then I substitute common equity plus preferred stock (CEQ
plus PSTK), if available, or assets minus liabilities (AT minus LT), if available, in this order
of preference. Market equity is updated monthly. Book equity is updated annually.

3. MOM;, denotes the momentum for stock i in month #, which is measured using the stock return
over the first 11 months of the 12-month interval. That is, MOM,, = (]—[,1;1(1 +Riin)— 1,
where R;, is the return for stock i in month ¢ (RET from the monthly stock file). MOM is
updated monthly.

4. IMOM,, denotes the intermediate-range momentum for stock i in month #, which is measured
using the stock return over the first 6 months of the prior 7-month interval. That is, IMOM;, =
(]_[221(1 + R;;-»)) — 1, where R;; is the return for stock i in month 7 (RET from the monthly
stock file). IMOM is updated monthly.

5. REV;, denotes the return for stock i in month ¢ that is used to capture the short-term reversal

45



effect (i.e., the return that is skipped when computing MOM;, and IMOM ). 1t is RET from
the monthly stock file. REV is updated monthly.
6. LVOL;, denotes the logarithm of realized volatility for stock i in month 7. I compute this

variable as

Dy, 1/2
LVOLI'J = log {Z(Ri,td - ﬁ/l'f(Rin))z] >

d=1
where R;,, is the stock return for day d of month ¢ (RET from the daily stock file), D;, is
the number of days with non-missing daily returns for stock i in month ¢, and #,(R;,,) =
(1/D;,) Zfi’1 R;,,. I treat LVOL;, as missing if D;, < 13. LVOL is updated monthly.

7. LTO;; denotes the logarithm of turnover for stock i in month ¢. Turnover is VOL/(10 X
SHROUT), where VOL and SHROUT are trading volume and shares outstanding from the
monthly stock file. LTO is updated monthly.

8. SUV;, denotes the standardized unexpected volume for stock i in month 7. Let V;,, and R;,,
denote the trading volume and stock return for day d of month # (VOL and RET from the daily

stock file). To construct this variable for month ¢, I fit a linear regression model of the form
log(l + Vi,ld) = '700 + l/’l maX(O’ Ri,ld) + lr//2 min(oa Ri,l‘,j) + Vit

using a 66-day window that ends on the last trading day of month 7. Using the residuals from

this regression, I compute
Di,

SUV,-,, = Z Vi,td/ Di,to-\zn
d=1

where ;, is the residual for day 7,, 62 is the sample variance of the regression residuals for
the 66-day estimation window, and D;, is the number of days with non-missing residuals for
month 7. The SUV is treated as missing if either D;, < 13 or the estimation window contains
less than 39 non-missing daily observations. SUV is updated monthly.

9. INV;, denotes investment for firm i in month ¢ as measured by annual asset growth. It
is the continuously-compounded growth rate of total firm assets over the prior fiscal year

(log(AT/lag(AT))). INV is updated annually.
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10.

11.

12.

13.

14.

15.

16.

SM, denotes the ratio of annual sales (SALE) to market equity for firm i in month 7. Market
equity is [PRC| x (SHROUT/1000). Market equity is updated monthly. Sales is updated
annually.

NOA;,; denotes the net operating assets to total assets ratio for firm i in month ¢. It is the ratio
of operating assets minus operating liabilities for the prior fiscal year to beginning-of-year
total assets. Operating assets are assets (AT) minus cash and short-term investments (CHE).
Operating liabilities are assets (AT), minus debt in current liabilities (DLC), minus long-term
debt (DLTT), minus minority interest (MIB), minus par value of preferred stock (PSTK),
minus common equity (CEQ). Missing values of MIB and PSTK are set to zero. NOA is
updated annually.

P52H;, denotes the ratio of the stock price (|[PRC]| ) for stock i in month 7 to its high price over
the previous 52 weeks. The 52-week high price is computed from the daily stock file (the
maximum value of [PRC| for the 52-week period). P52H is updated monthly.

APM,;, denotes the industry-adjusted profit margin for firm i in month ¢. Profit margin is op-
erating income after depreciation (OIADP) divided by sales (SALE). Industry-adjusted profit
margin is obtained by subtracting the average profit margin at the 48 Fama-French industry
level (Fama and French, 1997). The industries are defined using standard industrial classifica-
tion codes from Compustat (SICH). If the Compustat code is missing, I substitute the CRSP
code (SICCD), if available. APM is updated annually.

ROC;, denotes the return on cash for firm i in month . ROC is the ratio of market equity
plus long-term debt (DLTT) minus total assets (AT) to cash (CHE), where market equity is
[PRC| x (SHROUT/1000). ROC is updated annually.

NSFY,;, denotes a fiscal-year-based measure of new share issues for firm 7 in month 7. NSFY =
log(SO/1ag(S0O)), where SO is the value of split-adjusted shares outstanding from Compustat
(AJEX times CSHO). NSFY is updated annually.

NSTY;, denotes a measure of new share issues over the prior 12 months for firm 7 in month
t. NSTY =1og(SO/lag(S0O)), where SO is the value of split-adjusted shares outstanding using
the shares outstanding (SHROUT) and the factor to adjust shares (FACSHR) from the CRSP
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monthly stock file. NSTY is updated monthly.
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Table 1

Summary Statistics for Firm Characteristics

Percentiles
Mean Vol 1st 10th 25th 50th 75th 90th 99th
LME 5.04 2.21 0.58 2.25 342 4.92 6.55 7.99 10.47
LBM -0.54 0.96 -3.34 -1.75 —1.08 -0.46 0.07 0.56 1.65
MOM 0.13 0.60 -0.80 -0.45 -0.20 0.05 0.32 0.70 2.31
IMOM 0.07 0.41 -0.67 -0.34 -0.15 0.03 0.22 0.47 1.50
REV 0.01 0.15 -0.37 -0.15 -0.06 0.00 0.07 0.17 0.53
LVOL -2.16 0.72 -3.71 -2.97 -2.60 -2.17 -1.71 -1.28 -0.49
LTO -3.40 1.33 -6.95 -5.09 -4.24 -3.33 -2.47 -1.76 -0.67
N OAY -0.00 2.62 -6.36 -3.24 -1.64 -0.02 1.60 3.21 6.79
INV 0.13 0.34 -0.59 -0.13 -0.01 0.08 0.19 0.42 1.50
SM 2.41 4.54 0.01 0.20 0.46 1.08 2.51 5.44 22.17
NOA 0.65 0.50 -0.15 0.16 0.41 0.66 0.82 0.99 2.19
P52H 1.60 1.51 1.00 1.02 1.08 1.24 1.60 2.33 6.73
APM -0.63 8.32 -11.93 -0.20 -0.05 0.00 0.06 0.14 0.80
ROC 1.16 103.86 -222.4 -28.19 -9.38 -0.79 5.20 21.82 263.88
NSFY 0.07 0.27 -0.16 -0.02 0.00 0.01 0.04 0.20 1.26
NSTY 0.04 0.15 -0.17 -0.03 0.00 0.00 0.03 0.16 0.71

The table reports the mean (Mean), volatility (Vol), and selected percentiles of the values of the firm characteristics. The characteris-
tics are the log of market equity (LME), the log of the book-to-market equity ratio (LBM), an eleven-month stock return (MOM), a
six-month stock return (IMOM), a one-month stock return (REV), the log of realized monthly volatility (LVOL), the log of monthly
share turnover (LTO), standardized unexpected monthly volume (SUV), the annual growth rate of total assets (INV), the ratio of
annual sales to market equity (SM), the ratio of annual net operating assets to total assets (NOA), the stock price relative to its 52
week high price (P52H), the annual industry-adjusted profit margin (APM), the annual return on cash (ROC), a fiscal-year-based
measure of annual share issuance (NSFY), and a measure of annual share issuance for the most recent 12 months (NSTY). Appendix
B contains detailed variable definitions. I compute the statistics for the sample that is used to fit the Fama and MacBeth (1973)
regressions whose results are summarized in Table 2. Stocks that have a missing value of the regressand or any of the regressors for

a given month are excluded from the regression for that month. The sample period is May 1967 to December 2018.
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Table 2
Average Coefficient Estimates and #-Statistics for Linear and Nonlinear Fama-MacBeth Regressions

Nonlinear model that uses quartile indicators as regressors

Linear model Quartile 1 Quartile 2 Quartile 3 Quartile 4

Characteristic ~ Slope t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat

LME -0.25 —4.39 0.41 506 -0.08 -1.88 -0.07 -1.55 -0.27 —4.02
LBM 0.18 438 -0.25 -6.00 -0.13 =540 0.01 0.49 0.37 9.11
MOM 0.46 822 -0.26 -428 -0.10 -394 0.02 0.79 0.34 6.10
IMOM 0.02 065 -0.13 -3.16 -0.00 -0.05 0.01 0.29 0.12 3.29
REV -0.74 -16.46 1.02 17.72 0.15 733  -024 -1043 -094 -18.11
LVOL —-0.24 =5.11 0.02 0.45 0.19 6.77 0.09 342 -030 —4.98
LTO -0.01 -0.13  -0.12 -2.03 0.13 4.69 0.11 379 -0.11 -1.82
SUV 0.52 2144 -058 -2056 -0.15 -8.00 0.15 8.09 0.58 19.01
INV —-0.19 —-6.02 0.20 545 -0.00 -0.16 -0.02 -124  -0.17 -5.21
SM 0.09 284 -0.23 -437 -0.07 -297 0.04 1.57 0.26 5.34
NOA -0.16 -5.87 0.29 8.01 0.06 246  -0.04 -1.84 -0.31 -9.11
P52H 0.48 6.20 0.23 4.30 0.04 1.27 -0.24 -843  -0.03 —-0.38
APM 0.04 1.61  -0.12 -3.06 -0.10 -4.35 0.01 0.46 0.21 7.59
ROC 0.03 208 -0.17 —4.13 0.03 1.13 0.06 1.76 0.09 242
NSFY -0.07 -395 -0.01 —-0.38 0.01 0.60 0.09 438 -0.09 -3.18
NSTY -0.15 —-8.88 0.10 4.07 0.01 0.25 0.02 093 -0.12 —4.46

The table reports the average estimated slope coefficients and Fama and MacBeth (1973) #-statistics for monthly cross-sectional
regressions of monthly excess percentage stock returns on two different sets of predetermined regressors. All regressions include an
intercept. The explanatory variables for the linear model are the log of market equity (LME), the log of the book-to-market equity
ratio (LBM), an eleven-month stock return (MOM), a six-month stock return IMOM), a one-month stock return (REV), the log of
realized monthly volatility (LVOL), the log of monthly share turnover (LTO), standardized unexpected monthly volume (SUV), the
annual growth rate of total assets (INV), the ratio of annual sales to market equity (SM), the ratio of annual net operating assets to
total assets (NOA), the stock price relative to its 52 week high price (P52H), the annual industry-adjusted profit margin (APM), the
annual return on cash (ROC), a fiscal-year-based measure of annual share issuance (NSFY), and a measure of annual share issuance
for the most recent 12 months (NSTY). I standardized each variable to have a cross-sectional mean of zero and a cross-sectional
variance of one for every month in the sample period. Appendix B contains detailed variable definitions. The explanatory variables
for the nonlinear model are indicator variables that are constructed by the sorting stocks monthly into quartiles on the basis of each
characteristic. In particular, the ith indicator variable for the jth characteristic takes a value of one if the stock falls into the ith quartile
of the jth characteristic’s cross-sectional distribution for the month and zero otherwise. The coefficients on the four indicator variables
for a given characteristic are constrained to sum to zero. I do not standardize the indicator variables for the regressions whose results
are reported in the table (they are standardized for the purposes of the asset pricing tests). Hence, the estimated coefficient for the
ith indicator captures the marginal effect of changing the value of the jth characteristic from its average value across all stocks to its
average value for the ith quartile. Stocks that have a missing value of the regressand or any of the regressors for a given month are
excluded from the regression for that month. The sample period is May 1967 to December 2018 (620 monthly regressions).
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Table 5
Regime-Specific Asset Pricing Tests for Managed Portfolios Constructed via Linear Regression

- 371/2
A. Results for #,, = W p

RMSE & 1% crit val 95% CI for second pass R*

Avg ret R? 1st regime 2nd regime 1st regime 2nd regime

K Ist 2nd RMSE Cv RMSE Cv LCL R? UCL LCL R? UCL
0 - - 0.23 - 0.97 - - - - - - -
1 017 0.22 0.23 0.04 0.48 0.16 0.00 0.00 0.21 0.50 0.75 0.84
2 026 0.33 0.23 0.04 0.41 0.16 0.03 0.21 0.44 0.35 0.72 0.87
3 032 0.43 0.23 0.03 0.42 0.13 0.10 0.33 0.55 0.32 0.66 0.85
4 037 0.47 0.22 0.03 0.40 0.10 0.04 0.10 0.32 0.54 0.77 0.88
5 040 0.51 0.09 0.06 0.30 0.12 0.73 0.86 0.90 0.74 0.88 0.94
6 043 0.53 0.09 0.06 0.23 0.13 0.76 0.86 0.90 0.83 0.93 0.97
No micro-caps

0 - - 0.19 - 0.48 - - - - - - -
1 018 0.18 0.16 0.04 0.28 0.17 0.00 0.27 0.57 0.03 0.67 0.87
2 025 0.31 0.16 0.03 0.26 0.15 0.06 0.42 0.67 0.04 0.53 0.86
3 029 0.40 0.14 0.03 0.25 0.11 0.26 0.57 0.75 0.09 0.51 0.85
4 033 0.45 0.10 0.04 0.24 0.10 0.50 0.71 0.83 0.12 0.59 0.86
5 037 0.48 0.10 0.03 0.19 0.14 0.49 0.69 0.83 0.40 0.79 0.93
6 040 0.50 0.06 0.04 0.18 0.11 0.78 0.90 0.94 0.49 0.83 0.94
B. Results for r,, = C._r,

0 - - 0.23 - 0.93 - - - - - - -
1 0.15 0.16 0.23 0.05 0.52 0.21 0.00 0.00 0.22 0.41 0.69 0.80
2 022 0.22 0.23 0.05 0.43 0.23 0.08 0.26 0.47 0.36 0.70 0.85
3 028 0.33 0.23 0.05 0.45 0.19 0.13 0.35 0.55 0.32 0.62 0.81
4 031 0.38 0.22 0.04 0.42 0.14 0.06 0.13 0.34 0.48 0.73 0.85
5 033 0.42 0.10 0.08 0.35 0.16 0.64 0.80 0.87 0.65 0.82 091
6 036 0.46 0.09 0.07 0.26 0.16 0.71 0.84 0.89 0.81 0.91 0.95
No micro-caps

0 - - 0.18 - 0.47 - - - - - - -
1 015 0.14 0.15 0.05 0.27 0.23 0.01 0.32 0.61 0.03 0.67 0.86
2 0.19 0.25 0.15 0.04 0.29 0.19 0.08 0.47 0.70 0.01 0.43 0.83
3 022 0.31 0.14 0.04 0.27 0.15 0.16 0.54 0.74 0.05 0.42 0.83
4 026 0.36 0.11 0.05 0.26 0.12 0.43 0.69 0.82 0.07 0.52 0.85
5 030 0.40 0.11 0.04 0.21 0.17 0.41 0.65 0.80 0.33 0.77 0.92
6 034 0.44 0.07 0.05 0.18 0.14 0.68 0.85 0.92 0.49 0.83 0.94

The table reports regime-specific estimates of the root mean squared pricing error (RMSE) for two sets of regression-based managed
portfolios. Regime 1 is the low-volatility regime and regime 2 is the high-volatility regime. Panel A is for a set of 17 portfolios whose
vector of excess returns for period ¢ is given by F,,;, = w'c 1, Where r, is the N, x 1 vector of excess stock returns for month ¢, C;_,
is the left pseudoinverse of an N, x 17 matrix C,_; whose nth row contains a 1 along with the values of 16 predetermined characteristics
for the nth firm (see Table 1), and W = (X7, N)~' 37, C/_,C,_,. I standardize each column of C,_; except the first to have a mean of
zero and variance of one for every month. Panel B is for a set of 17 portfolios whose vector of excess returns for period ¢ is given by
r,. = C,,r;. Hence, each of these portfolios is a pure play on the associated firm characteristic. The regime-specific parameters are
estimated by fitting a regime-switching model to {1, ¥, . .., ¥, r}. Under the model, 7,,[s; ~ N(k,,, A, A;I + T?{ I), where s, € (1,2)
is a discrete state variable that follows a first-order Markov chain. The first two columns report the average estimated fraction of the
variation of the excess portfolio returns that is explained by the latent factors (Avg ret R?). The next six columns report the estimated
RMSE:s for the first and second regimes along with the 1% critical values (CVs) for testing the hypothesis of exact factor pricing. The
final six columns report 95% confidence intervals for the R? statistics obtained by regressing the estimated vector of excess portfolio
returns on the estimated matrix of factor loadings (the second-pass regressions). I use a parametric bootstrap procedure to compute
the critical values and confidence intervals. The no-micro-caps sample excludes stocks that are smaller than the 20th percentile of
the NYSE market-equity distribution. The sample period is May 1967 to Dec 2018.
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Table 6
Regime-Specific Asset Pricing Tests for Managed Portfolios Constructed via Nonlinear Regression

A. Results for 7, = WX, R,

RMSE & 1% crit val 95% CI for second pass R*

Avg ret R? 1st regime 2nd regime Ist regime 2nd regime
K 1st 2nd RMSE Ccv RMSE CvV LCL R? UCL LCL R? UCL
0 - - 0.13 - 0.48 - — - - - - -
1 0.15 0.18 0.13 0.02 0.22 0.08 0.00 0.00 0.27 0.51 0.79 0.87
2 025 0.27 0.13 0.02 0.21 0.08 0.00 0.09 0.40 0.30 0.77 0.89
3 032 0.39 0.12 0.02 0.20 0.06 0.17 0.23 0.40 0.51 0.82 0.90
4 035 0.45 0.11 0.02 0.20 0.06 0.18 0.25 0.45 0.48 0.79 0.89
5 038 0.49 0.09 0.02 0.17 0.07 0.40 0.48 0.60 0.69 0.88 0.93
6 041 0.51 0.08 0.03 0.14 0.06 0.52 0.59 0.68 0.76 0.91 0.95
Excluding micro-caps
0 - - 0.11 - 0.25 - - - - - -
1 013 0.14 0.09 0.02 0.15 0.08 0.00 0.30 0.63 0.00 0.67 0.85
2 020 0.31 0.09 0.02 0.14 0.07 0.05 0.37 0.66 0.08 0.61 0.84
3 025 0.37 0.07 0.02 0.15 0.06 0.41 0.68 0.83 0.03 0.28 0.74
4 029 0.43 0.06 0.02 0.15 0.05 0.44 0.69 0.84 0.08 0.48 0.80
5 033 0.46 0.06 0.02 0.12 0.06 0.48 0.65 0.81 0.36 0.80 0.91
6 0.36 0.49 0.05 0.02 0.11 0.05 0.58 0.73 0.86 0.44 0.81 0.92
B. Results forr,; = (X, R,)*r,
0 - - 0.13 - 0.46 - - - - - - -
1 0.09 0.10 0.13 0.03 0.22 0.10 0.00 0.01 0.30 0.44 0.76 0.85
2 014 0.16 0.13 0.02 0.22 0.10 0.02 0.13 0.43 0.27 0.73 0.86
3 017 0.24 0.13 0.03 0.21 0.08 0.12 0.18 0.36 0.47 0.79 0.88
4 020 0.27 0.12 0.02 0.21 0.07 0.05 0.12 0.37 0.42 0.76 0.87
5 023 0.31 0.11 0.03 0.18 0.08 0.26 0.35 0.51 0.65 0.86 0.92
6 0.26 0.33 0.10 0.03 0.16 0.08 0.36 0.45 0.58 0.70 0.89 0.93
Excluding micro-caps
0 - - 0.11 - 0.25 - — - - - -
1 0.08 0.08 0.09 0.02 0.15 0.10 0.01 0.36 0.65 0.01 0.65 0.84
2 012 0.18 0.09 0.02 0.15 0.08 0.07 0.43 0.70 0.05 0.56 0.82
3 014 0.21 0.08 0.02 0.16 0.08 0.29 0.64 0.81 0.02 0.23 0.70
4 017 0.26 0.07 0.02 0.15 0.07 0.35 0.65 0.82 0.05 0.44 0.78
5 0.19 0.29 0.07 0.02 0.13 0.07 0.35 0.58 0.78 0.30 0.77 0.89
6 024 0.31 0.06 0.02 0.11 0.07 0.47 0.67 0.83 0.40 0.79 0.90

The table reports regime-specific estimates of the root mean squared pricing error (RMSE) for two sets of regression-based managed
portfolios. Regime 1 is the low-volatility regime and regime 2 is the high-volatility regime. Panel A is for a set of 49 portfolios whose
vector of excess returns for period ¢ is given by 7, = W]/Z(X 1R )*r,, where r, is the N, X 1 vector of excess stock returns for month
t, (X-1R,)* is the left pseudoinverse of an N; X 49 matrix, X, = (1, I5,,...,17,) is a N; X 65 matrix that is formed by conducting
monthly sorts of stocks into quartiles using each of 16 firm characteristics (see Table 1), W = (Z,Tzl N)™! Z,T= VR X, X, \R,,andR,
is the orthogonal complement of a 65 X 16 matrix R that is used to restrict the coefficients on the four indicator variables associated
with each characteristic to sum to zero. The nth element of the ith column of the N, X 4 matrix I, is equal to one if the nth firm
is contained in ith quartile of the sorted values of the jth characteristic for month 7 and equal to zero otherwise. I standardize each
column of indicators to have a unit cross-sectional second moment for each month in the sample period. Panel B is for a set of 49
portfolios whose vector of excess returns for period # is given by r,, = (X,_; R, )*r,. The regime-specific parameters are estimated by
fitting a regime-switching model to {#,,%,2,...,F,r}. Under the model, #,,|s, ~ N(k,, AS,A;, + T%II), where s, € (1,2) is discrete
state variable that follows a first-order Markov chain. The first two columns report the average estimated fraction of the variation of
the excess portfolio returns that is explained by the latent factors (Avg ret R?). The next six columns report the estimated RMSEs for
the first and second regimes along with the 1% critical values (CVs) for testing the hypothesis of exact factor pricing. The final six
columns report 95% confidence intervals for the R? statistics obtained by regressing the estimated vector of excess portfolio returns
on the estimated matrix of factor loadings (the second-pass regressions). I use a parametric bootstrap procedure to compute the
critical values and confidence intervals. The no-micro-caps sample excludes stocks that are smaller than the 20th percentile of the
NYSE market-equity distribution. The sample period is May 1967 to December 2018.
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Table 7
Estimated Regime-Specific Correlations between Characteristics and Subsequent Excess Stock Returns

A. Percentiles of estimated firm-level correlations

Low volatility regime High volatility regime

Characteristic 5th 10th 50th 90th 95th 5th 10th 50th 90th 95th
LME -0.21 -0.17 -0.05 0.07 0.11 -0.35 -0.29 -0.08 0.14 0.21
LBM -0.14 -0.09 0.05 0.18 0.23 -0.21 -0.14 0.08 0.28 0.35
MOM -0.16 -0.12 0.01 0.14 0.19 -0.29 -0.22 -0.02 0.18 0.26
IMOM -0.15 -0.11 0.02 0.15 0.19 -0.26 -0.19 -0.00 0.19 0.27
REV -0.23 -0.18 -0.04 0.10 0.15 -0.36 -0.29 -0.07 0.14 0.21
LVOL -0.19 -0.14 -0.01 0.11 0.16 -0.25 -0.18 0.02 0.24 0.31
LTO -0.18 -0.14 -0.01 0.11 0.16 -0.25 -0.18 0.02 0.20 0.27
SUM -0.14 -0.10 0.02 0.15 0.19 -0.24 -0.16 0.04 0.24 0.30
INV -0.20 -0.16 -0.02 0.11 0.16 -0.29 -0.22 -0.03 0.17 0.25
SM -0.15 -0.10 0.03 0.19 0.24 -0.27 -0.20 -0.00 0.26 0.35
NOA -0.19 -0.15 -0.02 0.10 0.14 -0.28 -0.21 -0.02 0.18 0.25
P52H -0.18 -0.13 0.01 0.17 0.23 -0.24 -0.17 0.04 0.31 0.40
APM -0.14 -0.10 0.01 0.12 0.15 -0.24 -0.17 0.05 0.21 0.27
ROC -0.19 -0.15 -0.02 0.12 0.17 -0.27 -0.20 -0.00 0.20 0.29
NSFY -0.19 -0.14 -0.02 0.12 0.16 -0.27 -0.21 -0.04 0.15 0.23
NSTY -0.18 -0.14 -0.02 0.11 0.15 -0.28 -0.22 -0.04 0.15 0.22
B. Percentiles of R-squared for firm-level regressions

0.24 0.27 0.44 0.66 0.73 0.36 0.41 0.63 0.91 0.96

Panel A of the table reports selected percentiles of the cross-sectional distribution of the estimated regime-specific correlations
between excess individual stock returns and 16 predetermined firm characteristics. To estimate the correlation between the excess
returns of the nth stock and the jth characteristic in regime i € (1, 2), I compute the sample correlation between the weighted excess
returns and the weighted characteristic values using the full time series of available excess returns for the stock, where the weight
for month ¢ is the square root of the estimated smoothed probability of regime i for month 7. I estimate the smoothed probabilities
by fitting a two-sate Markov-switching model to the excess returns for a set of 17 regression-based managed portfolios. The vector
of excess portfolio returns for month ¢ is given by 7,, = WI/ZC,*_]r,, where r; is the N, X 1 vector of excess stock returns for month
t, C/, is the left pseudoinverse of an N, X 17 matrix C,_; whose nth row contains a 1 along with the values of 16 predetermined
characteristics for the nth firm (see Table 1), and W = (Z,T= L N)! Z,T=1 C,_,C,,. I standardize each column of C,_; except the first to
have a mean of zero and variance of one for every month. Under the Markov switching model, #,,[s, ~ N(k,,, AS,A; + Tf/ I), where
s, € (1,2) is a discrete state variable that follows a first-order Markov chain. Panel B reports selected percentiles of the cross-sectional
distribution of the regime-specific R-squared statistics obtained by fitting time-series regressions of weighted excess individual stock
returns on the weighted values of the 16 characteristics using the full time series of available excess returns for each stock. The
estimated correlations and R-squared statistics for stocks that have less than 60 monthly observations are excluded from the analysis.
The sample period is May 1967 to December 2018.
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Table 8
Predictive Power of Recursively-Updated Regime Forecasts for Pure Play Portfolio Returns

Tpje =M1 + Alzfz,m—l(ét—h) +u, t=h+1,....,T

All stocks No micro-caps
Estimates & t-statistics Estimates & t-statistics

Portfolio  f; i) Ap, 1(Ap) R? ol 1) Ap t(Ap) R?

EWM 0.47 1.77 1.39 2.39 0.014 0.60 2.33 0.68 1.21 0.003
LME -0.09 —1.49 -0.48 -2.94 0.025 -0.03 -0.70 -0.43 -3.57 0.037
LBM 0.21 4.89 -0.15 -1.25 0.005 0.03 0.75 0.00 0.03 0.000
MOM 0.44 7.40 -0.02 -0.12 0.000 0.25 4.00 -0.20 -0.94 0.003
IMOM 0.03 0.67 -0.02 -0.16 0.000 0.04 0.85 0.15 1.11 0.003
REV -0.49 -11.47 -0.47 -3.53 0.038 -0.24 -6.04 -0.31 -2.16 0.017
LVOL -0.24 -4.62 -0.04 -0.29 0.000 -0.18 -3.71 0.03 0.21 0.000
LTO -0.01 -0.24 0.14 1.00 0.003 -0.05 -1.25 0.22 2.10 0.013
N MY 0.42 14.06 0.26 4.22 0.039 0.19 8.14 0.15 2.82 0.019
INV -0.11 -2.93 -0.27 -2.92 0.023 -0.02 -0.54 -0.22 -2.36 0.017
SM 0.05 1.55 0.15 1.61 0.008 0.01 0.21 0.12 1.49 0.006
NOA -0.19 -6.02 -0.01 -0.13 0.000 -0.14 -4.07 0.01 0.13 0.000
P52H 0.25 345 0.97 3.93 0.049 -0.11 -2.22 0.38 2.18 0.017
APM 0.08 2.94 -0.14 -2.34 0.014 0.08 2.95 -0.07 —1.00 0.003
ROC 0.04 2.63 -0.04 -0.97 0.003 0.02 0.89 0.00 0.03 0.000
NSFY  —0.09 -3.91 0.06 1.16 0.003 0.01 0.58 -0.10 —1.89 0.010
NSTY -0.16 -7.79 -0.05 -1.19 0.003 -0.07 -4.08 -0.07 -1.51 0.007

The table reports the results of predictive regressions for a set of 17 regression-based managed portfolios (linear pure play portfolios)
that are constructed using 17 predetermined regressors (an intercept and the 16 firm characteristics in Table 1). The dependent
variable for month ¢ is the excess percentage portfolio return for the month (r,;, for j € (1,...,17)). The explanatory variables for
month ¢ are 1 and fz,,‘,,l(é,,h), an estimate of the conditional probability that the Markov-switching process for the portfolio returns
is in the high-volatility regime in month ¢. The conditional probability for month ¢ is obtained by estimating 6, the parameter of the
Markov switching model, using the data observed through month ¢ — 1. Hence, the regressors for the predictive regressions are in the
month ¢ — 1 information set of investors. The recursively-updated estimates of @ are denoted by {91},7:’,”, where i = 120 is the number
of observations in the initial holdout sample. The vector of portfolio returns for month ¢ is given by r,,, = C;,r,, where r, is the
N, X 1 vector of excess stock returns for month 7 and C;" is the left pseudoinverse of an N, x 17 matrix C,_; whose jth row contains
a 1 along with the values of 16 other characteristics for the jth firm. I standardize each column of C,_; except the first to have a mean
of zero and variance of one for every month. The no-micro-caps sample excludes stocks that are smaller than the 20th percentile of
the NYSE market-equity distribution. The sample period is May 1967 to December 2018.
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Univatiate Model for Excess Market Returns
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One Factor Model for Excess Managed Portfolio Returns
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Six Factor Model for Excess Managed Portfolio Returns
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Figure 1. Fitted Time Series of Smoothed Probabilities of the High-Volatility Regime

The plots show estimated smoothed probabilities of the high-volatility regime produced by a two-state Markov switching
model. The top plot is obtained by fitting a univariate version of the model to monthly excess returns on an equally-weighted market
index. The remaining two plots are obtained by fitting the model to monthly excess returns for a set of 17 managed portfolios and
imposing either a one- or six-factor structure on the covariance matrix for each regime. The vector of excess portfolio returns for
period 7 is given by 7, = WI/ZCT_, r,, where r, is the N, x 1 vector of excess stock returns for month 7, C;", is the left pseudoinverse
of an N, X 17 matrix C,_; whose nth row contains a 1 along with the values of 16 predetermined characteristics for the nth firm, and
W=, N) 'L, C,_,C,_,. The shaded areas show ex-post bear market periods under a commonly-used demarcation rule (15%

loss = start of bear market; 20% gain = start of bull market). The sample period is May 1967 to December 2018.
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Figure 2. Estimated Expected Excess Portfolio Returns Under the Six-Factor Model

The plot shows regime-specific estimates of the expected excess returns for a set of 17 linear pure play portfolios. The
estimates for a given portfolio are plotted side by side to highlight the differences across regimes. The vector of excess portfolio
returns for period # is given by r,, = C,_,r,, where r, is the N, X 1 vector of excess stock returns for month # and C;_, is the left
pseudoinverse of an N, X 17 matrix C,_; whose nth row contains a 1 along with the values of 16 predetermined characteristics for
the nth firm. I obtain the regime-specific estimates by fitting a two-state Markov switching model to the monthly excess returns for a
related set of 17 regression-based managed portfolios whose vector of excess returns for period ¢ is given by 7, = w" ZC;'_lr,, where
W= (ZIT:1 AR ZIT:] C,_,C,_,. The sample period is May 1967 to December 2018.
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