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Abstract

This paper studies the role of capital quality in accounting for agricultural productivity dif-
ferences across countries. We construct a novel dataset of agricultural equipment prices and
make three contributions. First, we document that economies with higher labor productivity
in agriculture display lower relative prices of old-to-new equipment. Second, we link these
relative price differences to the path of capital quality, using a model that features endoge-
nous quality adoption via capital vintages. Our model generates an identification restriction
that links the growth rate of capital quality in an economy to the slope of the age-price
profile, and the quality of the best capital vintage operated to the intercept of the profile.
Third, using this identification restriction, we build a measure of the quality of the capital
stock in a sample of high- and middle-income countries. We find that capital quality explains
half of the agricultural productivity growth differences and a third of the differences in the
level of productivity in the sample.
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“...Improvements in technology affect output only to the extent that they are carried into

practice either by net capital formation or by the replacement of old-fashioned equipment by

the latest models...”

Solow (1959)

1 Introduction

In this paper, we examine the role of capital-embodied technology adoption for cross-country

disparities in agricultural productivity, a key driver of world income inequality (Caselli, 2005;

Herrendorf and Valentinyi, 2012). We start by documenting a new empirical regularity

that is informative as of the speed of adoption of capital-embodied technology: the relative

price of old-to-new equipment varies with development and it is higher in less productive

economies. Absent distortions, there are two reasons why the price of a good might decay

with age: physical depreciation and the availability of higher quality goods in the market,

which induces economic obsolescence. To formally link the observed variation in the price of

old-to-new equipment, i.e. the age-price profile, with the availability of higher quality goods

in the economy we write down a novel and parsimonious model of vintage capital. Through

the lens of such model, the slope of the age-price profile of a durable good is proportional

to the degree of economic obsolescence. Moreover, the intercept of the age-price profile

corresponds to the marginal product of capital and, under minimal assumptions, identifies

the average quality of the stock of capital. Equipped with this identification strategy and

a newly built dataset of new and old equipment prices, we infer the average quality of

the capital stock and its growth rate across high- and middle-income countries. Then, we

quantitatively assess the role of capital quality for productivity differences via growth and

development accounting exercises.

We construct a novel dataset of multiple cross-sections of prices for new and used agricul-

tural equipment across countries. We focus on tractors, which are, arguably, the most impor-

tant agricultural equipment good used in the modern agricultural sector.1 Our benchmark

dataset covers 15 high- and middle-income countries between 2007 and 2016. Importantly,

it provides detailed measures of equipment characteristics, such as horsepower, hours of use,

model, brand and age. This level of detail allows us to price a synthetic piece of equipment

of comparable characteristics across countries using hedonic techniques (as in the seminal

work of Griliches, 1961). We construct country-specific age-price profiles by following the

1One-third of world trade in farm machinery is accounted for by tractors alone Mehta and Gross (2007).
Additionally, tractors are also complementary to many other capital goods, such as harvesters and tillage
equipment.
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decay in the price of this synthetic piece of equipment with age. We find that the slope

of the profile varies with development: older pieces of agricultural equipment are relatively

more expensive than newer ones in countries with lower labor productivity. For example, in

countries with 20% of the agricultural labor productivity of the US, a 15-year-old piece of

equipment is 67% as valuable as a new one. At the same time, in the US, a 15-year-old piece

of equipment is only 52% as valuable as a new one. The disparities we report are sizeable,

systematic, and robust to controlling for time effects, the cost (wages) of repair workers as

well as the type of cultivated crops. To the best of our knowledge, this is the first study to

document the variation in age-price profiles of agricultural equipment across countries.

Next, we argue that this empirical regularity embeds information about the disparities

in the rate of capital-embodied technology adoption across countries. To do it, we write

down a novel and parsimonious growth model of vintage capital. In the model, households

consume and invest in alternative vintages of capital which are rented to local farmers in a

spot market. Alternative vintages are perfect substitutes in farm production and are retired

following an exogenous shock.2 The technological frontier is determined by new vintages that

become available to all countries at a common rate, and adoption of better quality vintages

is costly. The cost of adoption depends on the quality of the goods used in a country, the

pace of improvement of the frontier technology and a country-specific wedge, which is a

reduced form for various barriers that disincentivize adoption. Our cost structure allows

for divergence in the growth rates of quality and output per worker across countries. The

equilibrium path of adoption in the economy trades off induced obsolescence on installed

(older) equipment with gains in productivity from higher quality.

We analytically show that the path of capital quality is identified by regressing the

logarithm of equipment prices on age and additional controls. In particular, the slope and the

level of the model predicted cross-sectional age-price profile map into the rate of embodiment

and a measure of average quality of installed stocks, respectively. We implement this finding

empirically to recover the path of capital quality in our sample of high- and middle-income

countries. First, we infer the rate of capital-embodied technology adoption from the country-

specific age coefficients (i.e. the price elasticity to age) and physical depreciation rates,

which we derive from the price decay of a synthetic piece of equipment with hours of use.

Then, we combine our measured rate of embodiment with USDA-ERS data on factor shares

to additionally infer the level of average quality of the capital stock from country-specific

2Both these assumptions make the model tractable and are not fundamental to the identification strategy
proposed in the paper. The latter is robust to allowing for (a) endogenous investment in the pace of vintage
retirement, as discussed in the online appendix; and (b) an arbitrary substitution pattern across vintages.
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regression intercepts. We find that, on average, richer countries have both higher growth

rates and higher levels of agricultural equipment quality. For example, equipment quality in

the agricultural sector grows by 3.4% per year in the US compared to 1.4% in Brazil. The

average quality of capital in the US is about 10 times larger than that in Brazil.

We quantify the importance of our measured path of capital quality for agricultural

productivity via growth and development accounting exercises. On average across countries,

32% of growth rate of agricultural value added that is unaccounted for by observable factors

(labor, capital stocks and intermediate goods) can be attributed to capital quality. Moreover,

disparities in agricultural productivity growth across countries halve once we account for

capital quality disparities. We also find that about a third of the cross-country disparities in

agricultural value added per worker in 2013 can be explained by differences in the average

quality of agricultural equipment.

The role of capital quality for agricultural productivity is heterogeneous across countries.

In particular, capital quality growth is more important for productivity growth at the top of

the distribution of income per worker. In the US, capital quality accounts for approximately

one-third of the growth rate of TFP; in Brazil and Italy, it accounts for close to 10%. The

source of this heterogeneity is that, on average, countries with higher value added per worker

have also a higher share of physical capital in production. In our analysis, we abstract away

from the capital intensity decision, differently from the diffusion literature that considers the

advancement of certain factors of production over others (Manuelli and Seshadri, 2014).3 Our

rationale for this abstraction is the salient characteristic of the capital stock dynamics of the

countries in our sample: the quantity of capital (the number of tractors) is relatively constant

over time.4 Still, if different vintages of capital are interpreted as different goods, capital-

embodied technology adoption ultimately leads to the retirement of these older vintages and,

potentially, stronger intensity in the use of capital services. We therefore believe that our

growth and development accounting results are a lower bound to the potential gains from

capital-embodied technology adoption.

Our benchmark identification restriction stems from cross-sectional age-price profile. But,

in principle, both cross-sectional and longitudinal age-price profiles can be used to infer the

quality of installed capital stock. There are two main advantages of using the cross-sectional

age-price profile. First, the average growth rate of capital-embodied technology adoption

can be inferred using the slope of the profile even when the economy displays a non-trivial

3Chen (2017) studies the decision of capital intensive technologies in agriculture, while Comin and Hobijn
(2010) study the diffusion process for various types of equipment across countries and time.

4In our sample, the number of tractors in each country decreases by 0.05% on average from 1990 to 2013.
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transition dynamic for the path of quality. As we discuss in section 4.1, this is not possible

when using the longitudinal profile as movements in interest rates and the rate of adoption

show up non-separably in the slope of the profile. Second, when using the cross-section of

prices, the intercept of a regression of log-prices on age always delivers a measure of the

best available quality in the economy. Differently, when using the longitudinal profile, this

intercept yields a measure of the quality of the good that is being priced and, in general, it

is not informative of the quality of the stock installed in the economy.

Through the lens of our model, cross-country differences in the path of quality reflect

differences in adoption costs. Countries with lower value added per worker measure higher

adoption costs (as in Sunding and Zilberman, 2001, Hoff et al., 1993, Sims and Kienzle, 2009).

A theory studying the sources of cross-country heterogeneity in adoption costs exceeds the

scope of our accounting exercise. However, towards the end of the paper, we discuss alterna-

tive mechanisms that might explain these disparities and the robustness of our identification

strategy to such mechanisms. To start, disparities in adoption costs may be partially a reflec-

tion of trade tariffs. Higher import tariffs may disincentivize the adoption of technology and

generate slower improvement in quality. Or, by protecting local producers from competition,

may encourage production of lower quality goods.5 For a subsample of our main dataset we

are able to trace the country of origin of each piece of equipment and use this information

to build separate measures of quality for imported and locally produced equipment. We find

that the slope of the age-price profiles are different for three countries in our subsample: the

US, Germany and Mexico. In the last two countries, quality growth is higher for imported

goods than for locally produced ones, and the opposite is true in the US. We also show that

measures of average quality based on imported goods overestimate cross-country differences

in the quality of the capital stock relative to our benchmark estimates.

Disparities in adoption rates may also arise due to differences in the stock of equipment

available in the second-hand market or in the economies of scale in production, across coun-

tries.6 We consider an extension of the model where a farmer’s valuation for equipment is

heterogenous and a secondary market endogenously arises. We show that this heterogeneity

does not affect the slope of the age-profile. We conclude that the inferred quality growth

5Indeed, Eaton and Kortum (2001) show that most capital goods are produced by a handful of countries.
Mutreja et al. (2017) show that the fraction of locally produced goods is still significant in poor countries.

6There is an extensive literature on the welfare and allocative implications of markets for used durable
goods. Stolyarov (2002) focuses on the volume of trade in cars in different years. Additionally, looking at
the market for used cars (in France and the US), Gavazza et al. (2014) study the role of heterogeneity in
willingness to pay and transaction costs in welfare. In addition, Jovanovic (1998) shows how the presence of
a frictionless secondary market may increase inequality in a world where capital goods are indivisible.
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is robust to various sources of farm heterogeneity, including distortions on farm-level pro-

ductivity. We reach the same conclusion when allowing for economies of scale through fixed

operating costs. Both mechanisms, however, may be relevant in explaining differences in the

average quality of the stock of capital as identified from the intercept of the age-price profile.

Finally, the adoption of better quality capital goods might be complementary to other fac-

tors of production and to the technology operated by farmers. Hence, high (Hicks-neutral)

productivity might be correlated with the adoption of higher quality capital stocks. We

discuss an extension of our benchmark identification where we allow for cross-country dis-

parities in (Hicks-neutral) productivity. We show how to separately identify the growth rates

of capital-embodied and -disembodied technology, as well as cross-country disparities in the

level of productivity and the quality of the capital stock. This identification has additional

data requirements: the slopes of the cross-sectional and longitudinal profiles identify growth

rates; while the intercept of the cross-sectional profile and the ratio of the price of a good

of arbitrary quality across different economies separately identify the levels of productivity

and capital quality. This identification is empirically implementable given the richness of

our dataset.

Literature review. Our paper relates to the macroeconomic literature that studies the

determinants of agricultural productivity differences across countries. These differences may

arise, for example, due to market distortions that generate inefficient production scales or

prevent factor reallocation. Alternatively, distortions in returns to investment may discour-

age physical and human capital accumulation, as well as technology adoption. An exten-

sive literature examines the role of some of these mechanisms for agricultural productivity:

Restuccia et al. (2008) and Donovan (2014) study the role of disparities in the intensity of

intermediate input use across countries, Lagakos and Waugh (2013) study the role of secto-

rial differences in hours and human capital levels, Herrendorf and Schoellman (2015) study

the role of disparities in the returns to human capital across sectors, and Adamopoulos and

Restuccia (2014) study the disparate incidence of size-dependent distortions on farms across

countries. Disparities in the adoption patterns of capital-embodied technology, and hence,

in the quality of physical capital used in production, remain unaccounted for.7 This paper

fills the gap.

7Most cross-country analyses of agricultural productivity of which we are aware use Food and Agriculture
Organization (FAO) capital stock data. According to the FAO Statistical Database (FAOSTAT), “the gross
fixed capital stock is the value, at a point of time, of assets held by the farmer with each asset valued at “as
new” prices, regardless of the age and actual condition of the assets”. The FAO also provides data in 40-CV
tractor-equivalent machinery units, a measure of the metric horsepower on the farm. It does not directly
control for factors such as the quality of the stock or hours.
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Our paper also relates to the literature that studies the link between technology adop-

tion and capital obsolescence in models of vintage capital (Benhabib and Rustichini, 1991;

Jovanovic and Rob, 1997; Greenwood and Jovanovic, 2001; Jovanovic and Yatsenko, 2012).8

Our main contribution is to present a tractable framework that links the age-price profile

of equipment prices to technology adoption and quality levels and that, under minimal as-

sumptions, can be mapped into the standard two-sector economy as in Greenwood et al.

(1997).

The main identification restriction that stems from our framework allows us to provide a

methodological contribution to the literature that infers quality from equipment prices. We

use the cross-section of equipment prices to back out the rate of embodiment and, a novelty,

the level of quality. The seminal work of Hulten (1992a) and Greenwood et al. (1997) show

how to recover changes in the quality of capital equipment from changes in the relative price

of investment (see also Gordon, 1990; Hulten, 1992b; Cummins and Violante, 2002). Under

minimal assumptions, we show that the rate of embodiment inferred from their methodology

is proportional to the one proposed in this paper (with a factor of proportionality that

depends on the share of capital).9 Empirically, these alternative measures are very close to

each other. When we apply their methodology to the US data, we find an average growth

rate in agricultural capital quality of between 1.2 and 2.5% for the period 1990-2000, close

to our measure of 3.4% using more recent data.10

The closest paper to ours in terms of identification of the rate of embodiment is Gort,

Greenwood and Rupert (1999). The authors use the cross-section of rental rates of commer-

cial buildings to infer the rate of improvement in quality of structures. In our paper, we use

the cross-section of prices, which includes the present discounted value of expected equip-

ment services. Distinctively, we are able to infer not only the rate of quality improvement,

but also the level of quality of the stocks from the intercept of the model-predicted age-price

profile. An alternative method to measure the quality of the stock can be found in Caselli

and Wilson (2004), who infer quality from the import composition of capital investment

across seven categories. Their identifying assumption is that categories of investment with

higher R&D expenditure entail higher quality. Compared to their study, we restrict our

analysis to the agricultural sector and provide a measure of the quality of the capital stock

that relies on relative prices instead of R&D content. In addition, we build a measure that

8Boucekkine et al. (2011) build an extensive review of this literature.
9Krusell et al. (2000) offer estimates of quality-adjusted prices for various types of equipments in the US.

Unfortunately the series of prices for agricultural equipment, tractors, has been discontinued.
10Bahk and Gort (1992) and Gort et al. (1991) also measure a higher growth rate of quality in the US

manufacturing sector using cross-sections, compared to those produced by Gordon (1990), using time-series.
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covers all installed capital rather that imported capital. Our measure of quality correlates

at 80% with one based on R&D content of imported equipment.

The remainder of the paper is organized as follows. Section 2 presents our empirical

evidence; Section 3, the model; Section 4, the identification and estimation strategies; Section

5 the growth and income accounting exercises. Section 6 discusses alternative frameworks

that may generate disparate adoption rates across countries. Section 7 concludes.

2 Empirical evidence

In this section, we document the evolution of agricultural tractor prices with age across

countries (i.e. the age-price profiles). We first show that age-price profiles for agricultural

tractors of a given set of observable characteristics are steeper in more productive countries.

Then, we present robustness checks on our findings that control for two dimensions of cross-

country heterogeneity: 1) cultivated crops and 2) wages of repair workers.

2.1 Data sets

Our dataset consists of new and old agricultural tractor prices compiled using information

provided by a major data publisher. This company gathers information on the characteristics

and prices of various types of agricultural equipment available around the world.

Our main dataset consists of a total of 373,997 observations for retail “ask” prices across

15 countries over different years between 2007 and 2016 (see Table C.I for the list of coun-

tries and summary statistics). It covers high- and middle-income countries. For example,

Brazil and Bulgaria, among the least productive countries in our sample, feature levels of

agricultural value added per worker equal to 19% and 11% of the US value in 2013 (FAO-

STAT), respectively.11 We also observe equipment prices for more productive economies such

as Canada, whose agricultural value added per worker is 89% of the US value, or France,

which is 78% as productive as the US. For some countries, like the US (Canada), we observe

repeated cross-sections from 2007 (2008) to 2016, whereas for some other countries, we ob-

serve a single cross-section of data, like Ireland (2015) and Belgium (2016). Figure I shows

the geographical coverage of a subsample of our dataset (132,688 observations) for which

location data is accurate enough to allow us to geolocate it.

11Agricultural value added is computed by multiplying the value of gross agricultural production per
worker by 1 minus the sum of intermediate input factor shares.
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For each transaction recorded in our dataset, we observe the price, age, model, horse-

power, use hours and location of the tractor sold. We impute hours of use for those observa-

tions with missing information; details on the imputation method can be found in the online

appendix. The average tractor in the sample is 12 years old and the oldest one is 46 years

old. Our dataset contains information across all the age and horsepower brackets considered

by the Census in US, Canada, Mexico and Brazil, although it tends to over-sample among

tractors with high horsepower.12

Figure I: Geographical distribution
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Geographical distribution of retail “ask” prices matched via geolocation (132,688 observations).

We complement our main dataset with three additional series that we use for robustness

checks. First, we collect retail “sale” prices (i.e., transaction prices) for a subsample of

our main dataset consisting of 250,000 observations. Second, we gather information on the

crops cultivated at each of the quote locations. For those observations where we have full

information on the country, state and city where the price quote was reported, we are able

to match high-resolution microdata recording crop yields. We use the EarthStat dataset

constructed by Ramankutty et al. (2008), which consists of agricultural census and survey

12Detailed comparisons to Census data can be found in the online appendix.
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information on crop land areas and yields for 175 crops measured at the smallest political

units reasonably obtainable for 206 countries.13 EarthStat data are available for grid sizes

of 5-arc min (which is roughly equivalent to an area of 10 km by 10 km). We search for

the crop with the highest recorded yield produced in a 20-mile-wide grid around each sale

location and match this information with our tractor price data. Third, we complement the

main dataset with wages of repair workers in each country. We use the NBER “Occupational

wages around the world” dataset, which provides occupational wage data for 161 occupations

in 171 countries from 1983 to 2008 by calibrating observed wages into a normalized wage

rate for each occupation. Wages are deflated using the purchasing power parity deflators

from the Penn World Tables 7.0.

2.2 Analysis

The objective of our analysis is to describe the age-price profiles for an agricultural tractor

of comparable characteristics across countries. Our econometric strategy consists of imple-

menting hedonic pricing techniques as in Griliches (1961), Gordon (1987) and Hulten and

Wykoff (1981). We allow for alternative profile shapes (i.e., concave, convex) and incidences

of equipment characteristics. This flexibility makes the empirical analysis comparable to

other studies that estimate economic depreciation for durable goods.14 Additionally, it al-

lows us to assess the pertinence of our theory-based accounting framework which hinges, as

discussed later, on a logarithmic shape for the age-price profile.

We incorporate a Box-Cox type power transformation on a standard hedonic pricing

model:
pθ1i,c,t − 1

θ1

= γ1,c,t + γ2,cai,c,t +
Xθ2
i,c,t − 1

θ2

β + εi,c,t, (1)

where i indicates a quote at time t in country c. The dependent variable is a tractor’s

quoted price, while the regressors include a tractor’s age as the number of years since it was

built, a, and a matrix of equipment characteristics, X, excluding age – that is, horsepower,

manufacturer and use hours. Turning to the coefficients, γ1,c,t is a country- and time- specific

effect, β is the vector of coefficients associated with each characteristic in X, while θ1 and θ2

are the shape parameters associated with prices and equipment characteristics, respectively.

13Further details on the EarthStat dataset, in particular on yields computations, are available in the online
appendix.

14There is extensive work in the national accounts literature that estimates measures of economic depre-
ciation using prices of used equipment. For the US, see Fraumeni (1997), for Canada, see Gellatly et al.
(2002). In addition, there is some research comparing profiles of economic depreciation across countries for
a limited number of car models, see Storchmann (2004).
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The coefficient γ2 shapes the relation between price and age. When the estimated θ1 is not

significantly different than zero, the left-hand side of equation 1 corresponds to a logarithmic

transformation, log(p), and the estimated parameter γ2 is the price elasticity with respect

to age. On the other end, when the estimated θ1 is positive (negative), the age-price profile

of a tractor with characteristics X is convex (concave).15

Our estimation set-up allows for two sources of cross-country heterogeneity in the age-

price profile: the coefficient on age γ2,c and the country- and time-specific effect, γ1,c,t.

This last term allows for country-specific intercepts in our pricing equation that evolve over

time at different rates across countries. It captures country-specific characteristics that may

affect the overall price level, such as the institutional characteristics of the market for used

equipment, and time trends specific to each country. The coefficient on age is assumed

time-invariant in our benchmark estimation, but our results are robust to allowing for time

variation, i.e. cohort effects in the slope of the age-price profile (see online appendix). Finally,

we assume that the shape parameters are identical across countries and over time.16

We estimate equation 1 in a pooled regression by including year dummies, country dum-

mies, an interaction country-year dummy and an interaction of country dummies with age.

Details of the empirical implementation can be found in the online appendix. The estima-

tion is conducted via maximum likelihood. We first find the maximum likelihood estimates

of the Box-Cox transform parameters, θ1 and θ2. The procedure, as outlined in Box and

Cox (1964), consists of estimating a linear model for each possible transformation of the

transform variables and maximizing the likelihood over them. To estimate standard errors

for the coefficients of interest, γ1,c,t, γ2,c and β (clustered by countries), we transform the

data using the estimated Box-Cox parameters and run a least square estimation.

Appendix C, Table C.II columns (1) and (2), presents the results of our estimation.

As expected, the predicted prices decrease in age and hours of use, and they increase in

horsepower. The shape parameter in prices θ1 is significantly different from zero and positive

at 0.103. Hence, the age-price profile is convex but only slightly more so than a logarithmic

profile, as predicted by the theory on which our accounting exercises hinge (see section 4).

The estimated shape parameter for horsepower and hours θ2 is significant at 0.104. The

15Omitted variables among tractor characteristics, such as the degrees of sophistication and computeriza-
tion, may, in principle, bias our estimates. Including tractor model among the regressors in matrix X could
prevent this bias. We observe the model of each tractor sold and find that, in our dataset, combinations
of manufacturer, production year and horsepower exhaust the information provided by model (model is
co-linear), and therefore, we omit it.

16Our main results do not change when we allow for country-specific shape parameters and estimate
equation 1 separately for each country. These estimates are available upon request.
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Figure II: Price decay with age
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The figure shows the estimated coefficient γ2,c. Agricultural value added in 2013 is computed from the

USDA-ERS dataset by multiplying the value of gross agricultural production per worker by 1 minus the sum

of intermediate input factor shares. Source: FAOSTAT and own computations based on price quotes from

a major publisher.

estimated coefficients for hours and horsepower are -0.176 and 4.588, respectively, which

are both significant at the 5% level. A total of 188 dummies associated with different

manufacturers in the sample are included to control for brand-specific differences in prices.

Our statistical model generates 89.8% of the variation observed in the data.17

The estimated coefficients associated with age, γ2,c, are all significantly different from

zero and negative. For any shape parameter θ1, we can describe the price elasticity with

respect to age as γ2
a
pθ1

. Therefore, the ratio of price elasticities between two countries

computed at a given age and price is the ratio of estimated γ2s in the two countries. Our

estimates suggest that prices are more elastic to age in high-productivity countries than they

are in low-productivity ones. Indeed, the correlation between the price elasticity and the net

value added of agricultural production across countries is negative at -0.48, with a p-value

of 0.070 (see figure II). A least squares regression of the estimated γ2s on net value added of

agricultural production indicates that for a country with half the agricultural value added

of the US, such as Spain, the price decay per year is 0.054 points lower than that of the US.

17A large portion of our sample stems from observations in Canada and the US. In the online appendix,
we present estimation results when we exclude pricing data for these two countries. We find that the
estimates for the country-specific coefficient on age become smaller. However, the relative magnitude of the
slopes across countries is maintained. This implies that the relative size of our inferred quality improvement
measures is robust.
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Figure III: Age-price profiles
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Panel (a) plots the predicted age-price profiles (continuous line) and confidence intervals (dotted line) for

five countries in our sample, while Panel (b) plots the same profiles for all the countries in our sample. The

colors of the lines in both panels reflect the country’s rankings with respect to agricultural value added per

worker in 2013 from the lowest in blue (below 75% the US value) to the highest in red (above 75% the US

value). Source: FAOSTAT and own computations based on price quotes from a major publisher.

Moreover, the R2 of such a regression is 0.23, indicating that a significant fraction of cross-

country variation in agricultural value added is accounted for by cross-country heterogeneity

in price elasticities with respect to age.

To construct comparable age-price profiles across countries, we use our estimated econo-

metric model to predict the decay of prices with age for a given tractor in each country.

Because not all tractors are used in all countries, we consider a “synthetic” tractor with the

average equipment characteristics of our sample. This tractor has manufacturer John Deere

(for which we have observations in all countries), 3170 hours of use in a year and 167 horse-

power, corresponding to the average in the sample. Figure III panel (a) plots this profile for

five countries in our sample with confidence intervals, while panel (b) plots the profiles for

all countries in the sample, color-coding by the level of agricultural value added per worker

in 2013. First, notice that the shape of the profiles are non-linear, reflecting an estimate for

the shape parameter θ1 that is positive and statistically different from one. Second, poorer

countries tend to show flatter profiles. The cross-country correlation between the price of a

tractor with average characteristics at age 15 relative to that at age 1 and agricultural value

added per worker in 2013 is negative, at -0.46.18

18Relative prices predicted using the results from an estimation conducted without controlling for tractor
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Robustness checks. First, we test the robustness of our empirical findings to a different

category of “prices”. The empirical results presented above focus on retail “ask” prices

because these are available for a larger set of countries and years, but we find that our

conclusions are robust to using transaction prices instead. Quantitative details are presented

in section 5.3.

Second, we examine the robustness of the estimated coefficients characterizing the age-

price profile, γ2, with respect to two dimensions of cross-country heterogeneity: 1) cultivated

crops and 2) wages of repair workers. First, the degree of a tractor’s mechanical wear may

depend on the type of crop it was used for. For example, some locations produce much more

wear and tear on machinery than others and their geographical characteristics may also be

associated with specific types of crops. Second, the resale price of a piece of equipment may

be negatively related to the relative cost of repairs, a large component of which is the labor

cost (i.e., the wages of repair workers).19

We estimate equation 1 using two additional sets of regressors: dummies for the main

crop cultivated in each of the sale locations, and interaction terms between hours of use

and PPP wages of repair workers. The sample we use for this estimation (matched dataset)

covers 15 countries and approximately 96,500 retail observations.20 Appendix C, Table C.II

columns (3)–(6), present these results. For comparison, we also re-estimate equation 1 using

this smaller sample (column (3)). We conclude that introducing crop and wage controls

does not change the main empirical findings on the relation between age and price. The

correlation between the estimates of γ2 controlling for crops and wages (column (6) in Table

C.II) and the baseline estimates (column (3) in Table C.II) is 0.92.

3 A model of capital obsolescence

This section presents a general equilibrium model of vintage capital that links the cross-

country variation in the age-price profiles of agricultural equipment and value added per

characteristics – that is, without including the matrix X in equation 1, display a downward bias. Hence,
age-price profiles are steeper in all countries. Had we use these estimates, we would have inferred higher
rates of capital-embodied technology adoption than the ones documented in this paper.

19Equipment parts also contribute to the cost of repairs. Unfortunately, direct measures of them are
unavailable to us. However, we expect that the cost of parts and that of overall equipment to be correlated.
If parts are relatively more expensive in poorer economies, that would shift the relative price of used to
new equipment down. Hence, after controlling for the cost of parts we would expect even flatter age-price
profiles.

20The reduction in the size of the sample occurs due to missing location data that prevents us from
matching prices to crops. In addition, wage data by occupation are not available for France and Spain.
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worker to patterns of capital-embodied technology adoption and the composition of the

capital stock.

We study an infinite-horizon economy populated by a continuum of homogeneous house-

holds and farms. Households consume and invest. Investment can be directed to accumulate

capital of varying quality. Quality is not directly observable but, as in Manuelli and Se-

shadri (2014), we assume there is a mapping from observable characteristics X to quality

q(X). Capital quality indexes vintages j through a one-to-one mapping. The highest avail-

able quality at time t is q(XJt) with vintage Jt.

Farms produce final output using a constant returns technology that employs capital

services, labor n, and land l. The share of capital (labor) in production is αk (αn), and

the share of land is αl. Capital services are the product of the number of machines of a

particular vintage and their corresponding quality q(Xj)kj (to ease notation, define qj =

q(Xj)). Capital of varying quality is perfectly substitutable in production, and we call the

(endogenous) set of vintages used in production At ≡ {j ≤ Jt : kj,t > 0}.21 The production

function is:

yt = (
∑
j∈At

qjkj,t)
αk lαlt n

αn
t .

The supplies of labor and land are inelastic at N and L, respectively, while the supply of

each vintage of capital is determined by households.

We assume that the world frontier for capital quality changes at a constant exogenous

growth rate µ:

QJt+1 = QJt(1 + µ).

The rate of adoption in each country is endogenous. The cost of adopting capital of improved

quality qj when the best operated technology in the economy is qj is C(qj, qj, µ) per unit of

new capital,

C(qj, qj, µ) =

{
qj
qj

(
1+τ
1+µ

)
if q

j
> qj,

1 otherwise.

This cost increases with the improved quality level, decreases with the quality of the best

technology adopted in the country and decreases with the speed of innovation – that is,

21This assumption can also be found in Hulten (1992b). It implies that x machines of quality 2q yield the
same services as 2x machines of quality q. Our framework can be generalized to allow for a common elasticity
of substitution across vintages through a CES aggregator. A similar problem is studied in Jovanovic and
Yatsenko (2012) to explain adoption lags, but the authors do not focus on the implications of those patterns
for the pricing of old and new equipment. In terms of our quantitative exercise, allowing for arbitrary
elasticities would require direct measures of them in each country, which are not available to us at the
moment.
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improvements in quality around the world. The reason for which the cost of adoption

depends on the speed of innovation is that as the latter increases, any piece of equipment

becomes economically obsolete at a faster rate. The key parameter in the cost function

is τ , which is reduced form for various adoption costs (i.e. market power on equipment

providers which induces positive markups, trade barriers, taxation, etc.). In general, τ can

be interpreted as a country-specific wedge that makes adoption relatively more expensive

in a particular country relative to others. In the accounting framework of our quantitative

analysis, this wedge is the main driver of differences in adoption rates across economies.

The problem of technology adoption has been widely studied in the literature. The sem-

inal work of Parente and Prescott (1994) analyzed this problem by assuming that adoption

costs depend on the level of local technology relative to that of the world technology. This

assumption imposes tight restrictions on the growth rate of technological improvement along

the the balanced growth path (BGP). In particular, while levels of productivity are allowed

to differ across countries, there is a common rate of technological improvement.22 The cost

assumed in this paper allows us to construct economies where the rate of quality improve-

ment differs across countries. To the extent that adoption costs are heterogenous across

countries quality growth will differ. As adoption costs converge across economies, so will the

rates of endogenous quality adoption and long run output growth.

3.1 Households

Households rent capital and labor to farms at market prices. Given the arrival rate of new

capital, households decide how much to invest in capital of each quality x
qj
t . Let Aht be

the set of vintages that the household holds in its portfolio, Aht ≡ {j ≤ Jt : kj,t > 0}. The

stock of capital of a given vintage has a physical depreciation of rate δ, each period. A

particular vintage is retired at random with the realization of a shock χ, which is distributed

Poisson with intensity λ > δ.23 The random variable χ takes two values χ = {1, 0}, where 0

corresponds to retirement and occurs with probability 1− exp(−λ) each period. Hence, the

expected lifetime of a stock of vintage j is T (j) = 1
λ
. The price of a new piece of equipment

of vintage j at time t is pj,t.

22We study a similar set up to theirs in our online appendix, when discussing the incidence of non-trivial
transition dynamics in quality growth.

23Alternatively, we could allow households to choose their optimal retirement rate λ at the moment of
investment, given some cost of maintenance. If this cost is proportional to the quality of the vintage of goods
being maintained qj , our identification results for capital quality hold. The online appendix discusses this
case extensively.
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The problem of the representative household is:

max
ct,{xj,t,kj,t+1}j∈Aht+1

∞∑
t=0

βtU(ct),

subject to:

ct +
∑

j∈Aht+1

C(qj, qjt , µ)pj,txj,t ≤
∑
j∈Aht

rj,tkj,t + wtnt + rl,tlt,

(kj,t+1 − kj,t(1− δ)χ) = xj,t for all j ∈ Aht+1,

where rj,t is the rental rate for vintage j capital at time t, wt is the wage rate, and rl,t is the

rental rate for land.

3.2 Farms

Each farm in the economy seeks to maximize profits by choosing its amounts of land, labor

and capital (of different vintages). Let At be the set of vintages that the farm rents, At ≡
{j ≤ Jt : kj,t > 0}. The farmer’s problem is static and corresponds to:

max
{kj,t}j≤J ,lt,nt

(
∑
j∈At

qjkj,t)
αk lαlt n

αn
t − wtnt − rltlt −

∑
j∈At

rj,tkj,t,

subject to:

qj ≤ QJt for all j ∈ At,

QJt+1 = QJt(1 + µ).

Hence, the farm can use vintages of quality lower or equal to the best-available technology.

Demand for capital of vintage i, ki, is characterized by the optimality condition:

αkyt
qi∑

j∈At qjkj,t
≤ ri,t.

If ri,t > αkyt
qi∑

j∈At
qjkj,t

then ki = 0. Otherwise, capital demand is positive. The equilibrium

quantity of capital services used in production is fully determined by the households supply.

Due to the assumption of perfect substitutability across capital vintages, none is strictly

necessary for production. In particular, the marginal product of capital of a particular

vintage j is positive and bounded away from infinity as the quantity of capital goes to zero,

i.e., limkqi→0 αk
qiyt∑

j∈At
qjkj,t

<∞, except when only one vintage is used in production.
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3.3 Adoption and capital stock dynamic

The return to any vintage of capital corresponds to its marginal product plus its resale value.

The euler equation of the households implies that it should satisfy:

rj,t+1

pj,t
=

Rt+1

(exp(−λ))
− pj,t+1

pj,t
(1− δ), if j ≤ jt,

and
rj,t+1

pj,t
= C(qj, qjt , µ)

Rt+1

(exp(−λ))
− pj,t+1

pj,t
(1− δ), if j > jt,

where Rt+1 is the interest rate in the market, i.e., the value of the return to a unit of

consumption foregone today, R−1
t+1 = β U

′(ct+1)
U ′(ct)

; and j is the best vintage used in production.

Because the marginal product of capital for any vintage used in production is the same

except through differences in quality (which are fully accounted for by equilibrium prices),

arbitrage implies:

C(qjt+1 , qjt , µ) ≥ 1, jt+1 ≥ jt+1. (2)

In other words, if C(qjt+1 , qjt , µ) > 1 quality jt+1 is not adopted. In equilibrium, the return

to capital equalizes across vintages,
rj,t+1

pj,t
=

rj,t+1

pj,t
. Hence, the marginal quality adopted is

such that the cost of adoption equals one,

qjt+1

qjt

1 + τ

(1 + µ)
= 1.

When adoption costs are the same across economies, as indicated by τ = 0, the quality

of the next available technology adopted is proportional to the current technology and the

rate of improvement of the frontier technology, qj+1 = (1 + µ)qjt . Economies wherein the

cost of adoption is relatively high, i.e. τ > 1, display a rate of adoption in quality that is

lower than the improvement in frontier quality. Changes in the institutional environment

(for example, changes in taxation) will shift τ , induce changes in the rate of adoption and

have the potential to shift equilibrium adoption rates closer to the frontier innovation rate.

Proposition 1 The equilibrium stock of capital services,
∑

j∈At+1
qjkj,t+1 is determined by

1 =
(1− λ)

Rt+1

αk( ∑
j∈At+1

qj
qjt+1

kj,t+1)αk−1lαlt+1n
αn
t+1 + (1− δ)(

qj̄t+1

qj̄t+2

)1−αk

 (3)

Proof. The proofs to all propositions can be found in Appendix A
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The total stock of capital services is determined by the optimality of the households’

capital accumulation policy. However, due to the assumption of perfect substitutability,

the distribution of capital across vintages is indeterminate. Still, as we describe in the

next section, the shape of the age-price profile, which is the main object of our analysis, is

independent of the vintage composition.

Definition: A feasible allocation is a set of sequences of investment and capital stocks

of different vintages, labor, land and household consumption

[{[xj,t, ...., xj,t]}∞t=0, {[kj,t+1, ...., kj,t+1]}∞t=0, {nt}, {lt}, {ct}] such that markets clear, i.e.

nt = N lt = L,

ct +
∑

j∈Aht+1

C(qj, qjt , µ)pj,txj,t ≤ (
∑
j∈At

qjkj,t)
αk lαlt n

αn
t ,

(kj,t+1 − kj,t(1− δ)χ) = xj,t for all j ∈ At+1,

where pj,t is the present discounted value of capital services for vintage j.

3.4 Balanced growth path

In this section, we show that there exists a balanced growth path (BGP) and characterize

equilibrium allocations.

Definition: A BGP is a feasible allocation wherein output and efficiency units of capital

grow at a constant rate and the vintage composition of the capital stock, labor, land and the

expected distance between the best- and worst-available vintage used in production, ( jt− jt),
are constant.

Given that all farms are identical, it is possible to describe the aggregate production

function of this economy as:

Yt = (
∑
j∈At

qjkj,t)
αkNαnLαl ,

where N is the aggregate labor supply, and L the aggregate land supply. Without loss of
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generality, we normalize the labor supply to one, N = 1. Hence, output per worker is:

yt = (
∑
j∈At

qjkj,t)
αk lαl .

Before characterizing the BGP, it is useful to define the effective growth rate of capital

quality, µ, as

1 + µ =
1 + µ

1 + τ
.

Also, let k̃t be the aggregate stock of capital per worker in efficiency units of the best

available technology, i.e., k̃t ≡
∑

j∈At
qj
qj̄t
kj,t; and let x̃t be the aggregate level of investment

x̃t ≡
∑

j∈At
qj
qj̄t
xj,t.

Proposition 2 There exist a BGP in which consumption, ct, output per worker, yt, and the

price of capital for the best-available technology, pj,t, grow proportionally to the quality of the

best-available vintage in the market, at rate

gy = gc = gp = αkµ.

Investment in the stock of capital, x̃t, and the stock of capital per worker, k̃t, measured in

efficiency units of the best technology available are constant. The bounds for the best- and

worst-available vintages used in production, j
t

and jt respectively, grow proportionally to the

growth rate of the best-available quality in the market, gqjt
= µ.

A constant vintage composition along the BGP allows us to be consistent with a constant

normalized investment, x̃. To pin down the level of normalized investment we take a stand on

the actual vintage composition of the capital stock (the BGP characterization is silent about

it) and focus on the case of positive investment in the top available technology only. Note

that the vintage composition is irrelevant for the identification of the rate of embodiment

and our growth accounting exercises. But assuming a particular vintage composition allows

us to separately identify the contribution of capital quality and capital quantity in our

development accounting exercise.

Let the aggregate stock of capital per worker be kt ≡
∑

j∈At kj,t; and the aggregate level of

investment be xt ≡
∑

j∈At xj,t. Define the effective discount rate as δ̂ = (1−(1−λ)(1−δ))
(1−((1−λ)(1−δ))Tj )

; and

summarize the efficiency units of stock of capital along the BGP by q̃
j
≡
∑

j∈A
qj
q
j

(1− δ)j−j,

so that q̃
j

= k̃
kj

.
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Corollary 1 If the capital accumulation policy is

kj̄t+1,t+1 = xt

and for j < j̄t+1

kj,t+1 =

{
kj,t(1− δ) if χ = 1,

0 otherwise,

the total stock of capital in the economy is

k =
1

q̃j δ̂

(
αkl

αl(1− λ)

R− ( (1−λ)(1−δ)
(1+µ)1−αk )

) 1
1−αk

,

and aggregate investment follows

x = kδ̂.

The share of capital of older vintages decays geometrically with depreciation and the

likelihood of the retirement shock, following the assumption of positive investment in the

top available technology only.24 Note that if λ equals 1, the full stock of capital is retired

every period and investment equals the total stock of capital. Alternatively, when λ→ 0 and

the expected time to retirement goes to infinity, investment corresponds to the depreciated

part of the aggregate stock each period, x = δk. The equilibrium capital stock raises with

the land endowment and falls with the rate of arrival of better quality capital, µ. Intuitively,

the faster the adoption of better quality stocks, the faster installed stocks become obsolete.

Hence, it is optimal to economize on stocks and take advantage of the more efficient vintages

that become available.

Although different equilibrium vintage structures have different implications for the ag-

gregate stock of capital in the economy, k, and total investment, x, all generate the same

stock of capital services ,
∑

j∈A qjkj, (see Proposition 1). Hence, they generate the same

marginal product of capital and aggregate output.

24When the elasticity of substitution across goods is non-unitary, but vintages are substitutes in produc-
tion, the optimal capital accumulation strategy implies that the relative stock of capital of each vintage is
proportional to their quality. In economies where goods are more substitutable, the vintage composition of
the capital stock tilts towards (newer) vintages of higher quality.
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3.4.1 Predicted prices

The price of a piece of equipment of vintage j and age a at time t is:

pj,t(a) =
∞∑

s=t+1

(1− λ)s+a−t(1− δ)s+a−(t+1)

s−t+1∏
h=0

Rt+1+h

αkqjys∑
j∈As qjkj,s

. (4)

Conditional on the quality of a given good, the price of older equipment is lower than the

price of newer equipment. The rate of decay of the price with age depends not only on the

structural parameters of the model, such as the physical depreciation rate and the exogenous

retirement rate, but also on equilibrium outcomes, such as the optimal choice of the vintages

used in production, As, and the speed of adoption.

We characterize the relationship between the prices of new and old equipment with the

rate of arrival of the best quality in the market µ and the stock of capital services along the

BGP. The interest rate and growth rate of quality are constant at R and µ, respectively.

Let pjt+1,t
(0) be the price of a new piece of equipment of quality qjt+1

at time t. This price

corresponds to the present discounted value of capital services throughout its expected life:

pjt+1,t
(0) =

(1−λ)
R

1− ψ
qjt+1

αkl
αl

(qjt+1
k̃t+1)1−αk

, (5)

where ψ = ( 1
1+µ

)1−αk (1−λ)(1−δ)
R

< 1 is an effective discount rate. Note that there is a map-

ping between the price of a new piece of equipment and the relative price of investment to

consumption as presented in Greenwood et al. (1997): we refer the reader to the Appendix

A.1 for a description of such a mapping.

Age-price profiles can be constructed longitudinally, following a piece of equipment with

time; or in the cross-section, looking at different vintages of capital at the same point in

time (see figure IV).

If a years elapse, the piece of equipment priced in equation 5 has a trading price of:

pjt+1,t+a
(a) = (1− δ)a

(
1

1 + µ

)(1−αk)a

pjt+1,t
(0). (6)

This condition characterizes the longitudinal age-price profile. The degree of economic ob-

solescence induced on the good is the inverse of
(

1
1+µ

)(1−αk)a

. Hence, it is proportional to

the improvement in quality as time elapses, µ, and negatively related to the share of capital
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Figure IV: Price profiles

(a) Longitudinal
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(b) Cross-sectional
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In the longitudinal profile we follow a particular vintage, i.e. one with quality q3, as it ages. In the cross-
sectional profile we compare prices of different vintages (and qualities) at a given point in time, i.e. t = 5.

in production, αk.

To characterize the cross-sectional age-price profile, we look at the price of an a-year-old

tractor in the current period. This piece of equipment has a quality level j = jt−a+1, and

corresponds to the best available technology a years ago. By arbitrage:

pjt−a+1,t
(a) = (1− δ)a

(
1

1 + µ

)a
pjt+1,t

(0), (7)

where pjt−a+1,t
(a) is the price of an a-year-old piece of equipment of quality qjt−a+1

. The

slope of the cross-sectional profile is proportional to capital quality improvement, 1
1+µ

, and

it is a combination between economic obsolescence and changes in the cross-sectional quality

composition of the stock of capital. Along the balanced growth path, the range of vintages

in operation is pinned down by the rate of adoption of higher quality vintages, µ. Therefore,

a regression of equation (7) in logs would yield an estimate of economic obsolescence, up to

a country-specific depreciation rate. We discuss and use this identification restriction in the

quantitative exercises that follows.

23



4 The path of capital-embodied technology

In this section, we outline our identification strategy for recovering the path of capital-

embodied technology from prices of old and new equipments. Then, we describe our estima-

tion of the cross-country path of capital quality in the agricultural sector for 15 countries

between 1990 and 2013.

4.1 Identification

We identify the paths of the best-available technology and total capital services from prices

of old and new equipments through the lens of our model. Two key model ingredients allow

us to do so: i) the balanced growth assumption and ii) competitive rental markets for capital

of different vintages, both of which validate the price characterization in equations 6 and 7.

Our main identification restriction is the cross-sectional age-price profile, characterized

by the logarithm of equation 7:

ln(pjt−a+1,t
(a)) = ln

(
Γt

1− ψ

)
+ a ln

(
1− δ
1 + µ

)
, (8)

where Γt is a constant corresponding to the present value of the services associated with a

piece of equipment of the best vintage at time t, Γt =
αkq

αk
jt+1

lαl

(k̃t+1)1−αk

(1−λ)
R

. The price elasticity

to age identifies the rate of adoption, µ, up to a value for the rate of physical depreciation.

This rate of adoption and equation 3 further pin down the level of capital services in terms of

the best available quality, k̃. Finally, these two measures and the intercept of the age-price

profile identify disparities in the level of the top quality used in production, qj̄.

Notice that our theory-informed age-price profile, equation 8, imposes a log-linear relation

between the price of a tractor and its age. This is an implication of two assumptions: (a)

a geometric decay of physical depreciation and (b) a constant hazard of vintage retirement.

Differently, in Section 2, we let the data speak about the shape of the age-price profile and

refrained from imposing any a-priori structure. The estimation results implied a shape that

was only slightly more convex than the one implied by the logarithmic transformation. We

read this result as an attestation of the sensibility of our two modelling assumptions.

In identifying the path of quality we could alternatively had used the longitudinal age-

price profile, equation 6. Two caveats challenge this approach. First, as we describe next,

identifying the level of capital quality in the economy is problematic. Second, whereas the

identification strategy for the rate of embodiment in the cross-sectional age-price profile is
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robust to allowing for transitional dynamics in the rate of quality improvement, it is not in

the case of the longitudinal age-price profile.

On the first caveat, equation 6 makes clear that the intercept of the longitudinal age-price

profile depends on the quality of each piece of equipment being priced. Hence, it requires the

flexibility of a vintage-specific intercept. If we were to regress prices of particular vintages

through time and allow for a common intercept, this would pick up some combination of

the prices of the vintages in our sample when new. Differently, in the cross-sectional price

equation, 7, the intercept always corresponds to the price of the best available vintage at a

point in time, independently of the piece of equipment being priced. Hence, combined with

our balanced growth assumption, this intercept identifies the best quality in the economy.

Still, we can use the longitudinal profile to identify the growth rate of capital quality. In

section 6, we exploit the multiple cross-section structure of our dataset and construct a

synthetic panel to identify quality growth with the longitudinal age-price profile.

On the second caveat, note that our benchmark model is such that equipment quality

always grows at a constant rate, irrespective of whether the economy is on a transition path

or on its BGP.25 This feature stems from the assumed functional form of the adoption cost

function. Alternatively, we could have posed a cost function along the lines of Parente and

Prescott (1994), such that all economies share the same BGP but differences in adoption

costs yield differences in the steady state levels of income as well as differences in the path of

quality along the transition path.26 Whereas the slope of the cross-sectional age-price profile

still pins down the average rate of embodiment, this is not the case in the longitudinal profile.

The reason is that, along the transition path, equipment prices fall non-linearly with the rate

of embodiment but also with the interest rate. These two effects cannot be separated from

each other.

We analyze these non-trivial transition dynamics for the capital quality path in the online

appendix. Here, we want to note that our estimates for cross-country disparities in adoption

costs and associated paths of quality under balanced growth might be a lower bound to those

we would have obtained when analysing an economy with non-trivial transitional dynamics

for equipment quality. The reason is that, when convergence to the BGP is monotonic,

we should observe higher average growth rates of quality along the transition path than in

steady state. If the economies under analysis are approaching the same steady state and

25Following a change in τ , the stock of capital services may deliver a non-trivial dynamic as in the standard
two-sector economy with investment-specific technical change.

26This non-trivial dynamics for quality can be micro-founded through a theory of endogenous diffusion
across countries, as in Barro and Sala-I-Martin (1997); Benhabib and Spiegel (2005).
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we aim at generating flatter age-price profiles in poorer economies, adoption costs in these

economies should be relatively higher than those inferred under a constant arrival rate.

4.2 Estimation

We use our identification strategy to infer the path of capital-embodied technology in the

agricultural sector from prices of new and old agricultural tractors traded in each country. We

consider 15 middle- an high-income countries between 1990 and 2013: Australia, Belgium,

Bulgaria, Brazil, Canada, Spain, France, Great Britain, Germany, Ireland, Italy, Mexico, the

Netherlands, New Zealand and the US. We use two main data sources: FAOSTAT and our

own dataset of equipment prices described in Section 2.

We start by assuming that countries differ from one another on four exogenous dimen-

sions: 1) factor shares, αk, αl and αn; 2) endowments of land per worker in the agricultural

sector, l; 3) depreciation of physical capital, δ; and 4) adoption costs, τ , which induces dif-

ferences in the path of capital quality, as described by the arrival rate of the best-available

technology µ and the highest level of quality operated in a given year qj. Differences in the

arrival rate of the best-available technology and the level of the highest quality technology

adopted imply differences in the average quality of installed capital at each point in time.

We augment our model-implied regression with measures of observable characteristics for

each tractor and estimate:

ln(pi,c,t) = γ1,c,t + γ2,cai,c,t +
Xθ2
i,c,t − 1

θ2

β + εi,c,t, (9)

where i is a quote, c is country, t is a year, γ1,c,t is a country- and time-specific effect, γ2,c is a

country-specific coefficient on age, X is a matrix of equipment characteristics excluding age,

β is a vector of coefficients associated with each of these characteristics, and ε is an error

term that is assumed to be normally distributed. Given the assumed sources of cross-country

heterogeneity, we include country-year effects and country-specific coefficients on age.27

Among the regressors, we include a matrix of equipment characteristics, X, which in-

cludes horsepower, use hours per year and manufacturer. We control for observable char-

acteristics as our model embeds a one-to-one mapping between age and quality (i.e. all

goods of a given age share the same quality). This is certainly not the case in the data as a

27Equation 8 dictates that country-specific µ and δ imply country- and time-specific coefficients on age. We
do not allow the coefficient on age to change over time, consistently with the balanced growth assumption.
As a robustness, we estimate equation 9 year by year and measure negligible changes in the coefficient
associated to age. These results are available in the online appendix.
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Figure V: Estimation results
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(b) Age-coefficient
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Panel (a) shows estimated country-specific intercepts as averages between the years 2014 and 2016,
γ1,c,2014−2016, (solid line) with confidence intervals (dashed lines). The intercepts are relative to country
Bulgaria and year 2015. Panel (b) shows estimated country-specific coefficients for age, γ2,c, (solid line) with
confidence intervals (dashed lines).

variety of equipment of different characteristics is introduced to the market each a year. By

controlling for this within-age variation we build the data analog to model vintages.

We estimate equation 9 using our main dataset, covering multiple cross-sections between

2007 and 2016. Although this equation could be estimated, and the path of capital quality

inferred, with a single year of data, we additionally exploit time variation in order to esti-

mate the parameters more precisely. The estimation is conducted via maximum likelihood

and results are shown in Appendix C, Table C.IV. Figure V plots (a) the estimated country

dummies as averages between the years 2014 and 2016, γ1,c,2014−2016, and (b) country-specific

coefficients for age, γ2,c, alongside their confidence intervals. There is significant variation in

both estimates across countries. The price elasticity to age corresponds to the slope parame-

ter reported in panel (b) of figure V. The coefficient of variation (standard deviation) of this

elasticity is 0.23 (0.01) across countries, and estimates go from 2.8% in poorer economies to

about 6.7% in richer ones. Similarly, the coefficient of variation (standard deviation) of the

estimated country effects is 0.31 (0.22), with estimates going from 0.31 to 1.01.
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4.2.1 Growth of capital-embodied technology

Our identification strategy indicates that the growth rate of capital quality, µ, can be inferred

from the coefficient associated to age in regression 9, γ2, and a value for the depreciation

rate of physical capital, δ.

We measure physical depreciation from the price decay of a piece of equipment with hours

of use. Consider two tractors of identical quality but differing hours of usage. Tractors A

and B are both a-year old, but only tractor B was used in production and has positive hours

of usage. The price difference between the two tractors reflects physical depreciation:

pB = pAΘ(uB),

where uB is the number of hours tractor B was operated for and Θ(uB) is the wear and tear

induced by these hours. Assume, as we do in our model, that Θ(u) has an exponential decay

in hours and is a function of a single parameter that is not vintage specific, δ. Let avg(u) be

the “usual” number of hours a tractor is operated in a given year. We can specify physical

depreciation as Θ(u) = (1 − δ)u/avg(u). For example, if tractor B is operated at twice the

average hours in a year, its physical depreciation will equate that of a tractor which was

used for two years at the average hours. Therefore,

δ = 1−
(
pB
pA

) 1
uB/avg(u)

. (10)

When we implement this insight empirically, we use the baseline estimates from section

2 to predict the price of a synthetic tractor with average characteristics (comparable across

countries) at different hours of usage for each country. We then measure the rate of depre-

ciation in country c as the average depreciation rate resulting from evaluating equation 10

for a set of hours u ∈ U = {u1, u2, . . . , u12}:

δc =
1

11

11∑
j=1

(
1− p̂c(uj+1)

p̂c(uj)

)
,

where u1 = 0, avg(u) is the average yearly hours of usage in the US and p̂c(u) is the predicted

price for country c of the tractor with average characteristics, average age and u hours of
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Figure VI: Inferred growth rate of capital quality µ.
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usage, as predicted by our estimation in Table C.II, column (1).28

The cross-country estimates of the depreciation rate are shown in Appendix B.2, Table

B.II. The sample average of these depreciation rates is 1.59%.29 Figure B.I in Appendix B.2

shows a negative correlation between physical depreciation and value added per worker in

2013 of -0.74 with a p-value of 0.0014. On the one hand, as poorer countries face a lower

labor cost of tractor maintenance, one would expect a lower rate of physical depreciation in

these countries. On the other hand, as richer countries adopt better tractor qualities, which

may be more robust to wear and tear, one would expect a lower rate of physical depreciation

in these economies. In our sample, the second effect prevails.

With our depreciation measures at hand, we use the cross-sectional age-price profiles

predicted by the model, equation 8, and the estimates of the slope of the age-price profile to

infer country-specific arrival rates of improved quality, µ (Figure VI).

28Given the results of the baseline estimation in Section 2, for each country c we predict:

p̂c(u) =

θ̂1γ̂1,c,2015 + θ̂1γ̂2,cā+ θ̂1β̂hours
uθ̂2 − 1

θ̂2

+ θ̂1

X̄ θ̂2
c,−hours − 1

θ̂2

β̂−hours + 1

 1
θ̂1

,

where the bar operator indicates sample averages, the hat operator indicates sample estimates and β is a
vector of coefficients on tractor characteristics other than and hours, X−hours.

29The cross-country coefficient of variation in physical depreciation is 0.022. One of the possible reasons
why we infer heterogenous rates of physical depreciation is cross-country differences in the repair behavior.
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Figure VII: Observed number of tractors used vs. steady state quantity of tractors
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The colors of the lines in panel (a) reflect the country’s rankings with respect to agricultural value added

per worker in 2013 from the lowest in blue (below 75% the US value) to the highest in red (above 75% the

US value).

On average, we infer higher growth rates of capital quality in richer countries. This is

the result of little variation in the estimates for physical depreciation rates across countries

and a negative correlation between the slope of the age-price profile and income per worker.

We find that capital quality in the agricultural sector grows by 3.4% per year in the US

compared to 1.4% in Brazil, a country that measures a value added per worker in agriculture

that is 20% of that in the US. Overall, our inferred growth in capital quality has a correlation

of 0.45 with agricultural value added per worker.

To understand the plausibility of the inferred growth of agricultural capital quality, we

study the implications of our model for a non-targeted moment, the stock of capital per

worker. We specify steady state quantity of capital per worker in our model, k, from corollary

1 – that is, when there is positive investment in the top available technology only. Differences

in the steady state capital across countries are a function of the arrival rate of quality µ

(controlling for the depreciation rate, factor shares and land endowments, which we take

from the data). As shown in Figure VII panel (a), the number of tractors is relatively stable

in time across the countries in our sample. We compare the model-implied differences in the

steady state quantity of capital per worker to differences in the average number of tractors

per worker observed in the data over the 1990–2013 period. Figure VII panel (b) plots the
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model and data moments, which have a correlation of 0.58. As a measure of fit we use Asker,

Collard-Wexler and Loecker (2014)’s statistics, which is an un-centered R2:

S2 = 1− (x− x̂)
′
(x− x̂)

x′x
,

where x is a vector of data moments, x̂ is a vector of model moments, and S2 indicates the

proportion of the observed data captured by the model’s prediction. The S2 of our model

for capital per worker is 66.9%.

We also test the predictions of our model in terms of the findings in Nelson (1964). He

shows that the average age of capital should be negatively related to the gap between the

average quality of the capital stock and the quality of newly installed capital. In our sample,

countries with higher quality growth have, on average, lower average age for the stock.

Comparison to the literature. We compare our findings to alternative measures of

capital quality growth available in the literature. Hulten (1992a) and Greenwood et al. (1997)

show how changes in the quality of capital equipment can be measured by changes in the

price of consumption relative to that of quality-adjusted investment in capital equipment,

gpc/pi . This relationship holds in our model with an elasticity proportional to the share of

capital equipment in output (see equation 6 under zero physical depreciation):

µ =
gpc/pi

1− αk
,

For the US, Krusell et al. (2000) offer estimates of quality-adjusted prices for various

types of equipments. We use their estimates for the price of tractors and that of farms’

capital equipment between 1980 and 2000.30 The quality-adjusted price of tractors relative

to consumption decreased by 1.9% per year on average between 1990 and 2000 and by 2.2%

per year between 1980 and 2000. Similarly, the quality-adjusted price of farms’ capital

equipment relative to consumption decreased by 1% per year between 1990 and 2000 and by

2.1% per year between 1980 and 2000. Through the lenses of our model and given a 24%

capital share for the US, these relative price growths translate into an estimated average

growth rate in capital quality between 2.8 and 2.9% for the period 1980-2000 and between

1.2 and 2.5% for 1990-2000. Our estimate of quality growth based on age-price profiles is

3.4% per year for the US, which is very close to these alternative measures.

30Estimates are not available for later years as the NIPA’s category “Tractors” has been discontinued.
NIPA used to have these three categories: “Tractors”, “Agricultural machinery, except tractors”, “Con-
struction machinery, except tractors”, whereas now it has only two categories: “Agricultural machinery”,
“Construction machinery”.
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4.2.2 Level of capital-embodied technology

The highest level of capital quality operated in a given year, qjt+1
, can be recovered, according

to our identification strategy from the country-time effects estimated in regression 9, γ1, given

data for factor shares, land and output per worker relative to the US.

We take factor shares from FAO-based datasets published by the United States Depart-

ment of Agriculture Economic Research Service (USDA-ERS) in relation to the study by

Fuglie (2015). Fuglie (2015) uses estimates of 19 studies for nationally or regionally repre-

sentative cost shares or production elasticities for agricultural inputs. For the areas where

direct estimates are not available, they assign the values from regions with resembling agri-

cultural sectors (usually within the same geographical region).31 However, among the poorer

countries in our sample, Brazil and Mexico have available estimates (Appendix B.1). The

USDA-ERS also publishes total agricultural land in hectares of “rainfed cropland equiva-

lents.” This is the sum of rainfed cropland (weight equals 1.00), irrigated cropland (weight

varies from 1.00 to 3.00, depending on the region) and permanent pasture (weight varies

from 0.02 to 0.09, depending on the region). We divide these estimates by the number of

agricultural workers and use this figure as our measure of land endowment. We normalize

land per worker to 1 in the US. In 2013, Australia had approximately 2 times the US land

endowment, while the Netherlands had approximately 10% of the US land endowment.32

We measure the highest level of capital quality operated in a country relative to the US

over the period 2014-2016, as these are the years for which our dataset on tractor prices

clusters most observations. In addition, we assume log utility and a discount factor β equal

to 0.95.33 Without loss of generality, we normalize output per worker and the highest level of

capital quality operated in the US in a given year to 1. Details and derivations are presented

in Appendix B.3.

Figure VIII, panel (a) plots the top quality operated in a country relative to the US as

an average for the 2014-2016 period:

qjc,2014−2016

qjUS,2014−2016

=
1

3

∑
t={0,1,2}

qjc,2014+t
.

31Fuglie (2015) shows that imputed shares represent only one-quarter of world agricultural output.
32The correlation between rained cropland equivalent and cropland measures is 0.95 in our sample in

2013. Canada and Australia are the only two countries for which these two measures of land per worker
differ slightly.

33These two assumptions identify a country-specific interest along the balanced growth path Rc: Rc =
(1+αk,cµc)

β .
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Figure VIII: Inferred level of capital quality, 2014-2016
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The left panel shows the inferred top capital quality between 2014 and 2016, qj2014−2016
. The right panel

shows the inferred level of capital services normalized by the top capital quality in each year, k̃.

Moreover in panel (b), we show the total level of capital services normalized by the top quality

operated in a year, k̃ in our model. We measure a higher top quality of agricultural capital in

richer countries than in poorer countries. For example, the top quality of agricultural capital

in the US is 12 times larger that in Brazil for the period 2014-2016. Our inferred top capital

quality has a correlation of 0.48 with agricultural value added per worker across countries.

Finally, normalized capital services also correlate positively with agricultural value added

per worker. In addition, the richer countries in our sample show a wider range of qualities

for installed capital, on average. This is a consequence of their faster growth in quality

adoption and higher share of capital in production as in Jovanovic and Rob (1997).

Comparison to the literature. Using import data, Caselli and Wilson (2004) show

large disparities in the composition of equipment investment across countries, and argue

that the latter are relevant for differences in productivity across economies. Relevant to

our analysis, they show that equipment types coming out of high R&D industries are more

complementary with factors that are relevant for the adoption of newer technologies. Here,

we use this findings to build an alternative measure of capital quality based on the R&D

composition of equipment investment. We use the 2005 R&D expenditure in non-electrical

equipment (ANBERD dataset compiled by the OECD) to build an index of the quality of

equipment produced in a country. Next, using 2015 COMTRADE data on the composition
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Table I: R&D content of capital

Model R&D content
Average quality

Australia 0.138 0.251
Canada 1.243 0.828
Spain 0.247 0.199
France 0.953 0.331
Great Britain 0.620 0.327
Germany 0.601 0.593
Italy 0.066 0.200
Netherland 0.473 0.353
United States 1.000 1.000

Top quality
United States 1.000 1.000
Bulgaria 0.056 0.245
Brazil 0.086 0.595
Mexico 0.291 0.708

The table compares our inferred quality of agricultural capital from that inferred using R&D content of

investment (domestic and imported).

of imports by country of origin and 2005 NIOT data on home-trade shares in equipment,

we measure a country’s composition of its capital stock by country of origin. Last, we build

a quality index for the stock of capital in each economy as the average of our R&D-based

quality index weighted by the composition of the capital stock by country of origin.

This measure is shown in Table I, panel Average quality, for the countries in our sample

that have information on R&D expenditures. We compare this alternative measure to our

measure of average capital quality computed under corollary 1 in our model.34 The two

measures correlate at 80.0%. Both of them are also broadly consistent on the ordering of

countries by quality of their capital stock: Australia, Spain and Italy are at the bottom,

while USA and Canada are at the top.

Measures of R&D expenditures are not available for the poorer countries in our sample.

However, we are still able to measure the R&D content of their imports. We work under

the assumption that the quality of imports in these countries is at least as good as that

of locally-produced capital and compare the R&D content of their imports to the R&D

content of nationally produced capital in the US. We consider this exercise as a cross-country

comparison of the top quality of operated machines, qj̄. Table I, panel top-quality, reports

34Under the assumption that there is positive investment in the top available technology only, average

quality weighted by the quantity of capital of each operated vintage reads: q
j ,c

(∑1/λ
i=1

(
1−δc
1+µc

)i−1
)1−αK

.
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this R&D-based measure of qj̄ along with our measure. The two measures deliver the same

relative order of countries. However, the R&D-based measure vastly underestimates the

magnitude of the differences with respect to the US.

Lastly, our working hypothesis in the previous exercise is that imported and locally-

produced goods have similar quality. A subsample of our dataset allows us to track the

country of origin of the piece of equipment being traded. Hence, we can test this hypothesis

directly. We do this in section 6. We find that the average quality of installed capital is

higher for imported equipment in Mexico, Great Britain and Germany, but lower for the

United States, France and Canada.

5 The role of capital-embodied technology in agricul-

tural productivity

In this section, we use our inferred path of quality of the capital stock to examine its role

for the disparities in agricultural labor productivity across countries. We conduct standard

accounting exercises to quantify: (i) the role of capital-embodied technology in labor produc-

tivity growth over the 1990–2013 period, and (ii) the role of cross-country disparities in the

average quality of capital in the agricultural sector for agricultural value added per worker

in 2013. To conclude, we show the robustness of our findings to using sale prices rather than

ask prices in our capital quality inference.

5.1 Growth accounting

We examine the role of adoption patterns of capital-embodied technology in agricultural

productivity growth via a growth accounting exercise along the lines of Solow (1957) and

Jorgenson and Griliches (1967). Given our production function and the assumption of bal-

anced growth, we can relate the growth rate (g) of total factor productivity (TFP) to the

path of capital embodied technology adoption:

gdy,c − αk,cgdk,c − αl,cgdl,c︸ ︷︷ ︸
gTFP,c

= αk,cgqj̄ ,c + gRes,c, (11)

where the LHS is the growth rate of TFP, i.e., value added per worker in the data (d)

corrected by capital stock and land. This growth rate can be decomposed in two parts, one
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Table II: Growth accounting exercise

gTFP αkµ

Australia 1.65 0.33
Belgium 2.14 1.14
Bulgaria 2.05 0.35
Brazil 3.23 0.34
Canada 2.09 0.73
Spain 3.07 0.59
France 2.75 1.35
Great Britain 0.91 1.47
Germany 2.37 0.94
Ireland 0.37 1.62
Italy 2.96 0.21
Mexico 2.29 0.86
Netherland 2.22 1.00
New Zealand 1.00 0.39
United States 2.14 0.80

R2(gTFP, αkµ) 13.8%
σ(log(gTFP − αkµ)) 1.20
σ(log(gTFP)) 0.57

The table reports the growth rates of TFP over the 1990-2013 period and the growth rates of capital quality

multiplied by the capital share. The bottom panel reports the R2 of regressing TFP growth on capital quality

growth multiplied by its factor share along with the standard deviation of the logarithm of TFP growth when

the capital quality component is not considered (σ(log(TFP − αkµ))) and when it is (σ(log(TFP ))).

related to capital quality, gqj̄ ,c, and a residual, gRes,c. This last part measures our model’s

ignorance: when the modeled growth rate of output per worker exactly matches the observed

growth rate of TFP, i.e., gRes,c = 0, the model attributes the growth rate in TFP to capital

quality.35

Table II compares the growth rate of TFP to the growth rate of capital quality multiplied

by the capital share for the period 1990-2013. We measure the growth rate of TFP from

FAO-based data published by the USDA-ERS on the growth rate of agricultural output per

worker net of the growth rate of observed intermediate inputs, capital and land multiplied by

the corresponding factor shares. Given the identity in equation 11, we compute the fraction

of TFP growth explained by the quality of capital services:
αk,cµq,c
gTFP,c

. On average, in each

country, capital quality explains 32% of the growth rate of TFP between 1990 and 2013.36

Capital quality accounts for about one-third of the growth rate of TFP in the US and half of

35Notice that our model implies constant level of normalized capital services and land per worker along
the BGP, so that the growth rate of value added and productivity are the same.

36This average excludes Great Britain and Ireland, for which the contribution of capital quality growth to
TFP is 161% and 434%, respectively
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Figure IX: Counterfactual exercise
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2013-2023 growth rates of model-predicted agricultural output per worker under the baseline path of capital

quality (“B”) and under the counterfactual path of quality (“C”). Countries are ordered by ascending capital

shares. Agricultural value per worker is normalized to equal 1 in the US in each period in both the baseline

and the counterfactual scenarios.

that in France and Belgium. On the other hand, it accounts for close to 10% of the growth

rate of TFP in Brazil and Italy. How much of the dispersion in TFP growth across countries

is explained by capital quality? The dispersion in the logarithm of TFP growth halves when

we include capital quality (see Table II). In particular, this dispersion goes from 1.20 without

the contribution of quality to 0.57 with its contribution. We conclude that capital quality

accounts for 47.8% of the cross-country dispersion in TFP growth between 1990 and 2013.

Overall, quality disparities in capital stocks across countries are sizeable and contribute

substantially to the disparate behavior of productivity growth observed in the agricultural

sector. Measured quality growth, µ, is a combination of the common arrival of technology

in the world, µ, and country-specific distortions, τ – that is, 1 + µ = 1+µ
1+τ

. The latter are

a reduced form for various adoption costs of agricultural equipment as well as polices that

discriminate between new and old equipment. To close this section, we study the implications

for agricultural output per worker of varying country-specific distortions.37

We start by setting the growth rate of the frontier technology to the growth rate of

quality of the country with the fastest arrival of technology (highest µ), Ireland. This gives

37Notice that the level of quality pinned down from the constant in equation 8 depends on the identified
growth rate of quality, µ. Therefore, when running counterfactuals on the measure of distortions, and hence
the rate of adoption, we keep the steady state level of quality constant and assume that the movement in
the rate of adoption is fully absorbed by a change in the constant of the pricing equation.
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us a measure of distortions, τ , in each country: the average cross-country distortion is

2%. Now, consider a policy that reduces distortions in each country by 2%, so that the

average distortion across countries is zero. How would agricultural output per worker look

like 10 years into the future, along the new BGP? Figure IX plots the ten-year growth rate

(2013-2023) of agricultural output under the counterfactual scenario net of that under the

estimated path of quality growth, across countries. While all countries improve their value

added, the gains differ across countries and these disparities are related to the share of capital

in production. In the figure, countries are ordered by ascending capital share. Countries

that are relatively more capital intensive benefit more from reduced distortions, and their

productivity gains are larger. If different vintages of capital are interpreted as different goods,

capital-embodied technology adoption ultimately leads to retirement of these older vintages

and, potentially, stronger intensity of use of capital goods. As our growth accounting exercise

assumes a constant capital share, we believe the results are a lower bound of the potential

gains from capital-embodied technology adoption.

5.2 Development accounting

Our model specifies output per worker in a country, c, as a function of capital quantity,

capital quality and land. Under the balanced growth assumption, this reads:

ydc = Rescq
αk,c

j,c
k̃
αk,c
c lc

αl,c ,

where Res is the Solow residual – that is, Res = 1 when our model exactly replicates the

value added per worker observed in the data. Further, the specification of corollary 1 allows

the decomposition of capital services in its quantity and quality components so that:

ydc = Resc(qj,cq̃j,c)
αk,c δ̂αk,cc kc

αk,clc
αl,c , (12)

where qj q̃j is the average quality of the capital stock and k is its quantity. Using equation 12,

we quantify the contribution of capital quality for income differences in agricultural value

added across countries in 2011-2013 via two standard development accounting exercises. We

choose this period because these are the most recent years for which FAO data are currently

available and we inferred the level of capital quality using data over three years.

First, we measure the success of our model in explaining cross-country agricultural income

differences. As in Caselli (2005), this amounts to asking the following question: Suppose
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Table III: Development accounting: decomposition

ydUS,2011−2013

ydc,2011−2013
% agricultural VA differential wrt US explained by:

qj q̃
j

k l Total

Bulgaria 9.6 22.5% 2.9% 10.2% 41.5% 69.9%
Brazil 5.4 37.9% -9.0% 2.0% 18.7% 60.5%
Mexico 16.3 19.2% -20.5% 11.1% 41.0% 99.9%

The table reports the percentage contribution of each income component to country differences in agricultural

value added per worker with respect to the US. The results are reported for countries in the bottom quartile

of the agricultural income distribution. Factor shares and land endowments are imputed from the data as

2011–2013 averages.

all countries had the same level of residual efficiency Res; how would the distribution of

agricultural income per worker in our sample look like compared to the actual distribution?

We measure the observed agricultural value added per worker in 2011-2013 by multiplying

the value of gross agricultural production per worker by 1 minus the sum of intermediate

input factor shares, as published by the USDA-ERS.38 We compute the proportion of ob-

served agricultural value added per worker, yd, captured by our model’s predictions, y, using

our adjusted R2, S2(y2011−2013, y
d
2011−2013). Our model explains 77.1% of the cross-country

variation in agricultural value added per worker. If we were not to account for cross-country

differences in capital quality – that is, if we were to set qj,cq̃j ,c = 1 in each country, our ad-

justed R2 would decrease to 44.9%. We conclude that capital quality accounts for 32.2% of

cross-country variation in agricultural value added per worker in our sample, holding capital

per worker fixed. Capital quality has an additional indirect effect that is not captured in

our accounting exercise: when capital quality improves, the return per unit of investment

increases and generates additional incentives for capital accumulation. Hence, we believe

our result is a lower bound for the role of capital-embodied quality in producing disparities

in agricultural labor productivity.

Second, using equation 12, we decompose the difference in agricultural value added per

worker in a given country with respect to the US into four main components, capital quality,

38Intermediate inputs include crops materials (fertilizers, pesticides, seeds), animal materials (pharmaceu-
tical, feeds) and livestock capital.
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capital quantity, capital replacement rate and land per worker, plus a residual term:

log(ydUS,t)− log(ydc,t) = αk,US log(qjt,USA)− αk,c log(qjt,c) + αk,USA log(q̃
j ,USA

)− αk,c log(q̃
j ,c

)︸ ︷︷ ︸
capital quality

+

αk,US log(kUSA,t)− αk,c log(kc,t)︸ ︷︷ ︸
capital quantity

+αk,US log(δ̂USA,t)− αk,c log(δ̂c,t)︸ ︷︷ ︸
replacement rate

αl,US log(lUSA,t)− αl,c log(lc,t)︸ ︷︷ ︸
land

+ log(ResUSA)− log(Resc).

The contribution of capital quality can be further divided into two components: differences

in the highest quality and in the average quality of capital operating in a country.

Across the countries in our sample, land is the most important driver of differences in

agricultural value added per worker with respect to the US, on average. Quality, in its two

components, comes second, with an average contribution that is only slightly below that of

land. To ease the exposition, we present a detailed decomposition only for the countries in

the bottom quartile of the agricultural income distribution in our sample. Table III shows

that in these countries the two most important drivers of differences in agricultural value

added per worker are i) the highest quality of operated equipment and ii) land endowments.

The former accounts for between 20% and 40% of the percentage differences in agricultural

value added per worker with respect to the US in Bulgaria, Brazil and Mexico. The total

contribution of capital quality for the income per worker differential with respect to the US

is 25% for Bulgaria, 29% for Brazil and -1% for Mexico. This implies that the contribution

of the range of capital qualities operated in the country, q̃
j
, is negative for Brazil and Mexico

and positive for Bulgaria. In other words, a faster arrival rate of the best-available technology

µ results in a wider gap in quality between the best and worst technologies operating in the

US compared to Brazil, Mexico and Bulgaria. At the same time, the higher capital intensity

of agricultural production in the US, increases the role of capital quality for production

compared to the other three countries. The arrival rate effect outweighs the capital intensity

effect in Brazil and Mexico, while the opposite is true for Bulgaria. On average, capital

quality accounts for 17.7% of the difference in agricultural value added per worker between

these three countries and the US.

5.3 Robustness

The results presented above rely on a measure of quality inferred from retail ask prices. In

this section, we test the robustness of these results to using sale, transaction, prices instead.
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We observe sale prices for a subsample of our dataset. This subsample covers 250,000 ob-

servations across 10 countries, over the period 2007-2016.39 We apply the methods described

in section 4 on this subsample to infer the cross-country paths of quality. The yearly average

growth rate of quality inferred from sale prices is 3.8% compared to 3.3% from ask prices,

for the same set of countries. The growth rate of capital quality in the US increases of 0.3

percentage points when inferred using sale rather than ask prices. Two outliers stand out for

their deviations between inferences: Spain and the Netherlands. In these two countries, our

estimates based on sale prices are 1.7-points below and above the corresponding estimates

based on ask prices, respectively. To note that Spain and the Netherlands have the smallest

sample sizes (less than 100 observations in the subsample). Overall, the correlation between

the two inferences of the growth rate of capital quality is 0.79. We find an even higher

correlation between the inferences of the quality of the top operated technology, at 0.974.

The top capital quality in the US is inferred to be 11 times larger than that of Brazil when

using estimates based on sale prices, compared to 12 times larger when using estimates from

ask prices.

We input these alternative paths of quality in our growth and development accounting

exercises, as above. We find that irrespective of the definition of prices used to infer the

path of quality, capital quality explains 37% of the dispersion in TFP growth across the

countries in our subsample. On average, in each country, estimates based on sale prices

attribute 48.6% of the growth rate of agricultural TFP between 1990 and 2013 to capital

quality compared to 32.5% when using estimates from ask prices. Again, Spain and the

Netherlands account for the difference.

Turning to disparities in agricultural value added per worker in our subsample, the model

captures 77.7% of the observed disparities in 2013 when estimates from sale prices are used.

Moreover, capital quality explain 40.3% of such disparities. This is in comparison to using

estimates from ask prices, when the fraction captured by the model amounts to 72.5% and

the one attributable to capital quality is about half.

6 Discussion

Given the relevance of capital-embodied technology adoption for differences in agricultural

productivity across countries, in this section, we discuss deviations from our benchmark

39Specifically, the countries are Australia, Brazil, Canada, Spain, France, Great Britain, Mexico, Nether-
lands, New Zealand and United States.
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model that would potentially affect the identification of the rate of adoption and weaken or

strengthen our income accounting results.

Technology: heterogeneity and economies of scale. The benchmark model is one in

which disparities in adoption rates are induced by barriers or costly adoption. It is possible

that disparities in adoption rates are also related to the incidence of a) increasing returns in

production (associated to fixed operating costs) or b) heterogeneity in returns to investment.

The latter is of particular interest in view of the extensive literature that studies the role of

revenue productivity dispersion for agricultural productivity (Adamopoulos and Restuccia,

2014, Restuccia and Santaeulalia-Llopis, 2015). We study these extensions (a-b) in the online

appendix of the paper.

We show that dispersion in productivity across farms explains differences in the level

of prices of the same quality goods across countries. However, the only determinant of the

cross-sectional decay of prices with age is the arrival of newer (and higher quality) vintages

into the economy. In other words, differences in production heterogeneity (or farm-level

distortions) cannot explain differences in the age-price profiles once we control for observable

characteristics. Production heterogeneity generates the same elasticity of prices to age that

we derived in equation 8 of the benchmark economy and, hence, the same implied path of

best-available quality from the data, µ. A similar effect has the presence of fixed operating

costs in production. These costs induce cross-country disparities in the level of prices of a

particular quality, but they do not affect the slope of the cross-sectional age-price profile.

Aggregate productivity. Disparities in adoption rates might be induced by complemen-

tarities with other factors of production, i.e. fertilizers, which improve the quality of the

harvested land. It is likely that capital-embodied technology adoption is complementary to

land quality and the size of plots operated (Restuccia and Santaeulalia-Llopis, 2015).40 If

technologies that are more productive require higher quality capital goods, higher total fac-

tor productivity is likely to correlate with the adoption of higher quality vintages of capital.

In our benchmark model, productivity growth is only associated to the adoption of better

quality goods. However, differences in institutional capacity or human capital, can induce

differences in overall productivity and adoption incentives. In our accounting exercises, these

productivity differences are considered a residual (Res).

Alternatively, we could have explicitly modelled the dynamic of a country-specific Hicks

40To the extent that plot sizes generate increasing returns in production, the discussion in the previous
subsection is relevant.
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neutral productivity term. We describe this alternative environment in the online appendix.

We show that cross-sectional differences in the prices of goods of different age still pin down

the rate of quality improvement. Hence, our identification of quality growth is invariant to

such a modelling assumption. In addition, we show how to combine the rate of embodiment

obtained from the cross-sectional profile with the slope of the longitudinal age-price to build

a measure of the growth rate of Hicks neutral productivity.

To give a quantitative bite to this statements, we exploit the multiple cross-section struc-

ture of our dataset to infer capital quality growth and productivity growth from the cross-

sectional and longitudinal profiles (details are in Appendix B.4). The cross-country average

decay in prices (after controlling for physical depreciation) is 5.0% per year, compared to

2.8% for the inference based on the cross-sectional profile. Hence, a 2.14% (1.34%) per-year

growth in Hicks neutral technology, on average (for the US) is consistent with the estimated

growth rate of capital quality from the cross-sectional profile.

The identification of the quality level of the stock of capital is slightly more challenging

than in our benchmark exercise, but empirically implementable. To be able to identify

separately differences in the level of Hicks neutral productivity and the quality of the best

available vintage used in the economy, we need an additional price equation. As we describe

in the online appendix, we use the ratio of the price of a good of arbitrary quality, qj, in

different economies. Our measures of (normalized) capital services and the ratio of output

per worker measured in the data allow us to identify differences in the quality of the best

available technology from the ratio of prices of vintage j across economies. With this measure

at hand, we can use the intercept of the age-price profile to infer the relative level of Hicks

neutral productivity across countries.

Factor supply and capital intensity. For the countries in our sample, the land supply

in rainfed cropland equivalents has been fairly constant during the period under analysis,

and hence we do not think of it as a mayor source of bias in our estimates of capital quality.

This margin is likely to be relevant when analyzing the role of capital quality in lower income

economies, as we discuss in the next subsection.

The number of agricultural workers has been declining though, in accordance with struc-

tural movements as these economies develop. The macroeconomic impact of such labor flows

is analyzed in Lagakos et al. (2015). A priori, the adoption of better quality equipment goods

can have two counteracting effects. On the one hand, better quality equipment improve the

marginal product of labor, increasing equilibrium salaries and inducing workers to remain in
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the farms. On the other hand, the arrival of better quality equipment goods can be overall

labor saving, and in particular may replace the work of low skilled workers while being com-

plementary to high skill ones (Acemoglu, 1998 and the extensive literature on skill-biased

technological change). These movements generate incentives of out-migration for low skilled

workers and increase capital intensity in the agricultural sector.

Whereas these considerations are absent in our benchmark accounting, we consider an

exercise in which we give each country the path of capital quality of the US along with the

US relative composition of labor and capital after controlling for the share of land.41 On

average, the gains in value added per worker relative to the US split about 2/3 for the change

in the path of quality and 1/3 for the change in capital intensity. These results suggest that

for the countries in our sample, improvements in quality of the capital stock are first order

to understanding productivity differences.

A low-income economy. In our benchmark exercises, we study the role of capital quality

for a sample of high- and middle-income economies. Cross-country disparities in agricul-

tural productivity widen as we move down the development spectrum, towards low-income

economies. One of the challenges of applying our methodology in low-income countries is

that the extensive margin of capital adoption (which we do not model directly) is arguably

very relevant in explaining low levels of labor productivity. Still, we can perform our anal-

ysis to build a lower bound to the potential gains of capital-embodied technology adoption.

To do this, we extend our main dataset to include data for a country that is substantially

poorer and less productive than any one in our sample: India. We gather 130 observations

of equipment price quotes in 2016.

Our methodology to recover the path of capital quality for India follows the one outlined

and applied in section 4. Indeed, and to make our estimates consistent across different exer-

cises, the sample used in the benchmark estimation presented in section 4 already includes

these observations. We find that India’s slope coefficient is among the smallest similarly to

middle-income countries in the sample (Brazil, Bulgaria, and Mexico). That is, equipment

prices decay slowly with age. In addition, the intercept of the age-price profile is the smallest

in the sample, below the level of the normalizing country, Bulgaria.

We infer a growth rate of capital quality for India of 1.8%, which is in line with that

inferred for middle-income countries. To check how sensible this measure is, we look at the

41It is likely that the share of land in production depends among others, on the quality of the land and
the farming characteristics in each country. We abstract away from the effect that technology adoption may
have on shifting the intensity of land use.
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model fit on capital per worker: the model implies a level of capital per worker in India

that is about 7.2% that in the US, compared to 1.1% in the data. The undershooting of the

model is to be expected as India is a country that is still adopting the “tractor” technology

at the extensive margin (i.e. transitioning from labor and animal power intensive production

to capital intensive production). Indeed, the number of tractors per worker has been raising

at 7.8% per year in India, compared to an average in our sample of -0.3%.

Our accounting exercises imply that capital quality explains 7.4% of the growth rate of

agricultural productivity in India between 1990 and 2013. This is similar to our conclusions

for Brazil and Bulgaria, but different from the case of Mexico, where capital quality growth

explains 1/3 of agricultural productivity growth. In 2013, agricultural value added in the

US is about 60 times that in India. The model explains 66.1% of this differential, and

capital quality accounts for 57.1% (with differences in the level of the top technology alone

accounting for roughly half of it).

Open economy. In the analysis of this paper we assume economies are in autarky, ab-

stracting away from the allocation of production across countries and the pattern of trade

across them. Eaton and Kortum (2001) document that equipment goods are produced in

a handful of developed countries and exported to others. In our data, 35% of the low-HP

tractors (less than 40hp) is manufactured in Japan and 75% of high-HP tractors (100hp -

175hp) is manufactured in the US and Germany. Our model describes a closed economy, but

the inferred adoption rates µ should be interpreted as a measure of the goods that become

available to consumers in an economy. When markets are integrated and the law-of-one-price

holds, the introduction of a good to a particular economy can induce obsolescence in goods

in a different economy.42 Hence, economies that are more open to trade with economies that

adopt rapidly could experience faster obsolescence in their own capital stocks. However,

for foreign adoption to become relevant for domestic obsolescence, goods adopted elsewhere

need to be available to some consumers in the domestic economy.

Studies in the trade literature show evidence of pricing-to-market effects whereby the

same good is sold at different prices in different countries even after adjusting for exchange

rates, purchasing power and transportation costs. In our dataset there is some evidence,

despite weak, of such pricing patterns.43 Our inference of the level of capital quality relies on

42As pointed out by Mutreja et al. (2014), barriers to trade can be consistent with price equalization across
economies.

43We restrict our sample to consider only a subset of tractors sold in each country and run a regression
specification as in section 2. This sub-sample covers 828 observations and 10 countries, Australia, Canada,
France, Great Britain, Germany, Ireland, Mexico, the Netherlands, the United States and Spain. The corre-
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Table IV: Imported and locally produced tractors

Age coefficient Intercepts Quality growth Quality level
γ2,c γIMP

2,c γ1,c,2014−2016 γIMP
1,c local imported top average

Brazil -0.038 0.287 2.14% 2.14% 1.00 1.00
Canada -0.051 1.151 -0.011 3.58% 3.58% 0.94 0.94
France -0.071 1.198 -0.222 5.65% 5.65% 0.50 0.50
Great Britain -0.064 0.941 0.009 4.89% 4.89% 1.02 1.02
Germany -0.047 -0.016 0.914 0.056 3.14% 4.84% 1.19 1.08
Mexico -0.019 -0.083 0.287 0.981 0.20% 8.82% 9.50 5.84
United States -0.049 0.008 1.148 -0.152 3.37% 2.56% 0.48 0.51

In columns 2 and 3, the table shows the estimated country-specific coefficients for age γ2,c and for the

interaction term between the import dummy and age, γIMP
2,c . In columns 4 and 5, the table shows the

estimated country-specific intercepts γ1,c,2014−2016 and the country-import specific intercepts, γIMP
1,c . Empty

cells imply the estimates were not statistically different from zero. The last four columns report the path of

quality for imported and locally produced goods. In particular, columns 6 and 7 show the growth rate of

quality while 8 and 9 report the level of quality of imported goods as a percentage of that of locally produced

goods.

residual price variation across countries (i.e. after controlling for observable characteristics)

reflecting variation in quality. Hence, we test the robustness of our inference on the level of

quality and its implications for development accounting, to the presence of pricing-to-market

effects of the magnitude estimated in the literature (Simonovska, 2015). We find that the

average quality of agricultural equipment accounts for 27.5% of the cross-country disparities

in agricultural value added per worker in 2013, 3pct points less than in the baseline. Details

of the exercise are available in Appendix B.5.

The richness of our data also allows us to trace back the location of the plant where a

tractor was produced. Hence, we are able to compare the quality of locally produced and

imported tractors for a subsample of our main dataset.44 To implement the measurement,

we augment our baseline regression 9 to include a dummy that takes value one if the good

is imported and zero otherwise along with its interaction with age and their respective

coefficients γIMP
1,c and γIMP

2,c . Results are reported in table IV along with the inferred path of

capital quality. The coefficient on age differs between locally-produced and imported goods

only for three countries: in Germany and Mexico the slope of the age-price profile is steeper

for imported goods compared to locally produced whereas the opposite is true in the United

lation of the estimated country dummies with income per worker is positive, at 0.5713, but not statistically
different from zero, p-value at 0.184. These results are robust to various specifications of the regression
equation, including the log-transformation on the price and the set of controls included.

44 The subset of our dataset covers 95,953 observations across seven countries.
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Sates. This implies a path of quality growth that is higher for imported goods in Germany

(a 1.71% increase) and Mexico (a 8.62% increase) and for locally produced goods in the US

(a 0.81% increase). The country dummies are higher for imported goods in Mexico, Great

Britain and Germany, but lower for the United States, France and Canada. Therefore,

focusing on imported goods would magnify inferred differences in adoption. United States

and France measured quality of imported tractors is about half of that of locally produced

ones. The case of Mexico is remarkable. The top quality of imported tractors in Mexico is 9

times that of locally produced ones. However, because the growth rate of quality has been

so high for imported tractors, the average quality of the stock of imported capital is only 6

times that of the locally produced one.

7 Conclusions

In this paper, we explore the implications of disparate patterns of capital-embodied technol-

ogy adoption for agricultural productivity differences across countries. To do so, we construct

a novel dataset of prices for second-hand equipment (tractors) in middle- and high-income

countries that allows us to control for differences in observable characteristics. Through the

lenses of our model and using our dataset, we infer the path for the highest available quality

of installed capital from the age-price profile of tractors of a given vintage under a balanced

growth assumption. On average, richer countries have both higher growth rates and higher

levels of capital quality.

We study the role of capital-embodied technology in the labor productivity of the agri-

cultural sector via standard growth and income accounting exercises. We conclude that 32%

of the growth in agricultural value added per between 1990 and 2013 that is unaccounted

for by observable factors can be attributed to capital quality disparities. In addition, the

dispersion in the logarithm of TFP growth in the agricultural sector halves when capital

quality is taken into account. When each country is assigned an installed capital stock of

identical quality to that of the US, our model explains only 45% of the variation in output

per worker across countries compared to 77% in our benchmark.

It is likely that disparities in adoption patterns and in age-price profiles across coun-

tries reflect partially differences in the availability and characteristics of secondary markets.

Understanding their relationship is a promising avenue for future research.
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A Model representation and proofs

A.1 Alternative representation of the model

In this subsection we describe how our model maps into the standard framework of Green-
wood et al. (1997).
The euler equation that describes prices in our model is

pjt+1,t
=

(1− λ)

Rt+1

αkqjt+1
(
∑

j∈At+1

qjkj,t+1)αk−1lαlt+1n
αn
t+1 + (1− δ)pjt+1,t+1

 . (13)

Define the efficiency units of capital at any point t as ke,t =
∑
j∈At+1

qjkj,t. The household’s
euler equations imply that the price of the best available technology is an operator homo-
geneous in the efficiency of the best vintage available adjusted by the share of capital, i.e.
pj,t ∝ q

αk
j

. In addition, the price of any good is homogeneous in its quality and hence the price
of a good relative to that of the best available vintage is the ratio of their productivities,
pj,t
pj,t

=
qj
qj

. Hence, equation 13 can be rewritten as

qαk
jt+1

qjt+1

=
(1− λ)

Rt+1

[
αk(ke,t+1)αk−1lαlt+1n

αn
t+1 + (1− δ)

qαk
jt+2

qjt+2

]
,

which is the optimality condition in the benchmark model of Greenwood et al. (1997) if the
quality of the stock in their model, q, is proportional to the quality of the best technology in
our model q = q1−αk

j
. The optimality condition is consistent with a relative price of investment

to consumption equal to 1

q
1−αk
j

. This is also the decay in our longitudinal age-price profile.

A.2 Proofs

Proof. (Proposition 1)

The homogeneity of the operators describing equilibrium prices implies that for the best
available vintage, pj,t ∝ qαk

j
, and for any other vintage, prices are proportional to the best

available technology, pj,t =
qj
qj
pj,t.

Using the euler equation of the households, equation 3.3, we obtain

1 =
(1− λ)

Rt+1

αk(
∑

j∈At+1

qj
qjt+1

kj,t+1)αk−1lαlt+1n
αn
t+1 + (1− δ)(

qj̄t+1

qj̄t+2

)1−αk


which, given the set of vintages available for production, At+1, pins down the level of capital
services

∑
j∈At+1

qjkj,t+1.

Proof. (Proposition 2)

Guess: The quality of the bounds for the best and worst vintages used in production, j
t
and jt respec-

tively, grow proportionally to the growth rate of the best-available quality in the market, gqjt
= µ. The growth
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rate of output per capita is proportional to the growth rate of the quality of the best-available vintage, i.e.,

gy = αkµ.

Under our guess, we can de-trend output by (qjt)
αk to obtain:

yt
(qjt)

αk
= (

∑
j∈At

qj
qjt

kj,t)
αk lαl ,

which is a constant if
∑
j∈At

qj
qjt

kj,t
kt

is a constant. We have guessed that the bounds of As grow

at rate µ.45 Combining our guess with proposition 1 , k̃is a constant since it satisfies

1 =
(1− λ)

R

[
αk(k̃)αk−1lαl + (1− δ)( 1

1 + µ
)1−αk

]
(14)

By definition, total investment corresponds to

x̃t =
∑

j∈At+1

qj
qjt

(kj,t+1 − (1− δ)kj,t)

The expected distance between the best and worst vintages in production to be constant,
i.e., j

t
= jt − u for some u > 0. This is true because the expected time for which a vintage of

capital remains in the market is Tj = 1
λ , so u = Tj is consistent with the bounds growing at a

constant rate:
x̃t = k̃t+1 − (1− δ)(k̃t −

qj
t

qjt
kj,t+1).

Given that the vintage composition is constant along the BGP, kj,t+1 is constant. In addition,
qj
t

qjt
= 1

(1+µ)
Tj

. Therefore, total investment is constant along the BGP. The price of the best-

available technology increases at rate gpj = αkµ due to its homogeneity in the quality of the
best available technology. Hence, the value of investment, pjt+1

x̃, grows proportionally to
the growth rate of the best available quality, µα. Using the production function, and the
constant capital in efficiency units, output should grow at rate αkµ. From the feasibility
condition of the economy, consumption should then also grow at rate αkµ.

Proof. (Corollary 1) If the accumulation policy is such that there is only positive investment
in the top technology, the share of total capital accounted for by a vintage that is n lags
away from the best-available capital in a given period is constant. Hence, the total amount
of capital in any period is described as:

jt−1∑
j
t

((1− λ)(1− δ))jt−1−jx = k.

The quality values of the best and worst technology operating are proportional to each

45Alternatively, one could have assumed away the random retirement of capital (at rate λ). In this case,
there are infinitely many vintages operating at each point in time. Given the optimal investment strategy for
capital , the BGP is preserved, as

∑
jt
j=−∞

qj
qjt
δ(1− δ)jt−j is a geometric series with infinitely many terms.
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other, with qj
t

=
qjt

(1+µ)
1
λ

.

Solving for the optimal investment level, we obtain:

x = k
(1− (1− λ)(1− δ))

(1− ((1− λ)(1− δ))Tj )
,

which is a constant.

To pin down the level of capital in steady state, notice that in the detrended economy,
the relative price of capital of the best available technology to consumption in period t + 1

should equal 1. Hence,
pjt+1,t

q
j
αk

t+1

= 1

which pins down the stock of capital per worker, k, as a function of land per worker, the
quality of the stock in operation and the parameters:

k =
1

q̃jt+1
δ̂

(
αkl

αl(1− λ)

R− ( 1
1+µ )1−αk(1− λ)(1− δ)

) 1
1−αk

,

B Details of the quantitative analysis

B.1 Factor shares

Factor shares are computed from the shares published by the USDA-ERS by assuming con-
stant returns to scale in labor, land, and capital. Table B.I shows the factor shares for the
countries in our sample as averages for the 1990–2013 period.

B.2 Physical depreciation
Robustness on λ. We conduct our income exercises under the assumption that the expected
lifetime of a tractor is the same across countries and set it at the average age of tractors
in our sample. Alternatively, one could allow for country-specific expected lifetimes – that
is, country specific λ’s in our model. We consider this alternative specification of the model
as a robustness check on our results and calibrate the country-specific λ to match average
tractor age in our sample for each country. The correlation between the two sets of estimates
is 98.4%. Moreover, the fit of the model decreases of about 1 percentage point, settling at
75.7%.
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Table B.I: Factor shares

αn αl αk

Australia 12% 78% 10%
Belgium 51% 18% 31%
Bulgaria 37% 46% 17%
Brazil 60% 15% 25%
Canada 78% 3% 18%
Spain 64% 17% 19%
France 51% 18% 31%
Great Britain 25% 39% 37%
Germany 51% 18% 31%
Ireland 51% 18% 31%
Italy 64% 17% 19%
Mexico 19% 37% 44%
Netherland 51% 18% 31%
New Zealand 12% 78% 10%
United States 40% 36% 24%

B.3 Best technology

We identify the best technology operated in each country from the country-year specific effect
as predicted by our model in equation 9. Here we show how we recover the best technology
operated in a country in a given year, qjt+1,c

, form the country-year specific dummy for that
year, γ1,c,t. Dropping the time subscript, we can write:

eγ1,c =
αk,cq

αk,c

jt+1,c
lc
αl,c

k̃
1−αk,c
c

(1− λ)

Rc

 1

1− (1−λ)(1−δc)
Rc

(
1

1+µc

)1−αk,c

 .

Note that under balanced growth, normalized capital services, k̃, can be computed as a
function of the growth rate of the best technology and other parameters (land per worker,
capital share, physical depreciation rate, land per worker and expected lifetime of a tractor,
see equation 14). The best technology operating in country c in a given year relative to that
of the US is:

qjt+1,c

qjt+1,US

=

 Dc

DUS
(k̃USAqjt+1,US

)αk,US−αk,c

(
k̃c

k̃USA

)1−αk,c
 1

αk,c

, (15)

for Dc = eγ1,c
(

1− (1−λ)(1−δc)
Rc

(
1

1+µc

)1−αk,c
)(

Rc
1−λ

1

l
αl,c
c αk,c

)
. We normalize the best technology,

land and output per worker in agriculture to one in the US, qjt,US = 1, lUS = 1, yUS = 1.
For a given tractor’s expected lifetime T = 1

λ , which we set to 15 years, we can identify
cross-country differences in the best technology operating in a given year from equation
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Figure B.I: Physical depreciation
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Physical depreciation and value added per
worker. Agricultural value added in 2013 is com-
puted from the USDA-ERS dataset by multiply-
ing the value of gross agricultural production per
worker by 1 minus the sum of intermediate in-
put factor shares. Source: FAOSTAT and own
computations based on price quotes from a ma-
jor data publisher.

Table B.II: Physical depreciation

δ

Australia 1.58%
Belgium 1.57%
Bulgaria 1.63%
Brazil 1.66%
Canada 1.54%
Spain 1.60%
France 1.57%
Great Britain 1.59%
Germany 1.59%
Ireland 1.57%
Italy 1.64%
Mexico 1.63%
Netherland 1.59%
New Zealand 1.57%
United States 1.54%

Inferred physical depreciation. The table shows
inferred physical depreciation, δ, for the countries
in our sample. Source: Own computations based
on quotes from major data publisher.

15.46

B.4 Identification in the longitudinal age-price profile

We exploit the repeated time-series structure of our dataset to infer capital quality growth
from the longitudinal profile.

The longitudinal age-price profile for a tractor of vintage j̄t+1, introduced in the market
in year t, can be expressed as:

ln(pj̄t+1,t+a(a)) = a ln

(
(1− δ)

(1 + µ)1−αk

)
+ ln(pj̄t+1,t(0)),

46Our results are robust to a value for the tractor’s expected lifetime. When we set T to 9.3 years, which
is the sample average age, our model explains only 1% more of the cross-country variance of the logarithm
of output per worker in agriculture. Further details are available upon request.

56



Table B.III: Quality growth in the longitudinal profile

µlong µ− µlong
Australia 3.65% -1.37%
Bulgaria 4.42% -1.95%
Brazil 5.56% -2.08%
Canada 4.11% -1.30%
Spain 6.60% -1.89%
France 7.99% -3.98%
Great Britain 6.30% -3.28%
Germany 2.02% -1.09%
Italy 3.95% -1.19%
Mexico 7.67% -5.13%
Netherland 4.07% -1.30%
New Zealand 4.91% -1.98%
United States 3.38% -1.34%

The table shows the inferred growth of capital quality in the longitudinal profile. Column (a) reports the

inferred quality growth while column (b) reports the deviations from the baseline in pp.

where, recall, pj̄t+1,t(0) is the price of the tractor when new and is a function of the best
available quality in the year the tractor was introduced, qj̄t+1

. When we allow the path of
quality to differ across countries, regressing the price of a vintage on its age with country-
specific age coefficients as well as vintage- and country-specific intercepts identifies the growth
rate of quality, µ, across countries.

We construct synthetic vintages defined by a triplet of characteristics: year built, model
and manufacturer (for example, a 1970 8430 John Deere tractor). In total, we observe 17,882
of such vintages for 13 countries between 2007 and 2016 for a total of 62,006 observations.47

On this dataset, we run a random effects regression for the following specification:

ln(p̂j,c,t) = γ3,j,c + γ4,caj,c + εj,c,t, (16)

where j is a vintage, c is a country, γ3,j,c is a vintage and country fixed effect, γ4,c is a
country-specific coefficient on age and ε is an error term that is assumed to be normally
distributed.

The estimated coefficients on age have a correlation of 74.2% with the baseline estimates
based on the cross-sectional profile. Table B.III shows the inferred growth rate of capital
quality: the cross-country average is 5.0% per year, compared to 2.8% in the baseline for the
same set of countries. In the US, the growth rate of capital quality is 3.38%, 1.37 percentage
points higher than in the baseline. The most sizeable deviations from the baseline come for
France, Great Britain and the Mexico with the new estimates being more than 3 percentage
points higher than the baseline. On the opposite end, Germany and Italy have estimates

47The 13 countries for which we are able to build this vintages are Australia, Bulgaria, Brazil, Canada,
Spain, France, Great Britain, Germany, Italy, Mexico, the Netherlands, New Zealand, and US. We compare
cross-sectional results on the same dataset.
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about 1% higher in the longitudinal profile.

Our accounting exercises measure that capital quality explains on average 50.9% of the
growth rate of agricultural productivity, compared to 27.4% in the baseline for the same
countries.48 The 23 percentage points increase in the measured contribution of capital quality
may be explained by the slope of the longitudinal profile picking up forces that are un-related
to capital quality.

B.5 Pricing to market

We adjust our estimation procedure to take into account the possibility of there being pricing-
to-market effects in such that the same good is sold at different prices in different countries
even after adjusting for exchange rates, purchasing power and transportation costs.

We start by specifying the observed price of a tractor in our dataset (poi,c) as the product
of two components: the discounted value of rental flows evaluated at the market rate (pi,c,
as before) and a pricing-to-market factor (PTM):

ln(poi,c) = ln PTM(yc) + ln(pi,c),

where the pricing to market factor depends on the per capita income of the country where
the tractor is sold, c. Our pricing equation therefore reads:

ln(poi,c) = ln PTM(yc) + ln

(
Γc

1− ψ

)
+ a ln

(
1− δ
1 + µ

)
.

Simonovska (2015) measures that doubling a country’s per capita income results in an 18%
increase in the price of identical items sold there. We use her estimate and the normalization
of PTM = 1 for the US in each year to parameterize the pricing to market factor. Notice
that, since the price elasticity is positive and Simonovska (2015) attributes at most a third
of it to shipping costs, we believe the differences in capital quality we measure are a lower
bound for actual differences in that all the unexplained part is taken as unrelated to capital
quality.

The results of the development accounting exercise are robust to the presence of pricing-
to-market effects of the magnitude estimated in the literature in the pricing of tractors in
our dataset. The fit of the model on the cross-country variation in agricultural value added
per worker in 2013 is 72.5%, 5 percentage points below the baseline, and the contribution
of capital quality is 27.3%. Focusing on middle-income countries, the fit on the agricultural
value added differential with respect to the US decreases only slightly (on average, 8 percent-
age point). Overall, we measure that the average quality of agricultural equipment accounts
for 9.8% of the cross-country disparities in agricultural value added per worker in 2013, 8pct
points less than in the baseline.

48Great Britain is excluded from this average as the fraction of agricultural productivity growth explained
by capital quality is above 100% in both cross-sectional and longitudinal estimates.
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C Estimation results

Table C.I: Summary statistics

Country Observations Cross-sections Price Age Hours p/year Horsepower

Australia 1281 2014-2016 51102 11 478 182
Belgium 72 2015 58366 11 647 172
Bulgaria 90 2014-2015 61632 10 750 242
Brazil 1253 2013-2015 25814 14 669 120
Canada 23817 2008-2016 76443 10 375 173
Spain 315 2013-2016 31494 17 546 123
France 1543 2012-2015 38924 13 460 129
Great Britain 2993 2011-2015 52298 9 638 148
Germany 3007 2013-2015 52660 13 574 164
India 129 2016 4248 10 474 44
Ireland 185 2015 36613 11 772 123
Italy 207 2014-2015 22768 16 279 99
Mexico 633 2013-2016 33716 13 450 127
Netherlands 544 2013-2015 34166 15 474 123
New Zealand 715 2015-2016 50795 9 604 133
United States 337342 2007-2016 72525 12 303 168

Total 374126 71813 12 317 167

Benchmark dataset of tractor retail ask quotes.

59



Table C.II: Estimation results for retail prices

Raw data Imputed data Imputed & matched Data
(1) (2) (3) (4) (5) (6)

Country Dummy * age
Australia -0.0499 -0.144 -0.112 -0.114 -0.111 -0.113

(0.000420) (0.000578) (0.000494) (0.000481) (0.000488) (0.000498)
Belgium 0.0101 -0.150 -0.174

(0.0131) (0.00401) (0.00114)
Brazil -0.114 -0.0832 -0.0721 -0.0737 -0.0780 -0.0794

(0.00322) (0.00133) (0.000381) (0.000353) (0.000876) (0.000886)
Bulgaria -0.105 -0.0776

(0.00189) (0.00595)
Canada -0.136 -0.160 -0.107 -0.109 -0.106 -0.108

(0.000282) (0.000591) (0.000766) (0.000770) (0.000728) (0.000741)
Spain -0.120 -0.129 -0.0537

(0.00125) (0.000838) (0.000426)
France -0.151 -0.163 -0.111

(0.00263) (0.00169) (0.000648)
Great Britain -0.118 -0.160 -0.121 -0.123 -0.120 -0.122

(0.000936) (0.000821) (0.000413) (0.000408) (0.000391) (0.000398)
Germany -0.152 -0.132 -0.0968 -0.0983 -0.0954 -0.0970

(0.00257) (0.00344) (0.00118) (0.00117) (0.00111) (0.00113)
Italy -0.0762 -0.0533 -0.0543 -0.0500 -0.0509

(0.00242) (0.00137) (0.00134) (0.00103) (0.00104)
Ireland 0.202 -0.189 -0.125

(0.100) (0.00195) (0.000693)
India -0.0812 -0.0894

(0.000108) (0.000243)
Mexico -0.0833 -0.102 -0.184 -0.187 -0.182 -0.185

(0.000934) (0.000779) (0.000916) (0.000867) (0.000703) (0.000717)
Neatherlands -0.186 -0.134 -0.0862 -0.0877 -0.0879 -0.0894

(0.00103) (0.000930) (0.000208) (0.000209) (0.000782) (0.000799)
New Zealand -0.136 -0.157 -0.126

(0.000585) (0.000754) (0.000702)
United States -0.122 -0.144 -0.0905 -0.0921 -0.0899 -0.0916

(0.000117) (0.000306) (0.000402) (0.000396) (0.000337) (0.000343)

Controls

Horsepower 2.561 4.588 1.949 1.986 1.930 1.966
(0.00558) (0.0222) (0.0149) (0.0152) (0.0134) (0.0136)

Hours -0.156 -0.176 -0.0877 0.276 0.289 0.294
(0.00212) (0.00460) (0.00434) (0.0126) (0.00756) (0.00770)

Wage*hours 0.336 0.264
(0.0125) (0.00485)

Crops N N N N Y Y

Shape parameters

θ1 0.0949 0.103 0.0632 0.0649 0.0624 0.0641
0.00106 0.000835 0.00176 0.00177 0.00176 0.00177

θ2 0.103 0.104 0 0 0 0
0.00246 0.00177 0.00326 0.00327 0.00327 0.00327

Observations 214,278 366,125 96,770 95,964 95,964 95,964
R2 0.887 0.898 0.906 0.906 0.907 0.907
Likelihood -2.343e+06 -4.028e+06 -1.104e+06 -1.095e+06 -1.104e+06 -1.095e+06

All regressions include country-year and manufacture dummies. Horsepower is measured in hundred units

of horse power, and hours per year are measured in ten thousand hours of usage. All regressions allow for

right-hand side (hours and horsepower) transformation with coefficient θ2 and left-hand side transformation

with coefficient θ1. Columns (1) and (2) use raw and imputed retail data. Columns (3)–(6) use retail data

matched with information on crop production. Other Controls stands for crops controls as described in the

data appendix. Standard errors in parentheses.
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Table C.III: Estimation results for retail prices, ctn’d.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Country-year dummy
Australia 2.390 2.195 2.296

(0.029) (0.031) (0.025)
Belgium 2.400

(0.054)
Brazil 1.404 1.205 0.672

(0.043) (0.038) (0.035)
Bulgaria 1.403 1.246

(0.053) (0.036)
Canada 2.825 2.437 3.035 3.161 3.191 3.150 3.229 3.038 3.094

(0.045) (0.043) (0.039) (0.040) (0.039) (0.037) (0.042) (0.041) (0.041)
Spain 2.391 2.356 1.816 1.985

(0.028) (0.030) (0.025) (0.025)
France 2.365 2.913 2.889 2.609

(0.038) (0.035) (0.054) (0.045)
Great Britain 2.343 2.318 2.477 2.589 2.221 2.208

(0.032) (0.029) (0.037) (0.039) (0.038) (0.031)
Germany 2.101 2.470 2.121

(0.050) (0.058) (0.058)
Italy 1.702 0.910

(0.074) (0.019)
Ireland 2.590

(0.035)
India -2.394

(0.022)
Mexico 1.225 1.155 1.153 1.137

(0.021) (0.021) (0.019) (0.022)
Neatherlands 2.421 2.135 2.011

(0.032) (0.025) (0.025)
New Zealand 2.481 2.704

(0.034) (0.021)
United States 2.248 2.406 2.436 2.515 2.635 2.745 2.845 3.064 2.997 2.868

(0.041) (0.040) (0.038) (0.040) (0.041) (0.041) (0.041) (0.043) (0.042) (0.040)

Estimates of country-year coefficients for retail data when hours have been imputed (Column (2) in table

C.II). Standard errors in parentheses.
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Table C.IV: Model-based estimation results for retail prices

Benchmark Panel Sample
(1) (2)

Country Dummy * age
Australia -0.0487 -0.0377

(0.000163) (0.00130)
Belgium -0.0523 -0.0122

(0.00134) (0.00492)
Brazil -0.0364 -0.00768

(0.000676) (0.00533)
Bulgaria -0.0303 -0.0302

(0.000537) (0.00147)
Canada -0.0542 -0.0398

(0.000206) (0.000339)
Spain -0.0470 -0.0388

(0.000347) (0.00259)
France -0.0586 -0.0490

(0.000601) (0.00229)
Great Britain -0.0552 -0.0391

(0.000296) (0.00119)
Germany -0.0460 -0.0377

(0.00118) (0.00171)
Italy -0.0669

(0.000710)
Ireland -0.0278 -0.0115

(0.000966) (0.00422)
India -0.0360

(7.37e-05)
Mexico -0.0358 -0.0320

(0.000311) (0.00108)
Neatherlands -0.0481 -0.0364

(0.000340) (0.00138)
New Zealand -0.0543 -0.0398

(0.000236) (0.00215)
United States -0.0487 -0.0387

(0.000103) (0.000263)

Controls

Horsepower -0.0332 -0.0815
(0.00101) (0.00336)

Hours 0.987 0.897
(0.00465) (0.00435)

Shape parameter

θ2 0.00990 0
0.00163

Observations 366,125 64,471
Panel observations 17,137
R2 0.893
Likelyhood -151842

Column (1) presents our benchmark estimate using the logarithm of the price as the dependent variable.

The regression allows for a Box-Cox transformation on the right-hand side (hours and horsepower) with

coefficient θ2 and manufacturer controls. Column (2) presents estimates of a panel regression with random

coefficients. Standard errors in parentheses.
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Table C.V: Benchmark estimation results, ctn’d.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Country-year dummy
Australia 0.800 0.732 0.760

(0.011) (0.012) (0.010)
Belgium 0.789

(0.019)
Brazil 0.468 0.411 0.219

(0.016) (0.014) (0.013)
Bulgaria 0.488 0.436

(0.016) (0.011)
Canada 0.931 0.798 0.992 1.034 1.043 1.027 1.051 0.990 1.007

(0.017) (0.016) (0.015) (0.015) (0.015) (0.014) (0.015) (0.015) (0.015)
Spain 0.822 0.817 0.631 0.675

(0.009) (0.011) (0.009) (0.009)
France 0.802 0.994 0.992 0.897

(0.013) (0.011) (0.018) (0.015)
Great Britain 0.781 0.773 0.812 0.861 0.736 0.712

(0.011) (0.010) (0.013) (0.014) (0.014) (0.011)
Germany 0.705 0.834 0.715

(0.017) (0.019) (0.019)
Italy 0.572 0.306

(0.022) (0.006)
Ireland 0.877

(0.013)
India -1.044

(0.009)
Mexico 0.401 0.381 0.373 0.368

(0.007) (0.007) (0.006) (0.007)
Neatherlands 0.800 0.711 0.694

(0.012) (0.010) (0.010)
New Zealand 0.815 0.892

(0.012) (0.008)
United States 0.736 0.785 0.789 0.816 0.855 0.890 0.920 0.990 0.971 0.930

(0.015) (0.015) (0.014) (0.015) (0.015) (0.015) (0.015) (0.016) (0.016) (0.015)

Estimates of country-year coefficients for our benchmark estimation (Column (1) in table C.IV). Standard

errors in parentheses.
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Table C.VI: Estimation results, subsample tracking country of origin

βage βage,imp Country dummy Country dummy*imp

Brazil -0.0379 -0.00228 -0.0212 0.00142
(0.00600) (0.00886) (0.0726) (0.105)

Canada -0.0507 -0.00406 0.919 -0.0109
(0.00310) (0.00319) (0.0484) (0.0483)

France -0.0707 0.0141 0.911 -0.222
(0.0106) (0.0116) (0.101) (0.113)

Great Britain -0.0637 0.00133 0.709 0.00903
(0.00501) (0.00552) (0.0489) (0.0505)

Germany -0.0469 -0.0164 0.627 0.0557
(0.00193) (0.00304) (0.0225) (0.0327)

Mexico -0.0185 -0.0825 0.981
(0.000875) (0.0155) (0.274)

United States -0.0487 0.00783 0.916 -0.152
(0.000190) (0.000306) (0.00731) (0.00415)

Controls

Horsepower -0.0192
(0.00105)

Hours 0.544
(0.00167)

Shape parameter

theta2 -0.127
0.00338

Observations 95,951
R2 0.893
Likelyhood -33811

Estimates of country-year coefficients for our benchmark estimation (Column (1) in table C.IV). Standard

errors in parentheses.
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