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ABSTRACT 
 

Despite little attention or exposure in the evaluation literature, the two SASâ EVAASâ models 

for estimating teacher effectiveness are used by several states and districts, in some cases for 

high stakes policies regarding teacher tenure, retention, or incentive pay. The EVAAS approach 

involves using one of two distinct models, the Multivariate Response Model (MRM) or the 

Univariate Response Model (URM). In this paper, we discuss and illustrate advantages or 

disadvantages of the EVAAS URM relative to the other widely used and studied value-added 

methods. We perform simulations to evaluate their ability to uncover true teacher effects under 

various teacher assignment scenarios. We also use administrative data to illustrate the extent of 

agreement between the URM and other common value-added approaches. Although the 

differences are small in our administrative data, we show with theory and simulations that 

standard linear regression using OLS often performs at least as well as—and some- times better 

than—the more complicated EVAAS URM. 
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Abstract

Despite little attention or exposure in the evaluation literature, the two SAS®

EVAAS® models for estimating teacher e↵ectiveness are used by several states and
districts, in some cases for high stakes policies regarding teacher tenure, retention, or
incentive pay. The EVAAS approach involves using one of two distinct models, the
Multivariate Response Model (MRM) or the Univariate Response Model (URM). In
this paper, we discuss and illustrate advantages or disadvantages of the EVAAS URM
relative to the other widely used and studied value-added methods. We perform sim-
ulations to evaluate their ability to uncover true teacher e↵ects under various teacher
assignment scenarios. We also use administrative data to illustrate the extent of agree-
ment between the URM and other common value-added approaches. Although the
di↵erences are small in our administrative data, we show with theory and simulations
that standard linear regression using OLS often performs at least as well as—and some-
times better than—the more complicated EVAAS URM.
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1 Introduction

The federal Race to the Top policy, established in 2009 with funding from the American

Recovery and Reinvestment Act (ARRA), led to a rise of teacher evaluation systems as a

component of state and district education policies, and, in particular, mandated that student-

achievement-based measures be included in these evaluation systems (see, e.g., Doherty &

Jacobs, 2015; Steinberg & Donaldson, 2016). As a result, teacher performance measures

have been considered for tenure decisions in 23 states and for dismissal decisions in 28

states (Doherty & Jacobs, 2015). Because high stakes decisions were being tied to teacher

evaluation in these states, a large body of literature has examined the statistical merits

of methods that use student achievement test scores to estimate teacher e↵ectiveness (e.g.,

Backes, Cowan, Goldhaber, Koedel, Miller & Xu, 2018; Chetty, Friedman, & Rocko↵, 2014;

Goldhaber & Chaplin, 2015; Goldhaber, Walch, & Gabele, 2014; Guarino, Maxfield, Reckase,

Thompson, & Wooldridge, 2015; Guarino, Reckase, & Wooldridge, 2015; Harris, 2009; Ishii

& Rivkin, 2009; Kane, McCa↵rey, Miller, & Staiger, 2013; Kane & Staiger, 2008; Koedel

& Betts, 2009; Koedel & Betts, 2011; Mariano, McCa↵rey, & Lockwood, 2010; McCa↵rey,

Lockwood, Koretz, Louis, & Hamilton, 2004; Rothstein, 2010; Sass, Semykina, & Harris,

2014).

More recently, the Every Student Succeeds Act (ESSA) has backed away from empha-

sizing teacher evaluation, but since many states and districts continue to use student test

scores in evaluating teachers and since the policy may resurge in the future, it is important

that e↵orts to fill out the literature examining the strengths and weakness of di↵erent value-

added models continue.

The SAS® EVAAS® model is one of the most commonly used approaches for evaluat-

ing teacher performance (Ballou & Springer, 2015). EVAAS is used statewide in North Car-

olina, Ohio, Pennsylvania, South Carolina, and Tennessee, providing reporting services to

all districts, public schools, and charter schools (SAS Institute Inc., 2014, 2015a). EVAAS
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has also been used by various districts in several other states, including Arkansas, Califor-

nia, Colorado, Connecticut, Delaware, Georgia, Indiana, Louisiana, Missouri, New Jersey,

New York, Texas, Virginia, and Wyoming (SAS Institute Inc., 2011, 2015a).

The SAS EVAAS approach has a long history and was the first value-added approach to

be used to evaluate teachers.1 The current name, EVAAS, stands for Education Value-Added

Assessment System, a variant on the earlier name Tennessee Value-Added Assessment System

(TVAAS), as Tennessee was where it was developed and used since the early 1990’s.2 EVAAS

methods include two options for estimating teacher e↵ectiveness; the Univariate Response

Model (URM) and the multivariate response model (MRM). The MRM, also referred to as

the “layered” teacher model, involves joint modeling of scores from multiple tested subjects

for multiple grades and cohorts in up to a five-year period. Jointly modeling the test scores

aims to improve e�ciency, and using the complete set of scores available for a student

attempts to account for any other student characteristics that might a↵ect achievement.

This model is sometimes not feasible if data requirements cannot be met. Hence, the URM

was developed for these situations. The URM focuses on a single subject and is thus less

intensive computationally and more flexible with respect to data requirements. The method

involves computing a single composite score for each student based on their lagged scores in

the same subject as well as others, and then using this composite score as the only regressor

in empirical Bayes’ estimation of the teacher e↵ects.

While the properties of the MRM have been investigated in a small number of research

studies, the URM has received very little attention in the literature, and yet is currently

used in at least three states (North Carolina, Ohio, and Tennessee).3 This paper fills a

1The approach was first developed by William Sanders, a statistician studying agricultural phenomena
related to cattle reproduction, who recognized the potential for applying his methods to teacher evaluation.

2The name is often modified in a similar fashion in states which adopt the EVAAS methods, such as “PVAAS”
for Pennsylvania (e.g., www.portal.state.pa.us, accessed 1/12/2015).

3SAS documentation describes the URM and other methods used in each of these states: North
Carolina, https://ncdpi.sas.com/support/EVAAS-NC-TechnicalDocumentation-2016.pdf; Ohio, http:
//education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Ohio-Report-Cards/Value-
Added-Technical-Reports-1/Technical-Documentation-of-EVAAS-Analysis.pdf.aspx; Tennessee, http:
//tn.gov/assets/entities/education/attachments/tvaas technical documentation 2016.pdf.
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gap by assessing the strengths and limitations of the URM relative to other methods. Our

paper further contributes to the literature by providing researchers with a helpful mapping

between the URM and value-added models. We draw key theoretical connections between

the URM and other estimation approaches, focusing primarily on areas of overlap between

URM, OLS, and empirical Bayes’ estimation of typical value-added models, and we also show

how and where the various estimation approaches di↵er. Through the theoretical discussion,

simulations, and empirical work, we show that standard linear regression techniques perform

very similarly—and in certain cases better—under plausible data scenarios. In addition, our

detailed descriptions of the URM help make it more readily available for other researchers

to implement and include in future evaluation studies.

We begin by reviewing the prior literature on EVAAS models in Section 2, and then

provide a detailed technical description of common value-added models (VAMs) and the

EVAAS URM approach in Section 3. In Section 4, we discuss our simulation design and

present results from the simulation. Section 5 describes our empirical analysis and results

using administrative data. We summarize and conclude in Section 6.

2 Prior Literature Evaluating EVAAS Methods

While the research literature on estimating teacher e↵ectiveness has been growing rapidly

in recent years, only a small number of papers made available by the SAS Institute and a

handful of research studies external to SAS have implemented either of the EVAAS teacher

models in simulations or using administrative data. The papers made available by the SAS

Institute discuss theoretical advantages of the EVAAS methods, and some also evaluate the

performance of these methods (e.g., Sanders, 2006; Wright, 2010; Wright, 2015; Wright,

Sanders, & Rivers, 2006). These papers tend to focus on the scaling of the test scores,

measurement error in the test scores, missing data, and shrinkage.
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One of the only SAS papers to examine the URM is focused on the concern that the

measurement error in the lagged test scores will cause bias in the estimates of teacher ef-

fects, leading to instability in the estimates as well. In a paper comparing a standardized

gain model, a student growth percentile model, the URM, and the MRM, Wright (2010)

found that the estimated teacher e↵ects in the URM and MRM had smaller correlations with

the percentage of students in a teacher’s class who were eligible for free-and-reduced-price

lunches than those in the other two models. The proposed method for mitigating measure-

ment error bias was to include multiple lag scores (at least three), based on the argument

that the measurement error tends to average out. Wright (2015) compared the mean squared

error (MSE) for estimators that treat the teacher e↵ects as fixed (such as standard linear re-

gression) or random (as the URM does) when test scores are measured with error. When in-

cluding three or more scores in a scenario where students are randomly assigned to teachers,

the estimators performed fairly similarly. Under positive assignment though (higher achiev-

ing students assigned to better teachers), the random e↵ects estimators did best while under

negative assignment the fixed e↵ects estimators did best. However, requiring additional lag

test scores can also worsen missing data issues. Thus, although SAS papers assert that an

advantage of the URM is that it mitigates missing data issues, the URM still requires ob-

serving at least four test scores for each student (specifically, the current score and at least

three prior scores) (Wright et al., 2010).

While the SAS papers have provided some evidence on the statistical merits of the

EVAAS methods, the details that allow researchers external to the SAS Institute to eas-

ily replicate the approach remain somewhat elusive. The brief nature of the documentation

combined with proprietary programs and data have been thought to limit the implementa-

tion of EVAAS in external evaluation and replication studies (Amrein-Beardsley, 2008; Ku-

permintz, 2003). Of the small number of such studies, the majority focus on a specific as-

sumption or characteristic of the EVAAS MRM.
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Turning briefly to the small body of existing literature on EVAAS by authors outside

the SAS Institute, we first mention those that study the MRM, and then discuss URM-

related studies in more detail. Ballou and Springer (2015) point out weaknesses of EVAAS

implementation in particular teacher evaluation systems, such as how teachers are classified

into groups using a t-statistic constructed from their estimated e↵ectiveness. A few studies

have addressed signature features of the MRM, such as the omission of student covariates or

joint modeling of subjects, typically focusing on a comparison to a generalized or modified

version of the model (e.g., Ballou, Sanders, & Wright, 2004; Lockwood & McCa↵rey, 2007;

Lockwood, McCa↵rey, Mariano, & Setodji, 2007; Mariano, McCa↵rey, & Lockwood, 2010;

McCa↵rey et al., 2004).

For example, one of the most commonly raised concerns about EVAAS is the omission

of student covariates. A few studies have identified scenarios where the MRM or MRM-type

approaches produce teacher e↵ect estimates that are biased and scenarios where the bias is

reduced (Ballou, Sanders, & Wright, 2004; Lockwood & McCa↵rey, 2007; McCa↵rey et al.,

2004). Although these studies suggest bias from omitting student covariates may not be

large in certain scenarios, the applicability of this evidence is limited to the MRM, as none

of these studies have included the URM. The URM might not exhibit the same type of bias

reduction properties described in these studies because the URM does not exploit within-

student correlation in test scores.

Another commonly raised concern with using administrative data is how to handle miss-

ing data. Researchers have also found some robustness of the MRM-type approaches with

respect to the treatment of missing data (Lockwood et al., 2007; McCa↵rey & Lockwood,

2011). Again, the applicability of these results are limited to the MRM. The joint model-

ing of test scores plays a key role in robustness properties of the MRM. Although the URM

does, to some extent, control for student test scores from multiple years and subjects, the

theoretical implications are very di↵erent from jointly modeling the scores. Thus, we now
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turn to the limited existing evidence related directly to the URM.

The more limited non-SAS research evaluating the URM consists mainly of two reports,

Rose, Henry, and Lauen (2012) and Henry and Rose (2014), that provide comparisons among

a broad set of value-added approaches. They discuss assumptions needed for causal inference

and implications of violations, and also provide simulation and statewide empirical evidence

using three years of administrative data from North Carolina. The estimation approaches

include several methods that treat the teacher e↵ects as random, including the URM, three

HLM approaches, two which take the within-teacher average of the residuals, and then

three methods that treat the teacher e↵ects as fixed. The specifications vary with respect

to the number of (and subject of) lagged scores, school e↵ects, student covariates and the

data structure used (panel or cross section). They generally promote the three-level HLM

and the URM as the most robust, but also acknowledge high agreement with many of

the approaches and discuss various robustness properties of the other estimators.4 Their

preferred approaches all treat the teacher e↵ects as a random component of the error term,

thus relying on similar assumptions for the consistency of the estimated teacher e↵ects.

We build on the work of Rose, Henry, and Lauen (2012) and Henry and Rose (2014)

by providing more evidence specific to the URM, to fill the gap in a small literature on

EVAAS that largely focuses on the MRM. Both the MRM and URM accommodate (some)

incomplete student records and use test scores from several subjects and years, but they do

so in very di↵erent ways. Our paper focusing on the URM also includes both simulations and

the analysis of actual data but we consider di↵erent estimators and specifications and our

simulations are designed somewhat di↵erently, so our results diverge from theirs. While we

confirm that random e↵ects approaches such as HLM perform well under random assignment

of students to teachers (a result found in Guarino, Reckase, and Wooldridge, 2015), we

find that under nonrandom assignment based on prior achievement, approaches that allow

4Rose, Henry, and Lauen (2012) also note that their results (and hence conclusions) for the DOLS estimator
may di↵er from those in Guarino, Reckase and Wooldridge (2015) due to simulation design. Their DOLS and
URM implementation also appear to di↵er from that used in Guarino et al. (2015) and the present paper.

7



teacher assignment to be correlated with prior achievement are better suited to capturing

true teacher e↵ects than the URM. A key distinction here is the di↵erence in the exogeneity

assumptions of random and fixed e↵ects estimators or, more simply, whether we consider

the assignment of students to teachers to be random or nonrandom (that is, as a function of

observed previous test scores or unobserved student characteristics).

When coe�cients on the teacher assignment indicators are included along with prior

test scores, students can be assigned to teachers based on their prior test scores or any

covariates included in the regression (but not on omitted variables that are relevant to

assignment). However, approaches that treat the teacher e↵ects as a random component

of the error term—and then use a prediction formula to uncover the teacher e↵ects—rely

on the assumption that students are not assigned to teachers based on included or omitted

covariates. The URM assumes random teacher e↵ects and may thus be inconsistent if teacher

assignment is related to students’ prior test scores. In contrast, OLS estimation of the

regression of student achievement on teacher fixed e↵ects and control variables, including

lagged student achievement scores, is consistent even when nonrandom assignment based on

lagged achievement generates correlation between the teacher assignment dummies and the

control variables. In other nonrandom assignment scenarios in which both the URM and

OLS are inconsistent (e.g., assignment based on unobserved student heterogeneity), OLS

performs at least as well as the URM.

Our theoretical discussion below provides a detailed explanation of these things specific

to the URM and also describes how the URM relates to more easily understood estimators.

We also provide simulation evidence to illustrate implications of a key theoretical feature of

the URM (random versus fixed teacher e↵ects) under various teacher assignment scenarios.

We further apply the URM and other estimators to our administrative data, using each

estimator on a series of specifications that sequentially become more similar (in terms of

included covariates) to the URM. We find that controlling for the same set of scores as
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those included in the URM produces very similar results to the URM, despite the URM’s

complicated steps taken to incorporate students with partially missing records. Given that

the EVAAS methods are currently (and have previously been) used in teacher evaluation

programs in several states, we should understand the methods and how they relate to other

more easily understood (and more easily implemented) approaches. Our study aims to

facilitate such understanding, especially with respect to the EVAAS URM.

3 Value-Added Models

Teacher value-added models (VAMs) are generally derived from a formulation that posits

that academic achievement at any point in time is a function of all current and past child,

family, and school inputs (e.g., Hanushek, 1979):

Ait = f(Eit, ..., Ei0, Xit, ..., Xi0, ci, uit) (1)

where Ait is current achievement at time t for student i, Eit,...,Ei0 represent current and past

education (school) inputs, Xit,...,Xi0 represent current and past student or parent inputs, ci

is unobserved student heterogeneity (e.g., motivation or some form of time-invariant innate

ability), and uit is an idiosyncratic error term. Given that we cannot measure each of these

elements during each time period—at least not in available data—researchers typically adopt

a more parsimonious model with a simple (estimable) functional form. For example, with

a set of simplifying assumptions, a standard reformulation of the general model is often

something like the following estimating equation:

Ait = ⌧t + �Ait�1 +Xit� + Eit� + ci + eit (2)
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where ⌧t allows for a di↵erent intercept in each time period to capture time (e.g., year) e↵ects,

Ait is the current test score at time t, Ait�1 is the lagged test score from the previous year,

Eit is a vector of observed education inputs at time t (e.g., teacher assignment indicators),

and Xit is a vector of observed individual student characteristics.

The simplifying assumptions that facilitate the transition from equation (1) to equation

(2) include linearity and geometric decay in the parameters; see Todd and Wolpin (2003)

and Guarino, Reckase, and Wooldridge (2015) for a detailed discussion and derivations.

Individual student heterogeneity, ci, is generally left in the error term in commonly used

approaches, although some of this is likely captured by Ait�1. While there are methods

to completely eliminate this term in panel data settings (e.g., adding student indicators,

or fixed e↵ects estimation), we seldom compute teacher value-added measures with enough

years of data on the same students to accurately identify these individual student e↵ects.5

Rather, teacher e↵ects are sometimes obtained using up to a few years of data on teachers

(so multiple cohorts of students). With the URM, teacher e↵ects are estimated using one

cohort of students, and in some cases composites of these e↵ects are computed across years

or subjects.

Even with this relatively parsimonious model in (2), administrative data may be missing

test scores or characteristics for some students, or some students may not be linked to teach-

ers. In traditional regression analysis such as OLS estimation, student observations missing

these data are omitted from the estimation sample (or must be imputed), but consistent es-

timates can still be obtained. For consistency, whether data on the outcome or the regressors

are observed or missing for a student can be related to the observed covariates that we con-

trol for (e.g., the lagged score, Ait�1, or student characteristics, Xit) but not unobserved ele-

ments of the error term (see Wooldridge, 2010, Ch 19). This consistency condition is nearly

identical in practice to the “missing at random” (MAR) assumption that the EVAAS URM

5Such approaches actually performed quite poorly in the simulations conducted in Guarino, Reckase, and
Wooldridge (2015). See the paper for details on the reasons for this for each grouping/assignment scenario.

10



relies on. For the URM, the pattern of missing scores can be related only to the lagged test

scores (underlying the composite score) that are fully observed; by design of the URM, this

is the same lagged scores that we control for in our preferred OLS approach.

3.1 Common Methods for Estimating Teacher E↵ects

Given that the student heterogeneity term in equation (2) is generally ignored when estimat-

ing value-added models, the estimating equation for a given subject s can be written as:

Aist = ⌧t + �Aist�1 +Xit� + Eist� + vist (3)

where vist = ci+ eist is the composite error term. OLS on this equation will estimate teacher

e↵ects, �̂. We call this estimator DOLS , as done by Guarino et al. (2015), to reflect the OLS

estimation of the teacher e↵ects and acknowledge the dynamic (D) specification including

the lag score on the right-hand side. This can easily be extended to incorporate multiple

lagged scores in multiple subjects. With this approach, to consistently estimate the vector �,

we need teacher assignment (Eist) to be uncorrelated with the student heterogeneity term,

ci. This means, for example, that principals cannot assign students with higher (or lower)

unobserved ability to more e↵ective teachers. However, it is important to note that the

estimates of the vector � are adjusted for correlation of teacher assignment with prior test

scores and other observable characteristics and that this feature of the model may go a long

way toward mitigating bias due to nonrandom assignment of students to teachers (Guarino,

Reckase, and Wooldridge, 2015).

Two widely used estimation methods initially omit the teacher assignments (Eist) from

the regression in (3) partialling out the e↵ects of past test scores and student covariates on

the current test score. The student-level residuals from this regression are used to estimate

teacher e↵ectiveness. The problem is that these methods do not adjust for the potential cor-
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relation between the teacher assignments and the lagged test scores or student characteris-

tics.

The first of these approaches estimates the abbreviated version (omitting Eist) of equa-

tion (3) via OLS and then calculates the teacher e↵ects as the within-teacher averages of the

student-level OLS residuals. We refer to this as the average residual (AR) method. Again,

consistency (as the number of students per teacher grows) requires that teacher assignment

is not based on the student heterogeneity. However, also note that any correlation between

the lagged test score Aist�1 and teacher assignment is not being partialled out of the teacher

e↵ects, so assignment based on prior scores also becomes problematic.

A second such approach, which we will abbreviate to EB , involves empirical Bayes’ esti-

mation of this more parsimonious equation, obtaining the teacher e↵ects from the shrunken

residuals. The empirical Bayes’ method is essentially a GLS or random e↵ects approach,

where the teacher e↵ect estimates are e↵ectively “shrunken” towards the mean teacher e↵ect

(Guarino et al., 2015).6 The so-called shrinkage takes teachers’ class sizes into account, and

thus aims to reduce the noisiness of the estimates from a small number of observations con-

tributing to the estimation of the teacher e↵ects. Like the AR method, consistent estimation

relies on teacher assignment being uncorrelated with student heterogeneity and student-level

covariates contained in the model (including prior achievement). The latter assumption is

also relevant to the EVAAS URM approach we focus on in this paper and describe in the

next section.
6As described in Guarino et al. (2015), this method involves two stages, but is easily implemented in Stata
with the “xtmixed” command specifying a random component at the teacher level, and then post-estimation
using the “predict , re↵ects” command to get the teacher random e↵ects. The first stage estimates the
normal maximum likelihood (with the random teacher e↵ects in the error term) and the second stage applies
the shrinkage factor to these teacher e↵ects.
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3.2 EVAAS Univariate Response Model (URM)

Similar to the OLS and EB approaches discussed above, the URM estimates teacher e↵ec-

tiveness for a single grade and subject (e.g., 5th grade math). There are two key di↵erences

between the common approaches just described and the URM. First, the URM uses prior

test scores from multiple years and subjects to mitigate the influence of measurement error

and does not include other student characteristics a↵ecting current achievement. Second,

the URM allows for students to be missing some of these prior test scores. The URM’s strat-

egy for allowing incomplete test score data generates the complex nature of the approach,

but the complicated steps do not necessarily develop a more robust estimator, as we will

demonstrate below.

For instance, the consistency conditions regarding the nature of the missing test scores

allowed by the URM are nearly identical to the assumptions needed for OLS estimates to be

consistent. And, when there are no missing data, there is a direct relationship between the

URM and simpler standard linear regression techniques. Consider the simplest case where

students have no missing test score data, students are randomly assigned to teachers, teachers

have identical class sizes, and estimation is based on one cohort of students for teachers. Then

the teacher e↵ect estimates from the URM are nearly identical to OLS estimates, and would

be identical if OLS (instead of EB) were used in the final estimation step. When students are

nonrandomly assigned to teachers based on the included prior test scores, the URM and OLS

estimates diverge. OLS partials out this assignment mechanism and consistently estimates

the teacher e↵ects while the URM assumes this assignment mechanism is not present and

consequently produces biased estimates of the teacher e↵ects. One goal of this paper is to

derive and demonstrate these relationships.

In the discussion that follows, we first provide a detailed explanation of the URM

approach—expanding on the descriptions in Wright, White, Sanders, and Rivers (2010) and

SAS Institute Inc. (2015b)—and then illustrate how the URM compares with standard lin-
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ear regression methods.

The URM estimating equation for subject s is:

Aist = ⌧ + Âist + Eist� + ⇣ist (4)

where, compared to equation (3), the intercept ⌧ does not have a time subscript since only

one year of data is used, the lag score and student covariates have been replaced by a

“composite score” Âist, and now the error term ⇣ist includes estimation error from using

estimated components in Âist. The � contains the random e↵ect for the student’s teacher.

This equation is estimated using empirical Bayes’ to obtain the teacher e↵ects �. Although

this appears relatively simple, the composite score Âist is the result of a multi-step process

using all available lagged test scores (Wright et al., 2010), so the model is not as parsimonious

as it appears. The composite score is essentially a di↵erent approach to a control, using

multiple lagged test scores to predict a student’s current score, and this prediction serves as

a sort of su�cient statistic for the student’s past inputs.

The URM uses multiple steps to compute the composite score, with each step performed

separately for every year of data (i.e., student cohort) that contributes to the estimated

teacher e↵ects. In practice, the URM does not pool over these multiple years in estimation of

teacher e↵ects. In our analysis though, we do such pooling to illustrate how the performance

of estimators changes as more years of data on teachers is incorporated. Thus, to estimate

teacher e↵ectiveness during a three-year period (i.e., based on three cohorts of students), each

of the initial steps—up to and including computing the composite score—is done separately

for the first, second, and third years of data. Then the final step—empirical Bayes’ estimation

of the teacher e↵ects—is performed pooling the three years of data.

In computing the composite scores, the URM allows for many prior test scores across

di↵erent subjects and years. For clarity, we focus our discussion on an example where we

are using one-year and two-year lagged test scores for both reading (r) and math (m). The
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URM computes a composite score in a specific subject (math shown in the equation below)

as a linear combination of demeaned versions of the lagged test scores:

Âimt = µ̂mt + �̂mt�1Äimt�1 + �̂mt�2Äimt�2 + �̂rt�1Äirt�1 + �̂rt�2Äirt�2. (5)

In this equation, Äist�y (for the one-year and two-year lagged scores in subject s) denotes a

“demeaned” y-year lagged test score in subject s for student i,

Äist�y = Aist�y � µ̂st�y. (6)

In equations (5) and (6), the estimated means µ̂st�y are not the overall means of the

test scores. Rather, each µ̂st�y (including y=0 for the current score) is the sum of two

components: an average across teachers of the teacher-level mean score and an adjustment

to account for students with missing test score data. We discuss each of these components

in further detail below.7

The weights in the composite score equation, �̂st�y, are coe�cient estimates that maxi-

mize the correlation between the lagged scores and current score. With no missing data, �̂ is

essentially a vector of OLS coe�cient estimates from the regression of Aimt on an intercept,

Aimt�1, Aimt�2, Airt�1, Airt�2, and teacher assignment indicators. So, this step would produce

coe�cients on the lags from a DOLS-type equation that includes lagged test scores in mul-

tiple subjects, where teacher assignment is partialled out of the coe�cient estimates.

Rather than use regression, however, the URM takes a di↵erent approach to estimation

7The Stata code for estimation as described here is: mi impute mvn äm0 äm1 äm2 är1 är2, emonly. Our
description and implementation are based on the Wright et al. (2010) documentation which was in use when
we began this study. More recently, Wright (2015, p.14) indicates that the URM uses an EM algorithm
that is “modified to accommodate the nesting of students within teachers,” but provides no further details
on the modification except that it is no longer necessary to construct the äsy. Rather, the Asy can be used
with the modified algorithm, though we are not aware of any available commands in Stata or SAS for this
modified algorithm. Regardless, this change is a di↵erent way of accounting for students grouped within
teachers that avoids some of the constructed scores and means, but would not have a meaningful impact
on any of our theoretical or empirical results.
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to allow for certain patterns of missing data. In general, the URM requires a minimum of

three lagged scores and one of these must be the most recent lag in the same subject as

the dependent variable. In our example, this means students must have records for Aimt�1

and at least two scores out of the set of {Aimt�2, Airt�1, Airt�2}. The URM uses the EM

Algorithm to estimate a variance-covariance matrix, C, for calculating the coe�cients �̂

(rather than estimating these directly with a regression, which would omit observations with

missing data). Still, for the EM Algorithm to consistently estimate the variance-covariance

matrix, the pattern of missing scores can only be related to the fully observed variable (and

not omitted or unobserved variables nor the values of the partially missing scores), which is

the same lagged test score included in the DOLS specification.

The EM Algorithm estimation step of the URM is done separately for each year of data.

It uses a transformation of the current and lagged test scores where the teacher-level means

are subtracted from each score so that C is a “within-teacher” variance-covariance matrix.

We denote these transformed scores used for the EM Algorithm estimation as:

äisy = Aist�y � µ̂jst�y (7)

where µ̂jst�y is the average of Aist�y across the students i assigned to teacher j.

Then the within-teacher variance-covariance matrix obtained via the EM Algorithm, for

each year, is:

C =

2

64
cäm0äm0 cäsy äm0

cäm0äsy Cäsy äsy

3

75 =

2

666666666664

cäm0äm0 cäm1äm0 cäm2äm0 cär1äm0 cär2ẍm0

cäm0äm1 cäm1äm1 cäm2äm1 cär1äm1 cär2ẍm1

cäm0äm2 cäm1äm2 cäm2äm2 cär1äm2 cär2ẍm2

cäm0är1 cäm1är1 cäm2är1 cär1är1 cär2ẍr1

cäm0är2 cäm1är2 cäm2är2 cär1är2 cär2ẍr2

3

777777777775

(8)

where the first matrix shows subdivided “blocks” of the matrix (to be referenced below), with
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äsy referencing the vector of lagged test scores in both subjects. The second matrix, with the

lines for the subdivided blocks, is fully expanded to show each element of C; the diagonal

elements are the variance terms and the o↵-diagonal elements are the covariance terms.

The URM uses the elements of C to compute the set of within-teacher coe�cient esti-

mates, �̂st�y, by plugging into the familiar formula:

�p = C
�1
äsy äsy ,pcäsy äm0,p (9)

where p has been added to index each pattern of observed scores. With complete data for

all students, the p index is not needed, and this equation would be equivalent to the OLS

estimator from the regression of äm0 on äm1, äm2, är1, är2 (or, equivalently, with the original

scores, from the regression of Amt on Amt�1, Amt�2, Art�1, Art�2, an intercept, and teacher

assignment indicators).8 When students have incomplete records though, the formula in

(9) allows us to separately estimate a unique vector of coe�cients, �̂p, for each pattern of

observed scores, using the subset of matrix C corresponding to the relevant observed scores.

So, in our example, given that the first lag of the math score must be present, we would

compute up to four vectors �̂p to account for di↵erent missing scores. We could consider

p = 0 for complete records, p = 1 for records missing Amt�2, p = 2 for records missing Art�1

and p = 3 for records missing Art�2. For students with p = 0 the full matrix is used, while

for students with p = 1 (missing Amt�2) the 3rd row and 3rd column are dropped.

The EM Algorithm estimation also produces means that contribute to the µ̂st in the

composite score equation and the µ̂st�y underlying the transformed scores (Äist�y) in (6). To

be clear, in equations (5) and (6), the estimated mean is µ̂st�y = µ̂mtm
st�y + µ̂EMm

st�y , which is not

the overall mean of the lagged test score. The first term on the right-hand-side is the mean-of-

teacher-means µ̂mtm
st�y for the y-year lagged score in subject s. In other words, the mean lagged

8 Other equivalent representations for the case of full data include � = (ä0syäsy)
�1ä0syäm0, where äsy contains

äm1, äm2, är1, är2, or � = (X 0X)�1X 0Amt where X includes Amt�1, Amt�2, Art�1, Art�2, an intercept
and teacher assignment indicators.
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test score is computed for each teacher and then the average over all teachers is taken.9

The second term on the right-hand-side is produced by the EM Algorithm. It is an

adjustment to the mean of teacher means to account for missing data—i.e., students with

incomplete records. Since the EM Algorithm estimation step uses demeaned test scores

(specifically, the teacher-demeaned scores äst�y), this term is zero when there is complete data

for all students. But when some students are missing test scores (and thus not contributing

to the mean-of-teacher-means for the missing score), the estimated µ̂mtm
st�y may be biased and

the URM includes the mean µ̂EMm
st�y to reduce potential bias from missing lagged scores.

The transformation in (6) that subtracts these two mean components is similar to re-

moving year e↵ects, which would be done by instead subtracting the overall mean (or by

including year dummies in a regression). Subtracting the mean-of-teacher-means (µ̂mtm
st�y) in-

stead ensures that the “average” teacher has a teacher e↵ect of zero and the EM Algorithm

component (µ̂EMm
st�y ) corrects for potential bias in the mean-of-teacher-means from students

missing test scores (Wright et al., 2010).

Finally, we compute the so-called composite score, Âimt, according to equation (5). The

composite score is the sum of the “adjusted mean” of the current math score (µ̂st = µ̂mtm
st +

µ̂EMm
st ) plus a weighted average of transformed lagged scores Äst�y, with the weights being

the coe�cient estimates, �̂p. The composite score is a prediction of the current score (Aimt)

based on the student’s past test scores and assuming the student has the “average” teacher

in the current year (Wright et al., 2010).

After the composite scores are obtained, the final step in computing the teacher e↵ects

is the empirical Bayes’ estimation of equation (4)—as mentioned above. Although this is

the final step for obtaining teacher e↵ect estimates, the multi-step process also complicates

estimation of the variability of the estimates. The standard errors from this last step do not

9 To the best of our knowledge—based on the description in Wright et al. (2010)—this average per teacher is
across all of the teacher’s students, even if the teacher has multiple classes. Regardless, this is not important
for our theoretical or empirical results and conclusions.

18



account for the earlier estimation of elements of the composite score.

Note that this discussion has focused on estimating teacher e↵ects for math teachers.

If one wished to estimate teacher e↵ectiveness in, say, reading, then the outcome variable

would be the current reading score, and the composite score would constitute a predicted

reading score. While the same lagged scores could be used to obtain the composite score, the

estimated elements (i.e., the µ̂mtm
st , µ̂EMm

st , and �̂st) would be di↵erent because they would

be based on predicting the current reading score, using the sample of students satisfying the

corresponding data requirements. So, in this respect, the URM is similar to the common

VAM approaches that estimate teacher e↵ects separately by subject (and grade).

3.2.1 Relating the EVAAS URM to other approaches

Unlike traditional regression-based VAM methods, the EVAAS approach handles at least

some missing data patterns. It also uses empirical Bayes’ shrinkage in the final step in order

to account for teachers having di↵erent numbers of students. But is EVAAS very di↵erent

from the standard regression estimators? In practice, di↵erences in the estimated teacher

VAMs may be minor. In fact, in the simplest scenario the two approaches yield nearly

identical (up to a constant) teacher e↵ect estimates.

In the simplest setting, there are no missing data and only one year of data is used (i.e.,

one cohort of students). Either shrinkage is not used or the number of students per teacher

is identical, in which case shrinkage simply multiplies all of the teacher VAMs by the same

constant. With a single year of data, a simple extension of DOLS to allow other lagged test

scores comes from OLS estimation of the equation

Ai = Xi� + Ei� + vi, (10)

where Xi includes all lagged test scores in various subjects and Ei is the vector of teacher
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assignment dummies. For simplicity, we drop the subscripts indicating subject and year.

This specification is a modified version of our DOLS specification in (3), now augmented

with additional lagged test scores in the same and other subjects and omitting student

characteristics, reflecting the variables generally included in the URM approach.

From the Frisch-Waugh partialling-out theorem, the OLS coe�cients on the lagged test

scores, �̂, can be obtained in three steps:

(i) Regress Ai on Ei and obtain the residuals, Äi. Now, Äi = Ai � Ei⌘̂ where, because

the Ei are teacher assignment dummies, ⌘̂j is the average of the Ai (current test score) for

teacher j. Therefore, Äi is student i’s test score deviated from the average test score for the

student’s teacher.

(ii) Regress each lagged test score in Xi on Ei and collect the vectors of residuals, Ẍi.

Just as with Äi, each element of Ẍi is one of student i’s lagged test scores deviated from the

mean for student i’s teacher.

(iii) Run the regression of Äi on Ẍi and obtain �̂.

In other words, when the regression is restricted to a single year, and there are no missing

data, the OLS and URM estimates of � are identical; the URM simply partials out teacher

assignment in a separate step, rather than using the full regression in (10).

As described earlier, the next step in the URM is to construct the composite score in

equation (5). But the composite score Âi can be written as

Âi = Xi�̂ +  ̂, (11)

where  ̂ depends on �̂ and the overall means of the test scores. Now, the equation used to

obtain the teacher e↵ects is

Ai = Âi + Ei� + !i, (12)
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where the error term !i includes estimation error because Âi depends on �̂.

Without missing data, we know, by the algebra of OLS, what will happen if we apply

OLS to equation (12): ̂ = 1 and �̂ will be identical to what is obtained from the long

regression in (10). The argument is simple. We know the OLS estimates minimize the sum

of squared residuals, and we know the �̂ from the URM is identical to the �̂ from OLS. So

one cannot do any better by choosing ̂ di↵erent from unity and �̂ as the DOLS coe�cients.

The additive constant in (11) changes nothing because the DOLS regression, with a full set

of teacher dummies, e↵ectively estimates an intercept.

The URM approach is not to apply OLS to equation (12)—otherwise it would just be

DOLS. Instead, the URM method applies empirical Bayes’ to (12), which treats the teacher

e↵ects as a random component of the error term and then obtains the teacher e↵ects with

a prediction formula that involves shrinking the estimates of � towards the average teacher

e↵ect. When the coe�cient on the composite score is estimated by empirical Bayes’, the

coe�cient is not unity, which breaks the equivalence and causes bias. This bias stems from

the random e↵ects estimator (not the shrinkage) underlying empirical Bayes’ estimation, a

result that has been shown more generally by Guarino et al. (2015), but is less obvious here

due to the URM’s complicated multistep method. The random e↵ects estimator underlying

empirical Bayes’ assumes Ei is uncorrelated with the composite score estimated in (11). The

bias from this assumption is precisely what was shown in Guarino et al. (2015), only now

the lagged test score(s) is replaced with the composite score. Hence, it is the underlying

random e↵ects estimator applied to (12) that biases estimates of both  and �; the shrinkage

typically has a minor e↵ect (Guarino et al., 2015). Conversely, when students are not

assigned to teachers based on any included or omitted test scores or characteristics—so Ei

is not correlated with � or other components of the error term—the URM estimates are

nearly identical to the OLS estimates from (12). Or, if equation (12) were estimated by OLS

instead of empirical Bayes’, then the URM and OLS estimates from (10) would be the same
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(regardless of any correlation between Ei and �).

4 Simulation

4.1 Simulation Design

We conduct simulations to assess the performance of the DOLS, EB, AR, and URM estima-

tors under various student grouping and assignment scenarios. This allows us to know the

“true” teacher e↵ect (which we generate), and then evaluate the ability of each of the es-

timators to capture this e↵ect—something not possible with administrative data. Much of

our simulation design is similar to that from Guarino et al. (2015), which focused on evalu-

ating the performance of EB along with DOLS and AR. We generate data for three cohorts

of 800 students each, creating a current score and two lagged scores for each student. For

our analysis, we focus on a single grade, so using one observation per student, but three co-

horts of students per teacher. The simulations are designed with elementary grades in mind,

so we can think of this setting as 5th grade students and teachers. Class size is set to 20, for

a total of 40 teachers.

To generate the test scores, we first obtain a baseline score (i.e., the first grade tested)

drawn from a standard normal distribution. Each of the three subsequent test scores, Ait,

is then generated according to the equation

Ait = �Ai,t�1 + �it + ci + uit, (13)

where Ai,t�1 is lagged achievement, �it is the teacher contribution to the current score (the

true teacher e↵ect), ci is the time-constant unobserved student e↵ect, and uit the idiosyncratic

error. The decay parameter, �, is set to either 0.5 (substantial decay of student achievement)
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or 1 (no decay).10 The correlation between the baseline score and the student fixed e↵ect is

0.5. The three random parameters are drawn from normal distributions: student fixed e↵ect

ci⇠N(0, .52), teacher e↵ect �⇠N(0, .252), and the idiosyncratic error uit⇠N(0, 1) (so their

respective proportions of the total variance in test scores are 19%, 5%, and 76%).

To look at nonrandom sorting of students, we make the distinction between grouping

(how students are grouped into classrooms) and assignment (how students are assigned

to teachers), allowing for students to be, say, grouped based on prior achievement levels

but then randomly or nonrandomly assigned to teachers. We look at grouping based on

the lagged score (referred to as dynamic grouping), the original baseline score (a form of

“static” grouping referred to as baseline grouping), and the student individual heterogeneity

(another form of static grouping, referred to as heterogeneity grouping). We look at three

di↵erent assignment mechanisms for each of these grouping scenarios: random assignment,

positive assignment (e.g., better students to better teachers), and negative assignment (e.g.,

struggling students to better teachers). The nonrandom assignment cases are not perfectly

separating students in rank order of, say, lagged achievement; rather assignment is noisy

with the noise being drawn from a standard normal distribution. We conduct 100 Monte

Carlo repetitions for each grouping-assignment-parameter scenario.

Given that a notable feature of the URM is the handling of missing data, we also simulate

data where some students are missing test scores, following the method used by Wright

(2004). We first rank students based on their prior test score (calling this the TrueRank).

Then we generate a random student rank (RandomRank). To decide which scores to set to

missing, we create a linear combination of these: SortRank = a ⇤ (TrueRank) + (a � 1) ⇤

(RandomRank). Sorting on this value, we then replace the lagged score with missing for the

bottom 20 percent of students. For randomly missing scores, we set a = 0. For non-randomly

missing scores (that still satisfy the MAR assumption discussed earlier), we set a = .4.

10The decay parameter reflects the fact that a student’s prior score may not be fully additive into the current
score, whether due to changes in the test, what the test measures in one year versus the next, or student
“learning loss” from one test period to the next.
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We examine the performance of four of the estimators discussed above (DOLS, AR, EB,

EVAAS URM). For the first three estimators we consider a “common” specification, similar

to equation (3), where the covariates include a lagged test score, and in the case of DOLS,

teacher assignment indicators. (We do not incorporate e↵ects for student characteristics into

the simulation.) For the URM, we base the composite score on this same lagged test score

as well as a two-year lagged test score.

As discussed above, we also estimate specifications that “mimic” the EVAAS URM

approach, using DOLS, AR, and EB, to illustrate where divergences in the performance of

the estimators is coming from. Hence, for the simulations, this means including both the

one-year and two-year lagged test scores in the estimating equation. For all estimators and

specifications, we estimate the “5th grade” teacher e↵ects first using one cohort (year) of

data, and then estimate them pooling over three cohorts.

Our first metric for evaluating the performance of these estimators is the Spearman

rank correlation between the estimates and the true teacher e↵ects, to examine their ability

to uncover the correct rankings of the true e↵ects.11 For an additional viewpoint, we also

provide the mean squared error (MSE), which illustrates the tradeo↵ between bias and

variance. However, given the extensive policy emphasis on ranking and categorizing teachers

by the continuum of estimated e↵ectiveness, we focus much of our discussion on the rank

correlations which provide a metric for identifying relative e↵ectiveness, which is what policy

seems to be after.

4.2 Simulation Results

We first assess the ability of each of the estimators to uncover the true teacher e↵ect, looking

at the correlations between the estimated and true e↵ects. For our main results, we focus

11We also have results using simple (Pearson) correlations, which follow the same patterns as the rank
correlations.
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on the “small” teacher e↵ects, which account for 5 percent of the variation in test scores,

in the case where � = .5 (substantial decay of student achievement). In practice, the URM

uses one year of data (i.e., one cohort of students) to estimate teacher e↵ectiveness, so Table

1 provides the rank correlations between the true teacher e↵ects and the estimated teacher

e↵ects (Panel A) in this setting, along with the mean squared error (Panel B). For this and

the following two tables, all 10 grouping-assignment scenarios are explored. The estimators

considered first are DOLS, AR, and EB on the “common” specification that controls only

for one lag score (in addition to the teacher e↵ects in the case of DOLS). The next set of

columns are based on DOLS, AR, and EB estimation of specifications that also include a

two-year lagged score, to “mimic” the information in the composite score of the URM.

Table 1 shows that under random grouping and random assignment, the rank correlations

are 0.69 for all estimators, and nonrandom grouping does not cause large departures from

this, as long as assignment to teachers is random. The estimators actually perform best in the

positive assignment cases, in particular when grouping is based on the student heterogeneity,

with rank correlations ranging from .78 to .80, a result arising from bias that expands the

distribution of estimated teacher e↵ects, making it easier to distinguish between teachers

(see Guarino, Reckase, and Wooldridge (2015) for a more detailed discussion of this result).

Conversely, the estimators perform worst when students are grouped on heterogeneity and

then negatively assigned to teachers, with correlations ranging from .41 to .43.

Also evident in Table 1 is the close relationship between the EVAAS URM and using

EB to estimate a specification with the same lagged test scores, as the correlations in the

URM and EB-mimic columns are nearly identical. Further, we see that under dynamic

grouping with positive or negative assignment, although all estimators perform worse relative

to random assignment, DOLS performs substantially better than AR, EB, or URM. This

was previously shown in Guarino et al. (2015) for EB and AR, and we show this extends to

the URM. This result arises from the fact that these approaches are not correctly partialling
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Table 1: Correlations and MSE (1 cohort of students and no missing data)

“common” “mimic”
1-yr lag score 1-yr and 2-yr lag scores

Grouping Assignment DOLS AR EB URM DOLS AR EB

PANEL A - Spearman rank correlations
Random Random 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Dynamic Random 0.70 0.70 0.70 0.70 0.70 0.70 0.70

Positive 0.67 0.49 0.53 0.53 0.68 0.50 0.53
Negative 0.70 0.53 0.58 0.58 0.70 0.53 0.57

Baseline Random 0.67 0.67 0.67 0.68 0.68 0.68 0.68
Positive 0.75 0.72 0.73 0.71 0.73 0.69 0.71
Negative 0.50 0.49 0.50 0.55 0.55 0.53 0.55

Heterogeneity Random 0.64 0.64 0.64 0.65 0.64 0.65 0.65
Positive 0.80 0.79 0.79 0.79 0.79 0.78 0.79
Negative 0.41 0.41 0.41 0.43 0.43 0.43 0.43

PANEL B - Mean squared error
Random Random 0.057 0.057 0.032 0.032 0.057 0.056 0.032
Dynamic Random 0.059 0.057 0.031 0.031 0.058 0.056 0.031

Positive 0.060 0.070 0.044 0.044 0.059 0.069 0.044
Negative 0.060 0.067 0.041 0.041 0.059 0.066 0.041

Baseline Random 0.063 0.062 0.033 0.032 0.060 0.058 0.032
Positive 0.062 0.060 0.029 0.030 0.060 0.058 0.031
Negative 0.070 0.071 0.045 0.042 0.065 0.067 0.043

Heterogeneity Random 0.073 0.071 0.037 0.036 0.071 0.068 0.036
Positive 0.072 0.068 0.030 0.029 0.070 0.065 0.029
Negative 0.079 0.080 0.050 0.049 0.076 0.077 0.049

Notes: Panel A provides the Spearman rank correlations with the true teacher e↵ects, Panel
B the mean squared error. These results are based on simulations with small teacher e↵ects
and 1 cohort of students with � = .5.

out the assignment mechanism from the teacher e↵ects. EB and the URM both are closer

to DOLS than AR, though, because as the number of students per teacher gets larger,

the empirical Bayes’ estimates of the teacher e↵ects (underlying EB and URM) will get

closer to DOLS (see Guarino et al. (2015) for a more detailed discussion of this result that

the random e↵ects estimates will converge to the fixed e↵ects estimates as the sample size

increases).

The rank correlations in Panel A reflect the bias of the estimators in how well they

correctly order teachers. Panel B provides another performance metric—the mean squared
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error (MSE)—which reflects the bias and variance of the estimators (MSE = variance +

bias2). With one cohort of students, we see that the URM and EB have nearly identical MSE

across assignment scenarios, which are generally smaller than AR and DOLS, reflecting the

smaller variance of these estimators. However, in some cases (such as positive or negative

assignment based on the lagged test score), this smaller variance comes at the cost of having

more error in ranking teachers.

Table 2: Correlations and MSE (3 cohorts of students and no missing data)

“common” “mimic”
1-yr lag score 1-yr and 2-yr lag scores

Grouping Assignment DOLS AR EB URM DOLS AR EB

PANEL A - Spearman rank correlations
Random Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Dynamic Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Positive 0.84 0.66 0.76 0.76 0.84 0.66 0.76
Negative 0.83 0.68 0.77 0.77 0.83 0.68 0.77

Baseline Random 0.82 0.82 0.82 0.83 0.83 0.83 0.83
Positive 0.88 0.87 0.88 0.87 0.87 0.85 0.87
Negative 0.65 0.65 0.65 0.71 0.72 0.70 0.71

Heterogeneity Random 0.81 0.81 0.81 0.82 0.82 0.82 0.82
Positive 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Negative 0.52 0.52 0.52 0.55 0.56 0.55 0.55

PANEL B - Mean squared error
Random Random 0.021 0.021 0.016 0.017 0.020 0.021 0.016
Dynamic Random 0.021 0.022 0.016 0.017 0.021 0.021 0.016

Positive 0.021 0.034 0.023 0.024 0.021 0.034 0.023
Negative 0.021 0.031 0.022 0.023 0.021 0.031 0.022

Baseline Random 0.023 0.024 0.017 0.018 0.022 0.023 0.016
Positive 0.024 0.022 0.015 0.015 0.021 0.021 0.014
Negative 0.032 0.033 0.032 0.028 0.027 0.029 0.027

Heterogeneity Random 0.026 0.027 0.019 0.020 0.025 0.026 0.019
Positive 0.036 0.033 0.023 0.022 0.034 0.030 0.021
Negative 0.043 0.045 0.040 0.039 0.040 0.042 0.038

Notes: Panel A provides the Spearman rank correlations with the true teacher e↵ects, Panel
B the mean squared error. These results are based on simulations with small teacher e↵ects
and 3 cohorts of students with � = .5.

Although using one cohort of students is convenient, in practice multiple cohorts are often

used, so we also present results from using three cohorts of students (i.e., three years of data
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on teachers) to estimate teacher e↵ectiveness. Given that this is increasing the amount of in-

formation on teachers (and teacher e↵ects do not vary by year in our simulation), we expect

the performance of all of the estimators to improve. The rank correlations in Table 2 show

this improved performance, but the results also follow the same relative performance patterns

across scenarios and estimators. The correlations under random grouping and random assign-

ment are now larger at .84. In the case of grouping based on student heterogeneity with pos-

itive assignment to teachers, the correlations are now .89 for all estimators. When students

are instead negatively assigned to teachers (based on heterogeneity), the correlations are .52–

.56. Under this scenario, the correlations for the “mimic” specification estimators are slightly

larger than those from the “common” specifications; this result comes from the amount of

decay in student achievement with � = .5, so adding additional lag scores helps. Again we

see the nearly identical performance of the URM and EB-mimic. The issue of poor perfor-

mance of AR, EB, and URM under nonrandom assignment based on the lagged score remains.

Again, the URM and EB estimators perform more similarly to DOLS than AR exhibiting the

convergence of the random e↵ects approach (EB, URM) to the fixed e↵ects approach (DOLS).

AR performs the worst because the assignment mechanism is not partialled out at all.

When we turn to Panel B, we see that all estimators perform very similarly in terms of

MSE now, as expected. With more data on teachers, the MSE converges as the variance of

all estimators gets smaller, but the bias does not shrink. So the e�ciency gain from using

the URM or EB diminishes, while the advantages of using DOLS to correctly rank teachers

remains, as we discussed for Panel A.

All of the simulation results thus far have been based on the ideal situation with no

missing data. The rank correlations in Table 3 are based on the analogous sorting and

assignment scenarios, only now with 20 percent of students missing the one-year lagged test

score. When we introduce missing data, AR, EB, and DOLS tend to do slightly worse

(rank correlations fall by about .02–.06). The performance of the URM behaves di↵erently;
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sometimes improves, sometimes worsens, and in some cases by large magnitudes in either

direction.

Under random grouping and assignment, the URM performs slightly better than DOLS.

We see similar performance under the other random assignment scenarios (with various

nonrandom grouping). The URM again shows slight advantage under most of the positive

assignment scenarios, with the largest of these being for dynamic grouping. However, the

URM performs significantly worse under many of the negative assignment scenarios, with the

largest gap occurring when grouping is based on the one-year lag score (the URM correlations

is .32 compared to .64 for DOLS). With three cohorts of students, we see some convergence

in performance of the estimators as all of them perform better with the additional data.

However, the URM still does significantly worse under negative assignment based on the

one-year lag score (now with a correlation of .46 compared to .82 for DOLS).

Overall, the URM does show slight advantage in some of the grouping and assignment

scenarios, especially when only one cohort of students is used. However, when students

with lower lagged test scores are assigned to better teachers—which is certainly a plausible

assignment scenario—the URM does much worse at ranking teachers.

4.3 Sensitivity of Simulation Results

While some sensitivity analyses were presented with the main results (e.g., using one versus

three cohorts of students, or having missing versus non-missing data), we also conducted

simulations with various modifications. These alternate scenarios include increasing the

number of repetitions to 500, having larger teacher e↵ects, choosing � = 1, generating other

missing data scenarios, varying class sizes, using additional lagged test scores in the “same”

and “other” subjects, and scenarios with grouping and assignment based on a composite of

these scores. (All sensitivity results are available upon request.)
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Table 3: Correlations (1 and 3 cohorts of students, with missing data)

“common” “mimic”
1-yr lag score 1-yr and 2-yr lag scores

Grouping Assignment DOLS AR EB URM DOLS AR EB

PANEL A - 1 cohort of students
Random Random 0.65 0.65 0.65 0.67 0.65 0.65 0.65
Dynamic Random 0.63 0.63 0.64 0.61 0.64 0.64 0.64

Positive 0.64 0.46 0.50 0.74 0.64 0.46 0.50
Negative 0.63 0.49 0.52 0.32 0.64 0.49 0.52

Baseline Random 0.66 0.66 0.66 0.70 0.67 0.67 0.68
Positive 0.71 0.69 0.70 0.72 0.69 0.65 0.67
Negative 0.47 0.47 0.47 0.54 0.51 0.50 0.51

Heterogeneity Random 0.60 0.61 0.61 0.61 0.61 0.61 0.61
Positive 0.78 0.77 0.77 0.80 0.77 0.76 0.77
Negative 0.38 0.37 0.39 0.36 0.40 0.39 0.41

PANEL B - 3 cohorts of students
Random Random 0.81 0.81 0.81 0.84 0.81 0.82 0.81
Dynamic Random 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Positive 0.82 0.63 0.72 0.89 0.82 0.63 0.72
Negative 0.82 0.66 0.74 0.46 0.82 0.66 0.74

Baseline Random 0.80 0.80 0.80 0.83 0.81 0.81 0.81
Positive 0.86 0.84 0.86 0.86 0.85 0.82 0.84
Negative 0.62 0.61 0.61 0.69 0.69 0.66 0.68

Heterogeneity Random 0.79 0.79 0.79 0.80 0.79 0.79 0.79
Positive 0.89 0.88 0.89 0.90 0.89 0.88 0.88
Negative 0.49 0.49 0.49 0.48 0.52 0.52 0.52

Notes: This table provides the Spearman rank correlations with the true teacher e↵ects
when 20 percent of students are (randomly) missing the one-year lag test score. These
results are based on simulations with small teacher e↵ects and � = .5.

Increasing the number of repetitions to 500 does not produce any meaningful changes to

the rank correlations. In the case of larger teacher e↵ects with �⇠N(0, .62) and ci⇠N(0, .52),

the teacher e↵ect and the student heterogeneity each account for about 21% of the total

variation in test scores. With the teacher e↵ects accounting for more of the variation in the

test scores, we naturally expect the performance of the estimators to improve, and we do

find this to be the case. But the results follow the same general patterns discussed for the

small teacher e↵ects case. Choosing � = 1 also had little impact on the results, which exhibit

the same general patterns. The main di↵erence is that the performance of estimators on the
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“mimic” specifications is no di↵erent than for the “common” specifications since there is no

motivation for including the two-year lag score when � = 1.

The missing data scenario presented in Table 3 involved 20 percent of students chosen

randomly to be missing the one-year lag test score. When instead we chose students some-

what non-randomly (setting a = .4) to be more likely to have a missing test score if they

were lower achieving students, we still find similar patterns of results. This is not surpris-

ing given that this case still satisfies the MAR assumption that the estimators rely on, since

the selection is on an observed (and included) score. When we instead chose to set the two-

year lag score to missing for these scenarios, the results di↵er. The performance di↵erences

across estimators are much smaller. The URM again does slightly better in many cases, but

DOLS does slightly better under both types of nonrandom assignment based on dynamic

grouping (positive and negative assignment).

To vary class size, we randomly assigned 36 teachers class sizes of 10, 20, or 30 students

(12 teachers for each class size). For the simulations with three cohorts of students, class

size was the same for a teacher in all cohorts. The rank correlations for all estimators

are slightly smaller for all scenarios except for the negative assignment scenarios. In these

cases, all estimators improve. For assignment on the lagged score, the performance of DOLS

remains similar, but the other estimators improve, bringing them closer to DOLS. Overall

though, the patterns of performance are similar to the simulation with uniform class sizes of

20 students.

Incorporating further lagged scores or lagged scores in other subjects does not contribute

substantively to our evaluation of the theoretical implications of sorting or assignment for

the URM, as these constitute the same issues as having one vs. two lags. Thus, our main

results focused on the simple case of two lags to facilitate transparency in our simulation

design and results. But we also performed simulations with an additional lag as well as with

multiple lags in another subject, and further incorporated an additional sorting mechanisms
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based on a combination of these scores (with more weight on the one-year and two-year lags

in the “original” subject).

Adding the three-year lag score does not a↵ect performance under the random assign-

ment scenarios. However, under positive assignment the rank correlations decrease (more

so for AR, EB), while under negative assignment they increase (more so for DOLS, URM).

These results follow the same pattern as going from including only a one-year lag to also in-

cluding a two-year lag. Under positive assignment, all of the estimators are biased upward,

while they are biased towards zero under negative assignment. Adding the three-year lag

reduces the bias (in both cases), so the performance is converging. This result is more pro-

nounced for baseline grouping because the three-year lag score is the baseline score in our

simulation.

The scores in the “other” subject were generated in the same fashion as our original

scores, with a baseline score drawn from the same distribution as the original baseline score,

and with a correlation between these scores of .7 (chosen based on our administrative data).

We see similar patterns to adding the three-year lag score, with no meaningful changes for

random assignment, and now only small decreases for positive assignment and small increases

for negative assignment (primarily only under heterogeneity or composite grouping).

When we extend dynamic grouping to a grouping scenario based on a composite of all

of these prior scores, estimators still perform similarly under random assignment. However,

as expected, the performance of DOLS is a↵ected similarly to the other estimators when the

specification does not include all of the scores underlying the grouping-assignment mecha-

nism. So for all estimators, we see higher rank correlations under positive assignment and

lower rank correlations under negative assignment. And, DOLS still performs better than

the other estimators even when we do not control for all of the lag scores.
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5 Administrative Data

5.1 Data

We use administrative data on students in grades 5 and 6 during years 2002–2007 in a large

urban anonymous district.12 Similar to our example used in the EVAAS URM discussion,

we focus on math scores as the outcome and use one-year and two-year lagged math and

reading scores as covariates in some specifications. The data contain information on student

race/ethnicity, days absent, gender, disability, limited English proficiency (LEP), and free-

or reduced-price lunch eligibility (FRL). We exclude students who are not linked to math

teachers, students who are assigned to classes (i.e., teacher/year groups) with fewer than 10

students, and students who were retained. All estimations also require that students have,

at a minimum, a current math score and a one-year lagged math score.

Average scores for the 5th and 6th grade samples are provided in Table 4 for the stu-

dents with data satisfying the minimum sample inclusion requirements just described; these

estimation samples cover years 2002–2007. The first set of descriptives in Panel A are for the

sample of 5th grade students, while Panel B contains the descriptives for the 6th grade sam-

ple. As an illustration of how the samples could change depending on which lagged test scores

are included, consider adding a two-year lagged math score in a regression. This would mean

3.1% of the 5th grade students are omitted. For 6th grade, the sample falls by 3.4% with the

addition of two-year lagged math. This indicates that including a longer history of scores does

impose data restrictions, though the URM is able to relax these restrictions somewhat.

12 Our data sharing agreement does not allow us to name the district or state. To maintain anonymity of
the district, we do not include observation counts or information on student demographics.
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Table 4: Descriptive statistics for students in sample, by grade

Mean Std Dev Min Max

Panel A: Grade 5

Math score 1638.62 232.26 569 2456
Reading score 1572.35 314.13 474 2713
1-yr lag Math 1485.78 254.84 569 2330
2-yr lag Math 1344.95 287.95 375 2225
1-yr lag Reading 1523.12 317.68 295 2638
2-yr lag Reading 1297.28 350.45 86 2514
Panel B: Grade 6

Math score 1652.63 242.93 770 2492
Reading score 1635.41 302.95 539 2758
1-yr lag Math 1634.20 220.28 569 2456
2-yr lag Math 1460.65 247.73 569 2330
1-yr lag Reading 1550.82 306.45 474 2713
2-yr lag Reading 1504.67 313.31 86 2638

5.2 Results

With the administrative data, we estimate teacher e↵ects separately for 5th and 6th grade,

focusing on math teachers only (so we use math scores as our outcome variable). Similar to

the approach for the simulations, we use AR, DOLS, and EB to estimate several specifica-

tions. The first two specifications, which we refer to as “common” specifications, are based

on equation (3). The first specification controls for the one-year lagged math score, year ef-

fects, and other student-level covariates (days absent, race/ethnicity, disability, LEP, FRL-

eligibility, and female). The second specification is augmented with a two-year lagged math

score also. The last two specifications are designed to be more similar to the EVAAS URM.

The third specification omits student covariates but includes the same lagged scores as the

composite score computed for the URM, hence attempting to “mimic” the information used

in the URM estimation. The fourth specification uses the composite score itself as the only

covariate (so when using EB estimation, this is identical to the URM). We compute esti-

mates using one year of data or pooled over two years of data, covering the years 2002-2007.

We then examine agreement among the estimators in each year and present results on aver-
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age agreement during this time period.

In Table 5, we provide average Spearman correlations between the URM estimates and

those from each of the other estimator/specification combinations. Within each specification,

the rank correlations do not change significantly when pooling over an additional year of data

for estimation and also do not di↵er substantially between estimators. In column [1], the

correlations show that agreement with the URM is slightly better in the 6th grade analysis

for all estimators, and there we also see that agreement is highest for EB, slightly lower for

DOLS, and lowest for AR.

Table 5: Spearman rank correlations, comparing EVAAS URM to other estimators

1-yr lag Math, 1-yr & 2-yr lag Math, 1-yr & 2-yr lags
Student Char. Student Char. in Math & Reading Composite score

[1] [2] [3] [4]

Panel A: 5th grade

1-year estimates
DOLS 0.918 0.971 0.997 0.999
AR 0.922 0.972 0.995 0.998
EB 0.920 0.972 0.998 1.000
2-year estimates
DOLS 0.918 0.971 0.997 0.999
AR 0.921 0.971 0.994 0.997
EB 0.920 0.972 0.998 1.000
Panel B: 6th grade

1-year estimates
DOLS 0.941 0.982 0.995 0.997
AR 0.931 0.964 0.987 0.990
EB 0.944 0.984 0.998 1.000
2-year estimates
DOLS 0.945 0.982 0.995 0.997
AR 0.935 0.963 0.986 0.990
EB 0.948 0.984 0.998 1.000

Notes: This table provides the average rank correlation between the URM estimate and
other estimator/specifications.

When we add a two-year lagged math score to the specification (column [2]), the rank

correlations all increase substantially, to around .97 for 5th grade and slightly higher around

.98 for 6th grade (with the exception of AR, which is lower at .96 for 6th grade). In column

35



[3] we omit student characteristics and use two lag scores each in reading and math, and now

find even greater agreement with the URM estimates (correlations >.99).13 In column [4], we

use the composite score as the only regressor, and now the rank correlations are even higher.

(The rank correlations for EB are exactly 1 because this is the URM approach itself.)

Within each grade/specification combination, the EB rank correlations are at least as

large as those for DOLS or AR, which indicates that the estimation approach matters some-

what. However, the specification seems to be more important in our data. Agreement with

the URM increases for all estimators as we get closer to using the same specification as the

URM (moving left to right from columns [1]-[4]); when we use the composite score as the only

regressor, all of the rank correlations are very close to 1. We find fairly high rank correlations

between the URM and estimates from specifications that include student characteristics,

consistent with the results found by Ballou, Sanders, and Wright (2004) for the MRM.

The results in column [3] also show that the di↵erences between the URM and the re-

gression based approaches using the same lag scores are not large. The complicated nature

of the URM stems from taking extra steps to include students with certain patterns of par-

tially missing test score records, since regression-based methods omit these students from

estimation. Given that consistent estimation for DOLS and the URM requires very similar

(if not identical) assumptions regarding the way in which data are missing, it is not surpris-

ing that the two approaches reach similar results. The estimates from simple DOLS estima-

tion of a similar specification with teacher indicators correlates very highly (>.99) with the

complicated multi-step EVAAS URM estimation.14

13We also estimated a specification that would fall between columns [2] and [3] of Table 5; the specification
included student characteristics along with the two lag scores each in reading and math. The rank corre-
lations for this specification were .98 for all estimators in both grades, falling appropriately between those
shown in columns [2] and [3].

14A simple approach to handling missing data, which relies on the same MAR assumption as DOLS, is
to replace a missing value (test score) with zero and include a dummy variable corresponding to that
variable. The dummy takes on a value of one when such a replacement is made and zero otherwise. This
avoids dropping the observation from from the regression, but the observation still does not contribute
to estimation of the coe�cient for the missing score. With this method, we get rank correlations nearly
identical to those in column [3].
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Although we cannot know the true teacher e↵ects in the case of administrative data,

the high agreement between DOLS and the URM along with EB and AR suggests that

there may not be substantial nonrandom assignment in our data.15 Our simulation results

showed that with complete data, DOLS is robust to nonrandom assignment on lagged scores

while the URM (along with EB and AR) is not, but we do not see DOLS ranking teachers

di↵erently here. Further, when there is substantial missing data on the one-year lag test

score, we found larger di↵erences in the rank correlations across estimators (with the URM

better in some cases), but we also do not see those divergences here either. So the missing

data patterns that are present in the administrative are not driving important di↵erences in

the estimated teacher e↵ects.

For another illustration related to a policy context, Table 6 shows the average percent

of teachers for which each of the other estimators would disagree with the URM on their

classification of teachers in the top decile of the distribution of estimated teacher e↵ects. So

this could represent a scenario where the top 10 percent of teachers received a pay increase or

bonus. The disagreement rates range from 0.3%–2.6%, with the smallest for EB estimation

of the specification that “mimics” the URM, which is expected. In this case, during the

2002-2007 period only a handful of teacher e↵ects were classified in the top 10 percent with

the URM estimates, but classified as below the 90th percentile with the EB-mimic estimates.

The analogous results in column [3] for DOLS show disagreement rates on the top decile are

.7% for 5th grade and 1.2%–1.6% for 6th grade.

In all of our analysis, we see high agreement between our DOLS estimates using standard

linear regression and the estimates from the more complicated EVAAS URM. As expected,

the agreement between EB and the URM is at least as strong as that between DOLS and the

URM—and in many cases slightly stronger—which suggests the estimation approach does

15Another scenario where DOLS and the URM would be expected to perform similarly is when there are
large numbers of students per teacher, since then fixed e↵ects and random e↵ects estimators are expected
to be similar. The similarity with AR though, further supports that there is not substantial deviation from
random assignment in our data.
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Table 6: Disagreement with the URM in classification of teachers above the 90th percentile

1-yr lag Math, 1-yr & 2-yr lag Math, 1-yr & 2-yr lags
Student Char. Student Char. in Math & Reading Composite score

[1] [2] [3] [4]

Panel A: Grade 5

1-year estimates
DOLS 2.6% 1.5% 0.7% 0.7%
AR 2.6% 1.4% 0.9% 0.8%
EB 2.6% 1.4% 0.2% 0.0%
2-year estimates
DOLS 2.5% 1.4% 0.7% 0.7%
AR 2.5% 1.4% 1.0% 0.8%
EB 2.5% 1.4% 0.2% 0.0%
Panel B: Grade 6

1-year estimates
DOLS 2.1% 1.1% 1.2% 1.1%
AR 2.0% 2.0% 1.6% 1.5%
EB 2.0% 0.8% 0.3% 0.0%
2-year estimates
DOLS 2.0% 1.2% 1.2% 1.0%
AR 1.9% 2.0% 1.6% 1.5%
EB 1.8% 0.8% 0.3% 0.0%

Notes: This table provides the average percent of teachers whose classification changes
from the top 10 percent in the distribution of EVAAS URM estimated teacher e↵ects to
below the top 10 percent in the distribution of teacher e↵ects based on the other estima-
tor/specification combinations. The average is taken as the simple average of the percent
misclassified in each year 2002-2007 for the 1-year estimates and 2003-2007 for the 2-year
estimates.
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matter somewhat in our data. And, although we cannot conclude which method is “better”

based on the administrative data alone, we do find that our results based on administrative

data are consistent with our simulation results.

6 Summary and Conclusions

We have shown how, in a simplified setting, the multi-step EVAAS URM estimation approach

relates very closely to simple OLS estimation using the same lagged test scores. While this

exact relationship is more di�cult to see when we extend to settings with missing data or

multiple years, we show how similar the estimates are, and under what conditions they are

expected to diverge, using both simulations and administrative data.

Our simulation evidence with complete data shows that the URM exhibits similar per-

formance patterns to those seen with empirical Bayes’ estimation in Guarino et al. (2015).

This is not surprising given that, as we show, the URM and EB estimators are very similar

when there is no missing data. While the URM and EB perform similarly to DOLS under

the ideal conditions of random assignment and random grouping, DOLS is most robust to

nonrandom assignment, especially assignment based on the lagged score, which is certainly

a plausible assignment mechanism. When we simulate data where 20 percent of students are

missing the one-year lag test score, the URM performance fluctuates more than the other

estimators, performing slightly better than DOLS in some sorting/assignment scenarios, but

also much worse under negative assignment based on the lagged score. In sensitivity analy-

ses, we found that the these performance di↵erences are much smaller when the missing test

score is instead the two-year lag test score.

Our results based on administrative data show similarity between the URM/EB and

DOLS estimates, regardless of specification, which suggests that that there may not be

substantial sorting in this district, and that the incomplete data patterns are not driving
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important di↵erences in results.

So although our simulations showed that OLS generally does as well—or better—than

the more complicated EVAAS URM in recovering true teacher e↵ects under many data

scenarios, our analysis of administrative data suggests the extent of the di↵erences may not be

extremely problematic in practice. This is perhaps reassuring given that the EVAAS methods

are already used in several states and districts for teacher evaluation purposes, in some cases

for high-stakes decision making. However, taking into consideration the superiority of DOLS-

type estimators in dealing with potential bias due to nonrandom assignment along with

the proprietary nature and lack of transparency of the EVAAS methodology, our findings

suggest that policymakers would be better served and better able to verify results using the

conceptually and computationally simpler DOLS approach.
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