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Abstract

If bidders are uncertain about their value when they participate in an auction, they may
overbid and suffer ex-post losses. Limited liability mitigates these losses, and may result
in more aggressive bidding and higher seller revenue, but also in an inefficient allocation.
Using a combination of theory and experiment, we analyze three different forms of liability
in second-price auctions: full liability, limited liability by default with varying penalties,
and resale-based limited liability. With a default penalty, bids are higher than under full
liability, but final revenue and efficiency are lower due to the frequency of default. Auctions
with resale result in the highest revenue and allocative efficiency, and are as effective as a
low default penalty in alleviating bidders’ losses. Hence, allowing resale as a form of limited

liability may be preferred by both bidders and sellers over other liability rules.
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1. Introduction

It is common in many auctions that bidders are uncertain of their valuations for the item on sale
when placing their bids. Examples range from auctions for second-hand items on eBay, auto
salvage, foreclosure and commodities such as cotton or timber, where the quality of the item is
uncertain, to large-scale spectrum auctions with uncertain future demand.! When the value of
an item cannot be easily verified prior to placing a bid, or when the exact value is realized only
after the auction is concluded, bidders must choose their bids carefully. Even with meticulous
planning, however, bidders may suffer losses if they overbid relative to their realized final value
(e.g., Pagnozzi, 2007b).

Given the potential for overbidding and possible losses, liability rules stipulated by auction
designers prior to the auction taking place have a significant effect on bidders’ behavior and
the final allocation. In his practical guide for auction design, Klemperer (2002) highlights the
importance of properly structured default penalties: “If default costs are small, then bidders are
bidding for options on prizes rather than the prizes themselves” (p.176).

In fact, the failure to properly design clear auction payment and default rules can have
dramatic effects. For example, McMillan (1994) reports of an Australian auction for satellite
television services where there was no penalty for default and the rules specified that the licenses
were awarded to the next highest bid in the case of default. The unexpected “dark horse winners”
gamed the auction by placing high winning bids that they had no intention of fulfilling, as well as
other lower bids. After a series of defaults, the licenses were awarded for an amount substantially
below the original highest bids, and one of the winners then resold for a profit. According to
McMillan (1994), “The flaw in the auction rules, the source of the cascading bids, was the
absence of a penalty for default, which meant bids were not meaningful” (p. 149).

However, how an auction designer should optimally set default penalties, or whether he
should even allow default, is a nontrivial decision as different rules will have differing effects on
bidding behavior and auction outcomes. In the field, a variety of different default and liability
rules are observed, some of which appear to have been introduced in an ad hoc manner.

At one end of the liability spectrum, in some auctions bidders are allowed to default with no
penalty, through bid retraction or even non-payment. For example, in the online marketplace
eBay winning bidders can ask for a full bid retraction.? At the other end of the liability spectrum,
bidders are fully liable for any bid placed. While the bulk of auction research assumes full
liability, enforcing full liability in practice is difficult, since it requires mechanisms to ensure full
payment by winners, such as a refundable deposit equal to the maximum possible bid. With
uncertain valuations, full liability leads to more conservative bidding because winning bidders
have no outside option in the event of a loss. Full liability, however, may increase efficiency by

limiting default.

' A similar uncertainty also arises when bidders purchase to resell in a secondary market.
*Winning bidders can also just refuse to pay. While this behavior is recorded by eBay which could result in
future restrictions, no specific monetary penalty is imposed.



Between the extremes of costless default and full liability, there are many common environ-
ments where default is allowed with a monetary penalty. For example, defaulting bidders in
the FCC C-Block Auctions paid “a penalty equal to the difference between the amount bid and
the amount of the winning bid the next time the license is offered by the Commission plus an
additional penalty equal to 3 percent of the subsequent winning bid.”? In many other auctions,
bidders make an initial deposit equal to a percentage of the maximum bid, which is forfeited
in the event of default. For example, to participate in timber auctions in the U.S. state of
Washington, bidders pay a deposit of 10%, which is increased to 25% for previous defaulters.*
Since these penalties require a payment which is lower than the full amount owed, they might
help winning bidders mitigate realized losses. Hence, the option of default may allow bidders to
bid more aggressively, which raises (nominal) revenue but also increases the probability of an
inefficient default. Clearly, the choice of a default penalty should balance the trade-off between
revenue and the probability of default, which depends on the behavioral response by bidders.

All statutory limited liability elements are typically explicitly specified in the auction rules.
In addition, a different and less obvious form of (non-statutory) limited liability for bidders
arises through the opportunity to resell an item acquired in an auction, before having to pay
the auction price. Resale is a common occurrence in a variety of auctions where bidders face
uncertainty about their private valuations.® In fact, once uncertainty over valuations is resolved,
a winning bidder who realizes he paid more than his actual value is willing to resell to a new
buyer with a higher value, thus limiting his losses or even making a total profit.

Therefore, allowing resale provides an outside option to auction winners who overpaid and
create a form of limited liability.® Essentially, while with default limited liability arises through
the possibility of returning the item to the initial seller, with resale it arises through the pos-
sibility of exchanging it with another bidder. It follows that allowing resale may induce more
aggressive bidding, thus increasing revenue without the threat of default. And it can also lead
to efficiency gains since items are resold to higher-valued buyers.

Although bidders’ theoretical response to outside options should result in more aggressive
bidding with limited liability, their actual behavior across different liability rules may depend
on a number of behavioral reasons. For example, bidders may differ in their risk tolerance or,
with resale-based limited liability, they may be less sophisticated than theoretically assumed
and therefore unable to integrate a resale opportunity into their strategies. Thus, it is unclear

how actual bidders react to different limited liability environments, including those with more

3Source: C.H. PCS, Inc., BTA No. B347 Frequency Block C Order.
Retrieved: January 21, 2016 from http://wireless.fcc.gov/auctions/10/releases/da961825.pdf

4Source: Public Auction Sale of Timber, Book 965. July 2016.

Retrieved: February 27, 2018 from http://www.dnr.wa.gov/publications/psl ts_jull6 auctionbook.pdf

®See e.g. Haile (2001) for an analysis of resale after timber auctions, and Haile (2003) for a general analysis of
private value uncertainty and resale.

SWhile in reality restricting post-auction resale may be difficult, there are various auctions where resale is not
allowed. For example, resale was explicitly forbidden in the early U.S. spectrum auctions conducted by the FCC,
and in European countries. More recently, the FCC has relaxed restrictions on resale, but may impose penalties
for transactions taking place less than 5 years after the auction (see 47 C.F.R. section 1.2111 of the FCC).



nuanced incentives such as resale or high default penalties.”

In order to address these issues, we analyze how bidding behavior and auction outcomes
change across different liability environments, using a combination of theory and economic ex-
periments. We consider a second price auction with two risk neutral bidders who observe a
private signal of their value, which then becomes known at the conclusion of the auction. Three
different settings are compared: full liability, limited liability induced through default with a
penalty payment, and resale-based limited liability. The baseline environment is full liability,
where the winner always pays the auction price. In the limited liability environment the winner
can default by paying a percentage of the auction price, while with resale-based limited liability
the winner can resell the item to a losing bidder after the auction.

In theory, bidding in all limited liability treatments should be more aggressive than with
full liability, with the strongest differences for lower private signals. For higher private signals,
predicted differences between liability rules are less stark and, depending on the default penalty,
bidding may be equivalent to full liability.

Our experiment consists of four treatments: Full Liability, 5% Default, 25% Default, and
Resale. These treatments mimic the theoretical environment and were designed to ensure tight
control over decisions to accurately test the response of bidders to varying liability rules. In the
default treatments, the winning bidder was forced to default whenever his loss in the auction
was lower than the loss with default, by paying either a 5% or a 25% default penalty. In the
resale treatment, whenever the winner had a lower realized value than the loser, the item was
transferred to the loser at a resale price equal to his value. We introduce these controls over
decisions (which abstract from real world scenarios where default is a choice and resale involves
a less structured process) in order to cleanly test bidders’ reaction to the default and resale
environments, without confounds such as profitable default or resale failing to occur because of
bidders’ mistakes.®

We find that bidding behavior does vary across different liability environments. In support
of the theoretical predictions, bidding behavior is most aggressive in the 5% default treatment.
We also find that bidders are able to integrate the incentives of the resale market into their
bidding decisions, which results in higher bids, but the effect of resale weakens over time. So
we have partial support of the theory in the case of resale-based limited liability. In contrast to
predictions, we find that bidding behavior under a high default penalty (25%) is similar to full
liability, so bidders only react to limited liability induced through default when the penalty is
relatively low.

These results indicate that bidders are sensitive to the type of liability environment they face

"Previous studies (Roelofs, 2002, and Onderstal and Van der Veen, 2011) find empirical evidence that bidders
respond to strong limited liability incentives (full costless default or very low penalties) compared to a full liability
baseline.

8For example, if bidders failed to respond to the incentives of a more flexible resale market it would be unclear
if they were not responding because of beliefs that the resale market would fail, or because they misunderstood
the limited liability incentives of resale.



in an auction, but in contrast to theoretical predictions they do not always respond to limited
liability by bidding more aggressively. Roelofs (2002) and Onderstal and Van der Veen (2011)
provide previous experimental evidence of more aggressive bidders’ behavior but consider full
default and a low and fixed default penalty, respectively. Hence, their results are in-line with
the behavior observed under a low default penalty in our experiment.

Turning to seller revenue, while bids are observed to be highest under the 5% default rule, the
final revenue achieved in this case was often lower due to the prevalence of default. Consequently,
revenue is highest in the resale treatment. The resale treatment also resulted in the highest
allocative efficiency. From the bidder’s perspective, average earnings are essentially equivalent
across all environments (including full liability). Conditional on making a loss, resale or a low
default penalty (5%) were most effective at mitigating losses.

Therefore, our results suggest that resale may be the preferred limited liability mechanism by
both sellers and bidders. The reason is that, in addition to allowing bidders to limit losses once
uncertainty over their valuations is realized, resale also allows to correct an inefficient allocation
of the item achieved in the auction due to this uncertainty, while default does not and may even
increase inefficiency by delaying the final allocation to the bidder with the highest value.

The rest of the paper is organized as follows. After a brief discussion of the related literature,
in the next section we present the theoretical predictions. Section 3 describes the design of the

experiment. Section 4 discusses the experiment results and the last section concludes.

Related Literature. This paper contributes to the literature on limited liability in auctions.
A number of theoretical papers have established that changing the liability of a bidder changes
the underlying incentives of the auction which affects bidding behavior and ultimately, auction
outcomes. For example, Waehrer (1995) demonstrates that under a bid deposit, which is the
maximum payment required under default, bids become more aggressive as the deposit amount is
decreased which also leads to higher levels of default. Harstad and Rothkopf (1995) examine the
possibility of bid withdrawals, also finding more aggressive bidding under this scheme. Zheng
(2001), Pagnozzi (2007a), and Board (2007) analyze limited liability induced through wealth
constraints where capped downside losses (due to lower initial wealth) result in more aggressive
bidding behavior and inefficient allocations. Similar results have also been established in the
procurement setting (e.g., Roelofs, 2002; Parlane, 2003; Burguet et al., 2012). While more
aggressive bidding should lead to higher revenues; it’s not necessarily the case that sellers are
better off since the winning bidder may default, particularly if sellers are unable to fully recover
items (Board, 2007).

On the experimental side, to our knowledge, only two papers deal with limited liability rules

in the auction setting.” Roelofs (2002) examines a common value procurement auction with

90ther experimental papers have addressed the possibility of default and limited liability, in a different sense.
Limited liability created by budget constraints was examined by Hasen & Lott (1991) in a comment regarding
the design of Kagel & Levin (1986). A typical constraint faced in economic experiments, and the issue raised
by Hasen & Lott, is that subjects cannot make losses. Therefore, subjects with low cash balances have limited



full (costless) default, finding empirical evidence that bidders do choose to bid more aggressively
when default is allowed, but mixed evidence on the effectiveness of the theory to predict behavior.
Onderstal and Van der Veen (2011) analyze first and second price auctions with a fixed penalty
in the event of default finding that bidders react more aggressively than theory predicts to the
presence of limited liability. Our paper differs from both of these studies in three important
ways: (i) differences across limited liability formats are examined (ii) resale is introduced as a
market-based form of limited liability (iii) the default penalty is changed to a percentage-based

penalty, and responses to the level of the penalty are also examined.

2. Theoretical Analysis

Model

In this section, we construct a simple model that provides the framework to experimentally
investigate the effects of different liability environments on bidding strategies and auction out-
comes. We consider a (sealed-bid) second-price auction for one item, with no reserve price:
bidders simultaneously submit a bid for the item; the highest bidder is awarded the item and
pays a price equal to the second-highest bid.

There are 2 risk-neutral bidders. The final use value for the item for the seller is 0, while

the final use value for bidder 7 is
v, =x;+¢€, 1=12.

Prior to the auction, bidder i observes the private signal z; which is drawn from a uniform
distribution on the support [0,Z]. However, the bidder does not know ¢;, an idiosyncratic and
uncertain component of his valuation, which is equal to 0 with probability %, and is equal to
with probability % All signals and use values are independent.

Therefore, the final use value of bidder 4, i = 1,2, is

x; with probability %,
v =
’ x; + € with probability %,

and
E[Ul] =x; +

DO | M)

After the auction, both bidders learn both use values — i.e., v1 and v become common knowl-

edge.1?

liability because the downside loss is capped at zero. Kagel & Levin (1991) respond to this comment with how
they controlled for limited liability by providing cash endowments to the subjects that covered the maximum
possible loss. Budget constraints can also be viewed as a form of market-based limited liability, but this type of
liability is not examined in this paper.

0The assumption that a bidder learns the use value of his opponent simplifies the analysis of the resale market
but does not affect our qualitative results.



This valuation structure captures an environment where bidders are uncertain about their
exact valuations when they participate in the auction, but this uncertainty is resolved after the
auction. Therefore, the auction winner may end up paying more than his valuation for the
item on sale, and realize it after the auction terminates. In this case, the auction winner may
prefer not to keep the item and pay the auction price, if he is protected by some form of limited
liability.

We consider three different liability environments after the auction:

1. Full Liability: the winning bidder must pay the entirety of the auction price to the seller.

2. Statutory Limited Liability through Default: the winning bidder can default (after learning
his use value), return the item to the seller and only pay a fraction a € (0, 1) of the auction

price to the seller.

3. Market-Based Limited Liability through Resale: the winning bidder cannot default but can

resell the item to the losing bidder, by making a take-it-or-leave-it offer.'!

While many other resale mechanisms yield qualitative predictions that are similar to the
ones that we will describe, our set-up provides a clean framework to analyze the response of
bidders to the limited liability aspects of a resale opportunity, which is our primary topic of
interest. With this modelling choice, the resale market yields the highest profit to the winning
bidder, since he can make a take-it-or-leave-it offer equal to the value of the losing bidder, thus
obtaining the whole resale surplus. Therefore, bidders’ response to resale-based limited liability
should be strongest in our environment.

We focus on symmetric equilibrium bid strategies, that are increasing in bidders’ private

signals.

Full Liability

With full liability, if bidder ¢ wins the auction at price p, he earns an expected profit equal to
E[v;] — p; while if he loses the auction, he earns 0. Therefore, in a second-price auction bidder i

bids a price such that his expected profit from winning is equal to zero — i.e.,

5 .
bp(zi) = x; + 3 = 1,2. (2.1)
The bidder with the highest private signal wins the auction and the allocation is inefficient
whenever bidder ¢ wins but v; > v; — i.e., with probability %.12 Moreover, the auction

winner obtains negative profit whenever the bid of his competitor is higher than its use value.

"' This is similar to the resale market structure analyzed by Calzolari and Pavan (2006), for example, who
assume that the proposer of the take-it-or-leave-it offer is chosen randomly.
12 his is the probability that e; =0 and ¢; =€ and z; < ; < xj + €.



Specifically, bidder ¢ obtains negative profits when (mj + %) € [mi, xi + %] and ¢; = 0 — i.e.,

g 13

with probability ;.

Limited Liability through Resale

Suppose now that the winning bidder can resell. With symmetric and increasing bidding func-
tions, bidder ¢ wins the auction if and only if ; > x; and resells to bidder j (by making an offer
equal to v;) if and only if

Vi >0 & 5> T — Xj+ &

Therefore, conditional on bidder ¢ winning the auction, resale requires that: (i) ¢; = €, (i4)
g; =0, and (ZZZ) r; — x5 <E.
In a second-price auction, bidder ¢ bids a price equal to his expected profit from winning the

auction (because if he loses, he obtains zero even if he buys from the auction winner) — i.e.,

E[n; |i wins] = Pr [no resale|i wins| x E[v; |¢ wins and does not resell |+

Pr [resale |i wins] x E[resale price |i wins and resells].

In the Appendix, we show that the equilibrium bidding function with resale is

7 3= . =
. sT; + 2€ if z; < E,
b (i) = { 8 4 (2.2)

T _
xi+%+8€7¢ if z; > 2.

Since the winning bidder has the option of reselling the item to the losing bidder who may
have a higher use value, this provides a form of limited liability in the event that the winning
bidder turns out to have a low value. The resale option can mitigate losses at the conclusion of
the auction (if the auction price is higher than the realized value of the winner) or increase the
profit of the winner bidder (when there are gains from trade in the resale market). Consequently,
in the auction, a bidder is willing to bid a price that reflects the value of this option (i.e., the
expected resale price) and equilibrium bidding behavior is therefore more aggressive than with
full liability: b} (x;) > b (x;). Moreover, compared to the case with full liability, with resale the
seller’s revenue is higher and the final allocation is always efficient.

In our experiments, we let T = 50 and € = 20, so that the equilibrium bidding function with
resale is

bilas) = { et )5 w0
mi—i-;i—i—l() if x; > 20.

Figure 2.1 plots the bidding functions b (x;) and b}.(x;) (for T = 50 and € = 20).

131n this case, bidder i has value is z; and wins the auction, but the auction price is z; + % > ;.
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Figure 2.1: Bidding functions with Full Liability (solid) and with Limited Liability through
Resale (dashed).

Limited Liability through Default

If a bidder defaults after winning the auction, he returns the item to the seller and pays a
penalty which is a percentage « of the auction price. Therefore, a bidder chooses to default
after winning the auction at price p if and only if his profit from keeping the item and paying

the auction price is lower than the default penalty — i.e.,
vi—p<-—ap < v <(l-a)p,
and the actual profit of the auction winner is
max {v; —p; —ap}.

The choice to default critically depends on . As o — 1, the profit converges to the full lia-
bility case and bidders never choose to default. As a decreases, default becomes more attractive
for the winning bidder. As a — 0, we have the strongest form of limited liability: the winner
always defaults when v; < p and never earns negative profit. In the Appendix, we show that a
bidder defaults if and only if ¢; = 0 and

(1-— a)E.

T <xt =
! 200



The equilibrium bidding function with default is

T;+€ : *
Zite ifx; <z
bp(wi, o) = { It ' 7

_ (2.3)
ri+5 ifx; > a2

When a bidder’s private signal is sufficiently high, the bidder never chooses to default and bids
as with full liability. By contrast, when a bidder’s private signal is low, he bids a percentage of
his highest possible value and more aggressively than with full liability. The reason is that the
bidder knows he can cut down his losses in case the realization of the idiosyncratic component
is low: he has the option of giving up an item with low value and only pay a fraction of the
auction price. Therefore, b}, (s, ) > bj(x;).

Notice that the degree of a bidder’s aggressiveness with default is inversely related to the
penalty «: the higher the penalty, the lower the equilibrium bid. Moreover, the threshold z* is
decreasing in «: the higher the penalty, the easier it is that the bidder does not choose to default,
so that the bidder bids more aggressively due to limited liability for lower values only.

Of course, if the winner defaults and returns the item to the seller, then the allocation is
inefficient. Assuming that x* > 1, this happens whenever bidder 7 wins the auction but ¢; = 0
— i.e., with probability %. Hence, the probability of a final inefficient allocation is higher than
with full liability if and only if T > €.

With the parameters used in our experiment, the bidding function with default is

b (21, ) — { Halr £ 20) ifr < 122’_3
z; +10 if o > ——.

In the experiment, we implement two default treatments: one with a high penalty o = 0.25;
and one with a low penalty oo = 0.05. When o = 0.05, bidders always bid more aggressively than
with full liability (since z* = 190, which is higher than the maximum private signal). When
a = 0.25, * = 30 and the equilibrium bid function is kinked: bidders with high private signals
bid as with full liability and bidders with low private signals bid more aggressively than with
full liability (but less than with o = 0.05).

Figure 2.2 plots the bidding functions b},(z;,0.25), b}, (x4,0.05), and bj(x;) for comparison.
Notice that b}, (x;, 0.05) > by (x;), while b})(z4,0.25) > bj(z;) if and only if z; is sufficiently

low.14

Theoretical Predictions

Summing up, the theoretical predictions for our experiments are as follows:

Result 1. Bids and auction prices are higher with a low default penalty than with resale, and
are higher with resale than with full liability — i.e., b},(x;,0.05) > by (x;) > bp(x;).

Mn fact, % (z: +20) < %xi +15 < z; > %A

10
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Figure 2.2: Bidding functions with Low Default Penalty (dotted), with High Default Penalty
(dashed) and with Limited Liability through Resale (solid grey).

Result 2. Bids and auction prices are higher with a low default penalty than with a high de-
fault penalty,and are (weakly) higher with a high default penalty than with full liability — i.e.,
bB(fL‘l, 0.05) > b*D(l'l, 0.25) > b*F(l‘Z)

Result 3. Bidders with low (high) private signals bid higher (lower) with a high default penalty
than with resale — i.e., b, (x;,0.25) > by, (x;) if and only if x; < %0.

Result 4. The probability of a final inefficient allocation of the item on sale is 0 with resale,

and is higher with a low default penalty than with full liability.

3. Experiment Design

The experiments are designed to analyze bidding behavior and auction outcomes under four
differing liability treatments. The baseline full liability treatment requires winning bidders to
keep the item and pay the full auction price, even when making losses. The three remaining
treatments introduce forms of limited liability that vary between a high default penalty where
bidders are liable for 25% of the auction price if they default, a low default penalty where
bidders only pay 5% of the auction price under default, and a resale treatment where trading
automatically takes place in a post-auction resale market if the auction winner does not have
the highest value.

In all treatments, each round began with a second-price (clock) auction with 2 bidders

bidding for a hypothetical item of uncertain value.!> Each bidder observed a signal of the value,

5The use of a clock auction is based on previous experimental evidence that a clock improves subject under-
standing of bidding strategies (e.g., Bernard, 2006).

11



x;, independently drawn from a uniform distribution on [0,50]. The final use value of a bidder
was determined through an independent 50/50 lottery over two possible use values: z; or x;+ 20.
During the auction, bidders knew the distribution of signals, their own draw, and distribution
of final use values.

Bidders participated in the auction through a computer interface showing a bid clock in-
creasing from 0 in increments of 1. The clock represented the current price and subjects chose
to “drop out” at a price that they were not willing to pay. In contrast to a more typical im-
plementation of an ascending auction, subjects were not made aware of the dropout price of
their opponent and the auction only ended when both bidders dropped out. The winner was
the subject who dropped out last, and the auction price was equal to the first dropout bid.'®
If neither subject dropped out, the auction automatically ended at a price of 70, the maximum
possible final use value. Ties were broken randomly by the computer software.

At the conclusion of the auction, the final use values were randomly drawn by the computer
software. A bidder who won the item earned the difference between his final value and the
auction price. In the default penalty treatments, if the winning bidder was making losses he
would automatically default if the penalty payment under default, which was a percentage of the
auction price, was less than the loss from not defaulting. In the resale treatment, (regardless of
whether he was making losses) a winning bidder who did not have the highest value automatically
traded the item at a resale price equal to the highest realized value. The winning bidder would
then earn the difference between the resale price and the auction price. While alternative, non-
automated, bargaining mechanisms for resale could have been used (e.g., free-form bargaining),
our design allowed us to keep experimental control over the resale market.!”

The treatments are summarized below:

e Full Liability (F): The winner is fully liable for all losses in the event that earnings are

negative.

e Resale (R): If the losing bidder has a higher realized final value than the winner, the
winner automatically resells to the losing bidder at a price equal to the losing bidder’s

value.

e 5% Default (D5%): If by paying the auction price the winner would make a loss higher
than the default penalty, he automatically defaults and pays 5% of the auction price.

e 25% Default (D25%): If by paying the auction price the winner would make a loss
higher than the default penalty, he automatically defaults and pays 25% of the auction

Y6 This dynamic implementation of the second-price auction has the major advantage of allowing us to observe
the bids of both subjects in an auction, rather than just the losing bid.

"For example, it is known that in less structured resale procedures subjects often split the resale surplus
more favorably than predicted in a take-it-or-leave framework, and resale sometimes fails to occur because of
disagreement (Pagnozzi and Saral, 2017). Under these less controlled resale mechanisms, if subjects bid less
aggressively it is unclear whether they choose to do so because they do not understand the limited liability
aspects of resale or because they believe they cannot obtain any resale surplus.

12



Sessions (Independent Subsessions) Subjects

F/R 2 (4) 32
F / D5% 2 (4) 32
F / D25% 2 (4) 32
Session Structure

Rounds 1-5 F

Rounds 6-10 R, D5%, or D25%

Rounds 11-20 F

Rounds 21-30 R, D5%, or D25%

Table 3.1: Experimental sessions and round structure
price.

Subjects were students at Florida State University recruited using ORSEE (Greiner, 2004).
At the start of the experiment, they ran through the Holt and Laury (HL) (2002) risk preferences
procedure, and one of the choices was randomly chosen for payment. Prior to the beginning of
each treatment, subjects were given instructions that included an example of bidding behavior,
and the opportunity to participate in one unpaid practice period against a computerized robot
bidder. All subjects participated in 30 paid auction rounds. In the first ten rounds subjects
participated in the full liability baseline (5 periods) followed by one of the limited liability
treatments (5 periods). The last rounds were 10 periods of the full liability baseline, followed
by 10 periods of a limited liability treatment. Table 3.1 summarizes the treatment and session
structure.

We ran a total of 6 sessions, with 16 participants per session divided into 2 groups for
random rematching of partners in each period, leading to two independent groups (subsessions)
per session. In the results section, the analysis is performed with clustering at the subsession level
since this is the first level of independence. The same value draws were used in all treatments.
The experiment was programmed using Z-tree software (Fischbacher, 2007). Subjects’ earnings
were denominated in experimental currency units (ECUs), exchanged into dollars at a rate of
$0.04 per ECU. Subjects were given an endowment of 150 ECUs, from which losses and profits
were tallied. The earnings from the HL procedure were not included in this endowment. Average

earnings of the subjects were $28.16, including the show-up fee of $10 and HL earnings.

4. Results

We now describe the main experimental results. Section 4.1 presents summary statistics. The
remaining sections provide formal regression analysis and statistical tests of the observed regu-
larities: Section 4.2 considers bidding behavior, while Section 4.3 discusses revenue, efliciency,

and earnings.
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4.1. Summary Statistics

We begin with summary statistics that provide a broad picture of the main treatment effects. In
our analysis, we differentiate between results based on data from all periods and results based
on data restricted to the last 20 periods (last 20).

Bid Auction Final

z; <30 z; > 30 Price Revenue
F 34.6 25.6 47.6 25.1 25.1
(34.9) (24.5) (50.0) (26.5) (26.5)
D25% 34.2 25.1 47.8 25.1 23.2
(36.4) (27.4) (50.0) (29.2) (27.5)
R 38.1 29.6 50.7 29.1 29.1
(37.0) (27.5) (51.3) (29.0) (29.0)
D5% 38.6 29.2 52.7 28.8 20.5
(42.4) (32.6) (57.2) (34.8) (22.8)
last 20 F 35.6 26.5 50.2 26.0 26.0
(34.0) (24.1) (49.7) (25.8) (25.8)
D25% 34.1 24.6 50.0 24.7 23.0
(35.5) (26.9) (49.8) (28.6) (26.7)
R 37.5 28.9 51.7 28.3 28.3
(36.0) (26.9) (51.1) (28.1) (28.1)
D5% 38.9 29.6 54.5 29.0 19.1
(41.4) (32.0) (56.9) (33.5) (22.0)

Table 4.1: Average observed bids, prices, and revenue. Theoretical predictions in parentheses.

Table 4.1 summarizes observed average bids, auction prices, and final seller revenue across
treatments. We include in parentheses the predicted averages based on the signal draws used
in the experiment. The results are presented from the lowest to the highest predicted bid (F to
D5%). Observed average bids in the R and D5% treatments are higher than the full liability
baseline, in line with the theoretical predictions. In the D25% treatment, bids are roughly
equivalent to those with full liability, even when separating low (z; < 30) and high signals
(z; > 30). So observed behavior with a high default penalty is not more aggressive than with
full liability (as was predicted for low signals).

Comparing the observed results to the point predictions, for low signals, bids are relatively
close to the prediction under full liability, higher than predicted under resale, and lower than
predicted in both default treatments. So resale results in the highest average bids for lower
signals, which is in contrast to the prediction of highest average bids under D5%. For high
signals, observed averages are always lower than predicted, with the least deviation in the resale
case. More generally, the comparison demonstrates more similarity between the F and D25%
treatments for all private signals, rather than D25% and R as predicted. Restricting the data
to the last 20 periods, average bids for higher signals increase, indicating some learning in the
direction of the theory. This effect is not observed for lower signals except in the full liability
treatment.

Auction prices equal the first drop out bid in a group and are highest in the resale and

5% default treatments, mirroring the results for average bids. In contrast to the theoretical
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predictions, average auction prices are slightly higher in the resale treatment than in the 5%
default treatment. Restricting the data to the last 20 periods reverses this ranking, but the
differences between the two treatments remain small.

The final revenue earned by the seller in the auction takes into account default and it is equal
to the percentage of the auction price paid by the winner in case of default, and to the auction
price otherwise (i.e., in the resale, full liability, and default treatments with no default). The
theoretical predictions are based on the realized final draws from the experiment. As expected,
default lowers revenue compared to the auction price, especially in the D5% treatment. The
resale treatment results in the highest revenue, while revenue in the two default treatments is

lower than in the full liability baseline.

Earnings Losses % Losses | % Default | % Resale
Auction Final | Auction Final
F 17.0 —8.4 18.5 — —
(17.2) (—5.5) (16.8)
D25% 14.9 15.5 —8.3 —5.4 20.4 8.8 —
(12.8) (13.3) (=7.9) (=5.0) (18.8) (10.0)
R 11.9 15.3 —114 -04 22.5 — 29.6
(13.7) (15.4) (—6.7) (0.8) (19.2) (17.9)
D5% 12.2 14.4 -10.5 -1.9 25.0 22.9 —
(7.1) (10.1) | (-10.3)  (—1.9) (35.8) (33.3)
last 20 F 14.9 —8.7 22.7 — —
(16.6) (—5.3) (17.7)
D25% 14.6 15.0 —-7.3 —5.5 20.6 7.5 —
(11.8) (12.5) (—8.3) (—5.0) (20.0) (11.9)
R 11.6 14.6 —11.4 -2.1 22.5 — 29.4
(13.1) (14.9) (=7.0) (0.4) (20.0) (18.1)
D5% 11.8 14.6 —-124 -2.0 26.9 25.6 —
(7.7) (10.8) | (-10.8)  (-1.8) (85.0) (32.5)

Table 4.2: Average observed earnings, and frequency of losses, default, and resale. Theoretical
predictions in parentheses.

Table 4.2 summarizes bidders’ earnings at the auction stage and final earnings which are
adjusted for default and resale (columns 1 and 2). We also report auction and final average
losses (i.e., earnings conditional on a bidder paying more than his value in the auction). The
last three columns provide relative frequencies of auctions ending with bidder losses, default, and
resale (by the winner to the highest-value bidder). We include comparisons to the theoretical
predictions, based on the realized final draws from the experiment (rather than expectation), to
evaluate the relative performance of theoretical behavior given the realized values.'®

Higher auction prices in the R and D5% treatments resulted in lower auction earnings for
bidders, but resale and default helped raise final earnings by limiting losses. With full liability,
bidders obtain higher average final earnings; but when the data is restricted to the last 20

periods, bidders are similarly well-off in all treatments, with average earnings around 15. After

18 Although the equilibrium bidding strategy does not lead to losses in expectation, a bidder may still suffer
losses for particular value realizations.
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the auction, bidder losses were reduced by all limited liability rules, with the strongest effect in
the R and D5% treatments.

Losses at the auction stage and default were most common in the low penalty (D5%) treat-
ment, which is expected since bidding is most aggressive in this treatment. The full liability (F)
treatment results in the lowest frequency of losses, as predicted. Restricting the data to the last
20 periods, however, shows that bidders were least likely to make losses in the D25% treatment.
Resale markets opened in approximately 29% of auctions, which is 11 percentage points higher
than the theoretical prediction. The resale market was not only used to mitigate losses; out of

the 71 resale events, in 32 cases (45%) the winning bidder was not making losses in the auction.

Auction Efficiency Final Random
pre-lottery post-lottery | Efficiency | Efficiency
F .94 .92 .92 .75
(1) (-96) (:96)
D25% .92 91 .87 .74
(1) (:96) (:88)
R 93 92 1 .75
(1) (.95) 1)
D5% .94 .92 .74 .75
(1) (:94) (.67)
last 20 F .95 .92 .92 .75
(1) (.95) (.95)
D25% .93 .92 .88 73
(1) (:95) (-86)
R 94 .93 1 .74
(1) (.95) 1
D5% .94 .93 .72 .75
(1) (.94) (.67)

Table 4.3: Average observed efficiency. Theoretical predictions in parentheses.

Table 4.3 summarizes auction efficiency and how (final) efficiency changes after the resolution
of value uncertainty, as well as after resale and default when relevant. Theoretical predictions
are based on signal draws for pre-lottery efficiency and realized final values for post-lottery and
final efficiency. The random efficiency measures in the last two columns results from allocating
the item to each of the two bidders with equal probability.

The uncertainty in final value creates two forms of auction efficiency. The pre-lottery effi-
ciency is defined as the ratio between the signal of the auction winner and the highest signal
of a bidders. In theory, this should be 1 in all treatments because bid functions are symmetric
and increasing in private signals. The observed pre-lottery auction efficiency, while lower than
1, is relatively high, with no notable difference across treatments. The post-lottery auction ef-
ficiency, calculated after the resolution of value uncertainty, is defined as the ratio between the
value of the winner and the highest realized value. In all treatments, this is slightly lower than
pre-lottery efficiency.

Because of default or resale, final allocative efficiency may differ from auction efficiency.
Notice that resale generates a final efficiency of 1 as the item is transferred to the bidder with

the highest realized value, while default generates a final efficiency of 0 since the item is returned
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to the seller. Final efficiency is lower in the D5% and D25% treatments, as bidders often exercised
the default option, especially with a low penalty option.

Random efficiency is defined as the average of the two bidders’ signals divided by the max-
imum signal. The auction always outperforms a random allocation in terms of efficiency. The
limited liability environment, however, can negatively impact efficiency. In fact, final efficiency
with a low default penalty (D5%) is lower than with a random allocation, because of the very
high default rates.

4.2. Bidding Behavior

Figure 4.1 provides a scatterplot of observed bids and private signal draws.!? The experiment
implemented a between subjects design for the limited liability treatments and a within subjects
design for the comparison of bidding behavior to the full liability baseline, so the graphs separate
the full liability data by the limited liability treatment in which a subject participated. Each
graph also includes the upper and lower bounds of the final use value (z; and x; +20), regression
lines (dashed) for observed bids, and theoretical bid functions (solid).

Following the average bid patterns observed in table 4.1, bids appear higher with limited
liability through resale (R) or with a low default penalty (D5%) than under full liability (F).
Contrasting the regression line with the theoretical prediction, it is evident that observed bids are
less aggressive than predicted in both default treatments. In the R and F treatments, regression
lines are above prediction for lower signals; while observed bids are at or below the prediction
for higher signals.

Although bids should lie between the signal and the upper bound of the final use value in all
treatments, we do observe bids outside of these bounds.?’ Bids above the upper bound appear
most frequently in the R and D5% treatments, while bids below the lower bound appear more
frequently in the F and D25% treatments.?! In the analysis that follows, we report results based
on all observations. In the appendix, we also present results excluding bids outside the bounds.

For a general view of treatment differences in bidding, we conduct power analysis on sub-
session averages for bids. The strongest analysis lies in the comparison of the F treatments
to the limited liability treatments, due to the within subjects design. Comparing F versus R
(using only the subset of F(R) means), subsession averages of 35.2 for F(R) and 38.1 for R are
significantly different (p = 0.01), with an estimated power of 98%.%? Subsession averages of 35.5
for F(D5%) and 38.6 for D5% are also significantly different (p = 0.03), and the power of this

19To improve readability, we only plot bids placed in rounds 3, 8, 13, 16, 23, and 26.

20In the resale treatment, bidding above the upper bound might be due to speculation (bidding aggressively
to win the item and resell). However, this cannot explain overbidding in the default and full liability treatments.
The observed overbidding is similar to behavior in sealed-bid second price auctions with known valuations (Kagel
et al., 1987; Cooper and Hang, 2008). This form of overbidding is different from the one observed in first price
auction because of risk aversion (Cox et al., 1988).

I Bidders choosing to bid below the lower bound of the lottery was also observed by Katok and Salmon (2009)
in a similar experimental design under full liability rules.

22The estimated mean effect under R for a test with 80% power and a = 0.05 is 37.12.
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F(R) F (D5%) F (D25%)

bid

Figure 4.1: Scatterplot of observed bids and signal x;. The upper (z; + 20) and lower bounds
(x;) for use values are in light gray. Dashed black lines are regression lines for the observed data,
and solid black lines represent the theoretical bid functions.

test is 78%.%3 In the comparison of F(D25%) and D25%, the subsession averages of 32.9 and
34.2 are not significantly different (p = 0.27). The estimated effect size in the D25% treatment
for a power level of 80%, o = 0.05, and given the mean bid of 32.9 in the F(D25%) treatment is
36.9, which is above what we observe.

Examining subsession average bids across limited liability treatments, there is a notable
difference between the R and D25% treatments with subsession averages of 38.1 and 34.2, which
are significantly different from each other (p = 0.06). However the power of this test is only 50%
given the between subjects nature of the data.?* Similarly, we observe differences between the
D5% and D25% treatments (averages of 38.6 and 34.2, p = 0.10), but the power is 37% due to

a higher difference in standard deviations.?”

2 The estimated mean effect under D5% for a test with 80% power and o = 0.05 is 38.7.

24 To reach a power level of 80%, given o = 0.05, we would need 14 independent observations (the current data
has 8).

%5 Despite having a similar difference in means to the R/D25% comparison, the difference in standard deviations
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To test the relationship between theoretical and actual bids, we analyze regressions with the
observed bid as the dependent variable and the predicted theoretical bid as the independent
variable for each treatment (see table A.l in the appendix). When observed bids match the
theoretical predictions, the coefficient on the theoretical bid should equal to 1. In the F and
R treatments, post-estimation tests did not reject the hypothesis that the coefficient on the
theoretical bid is 1 (p > 0.13), demonstrating adherence to the theory. In the D5% treatment,
this coefficient is .91 and significantly different from 1 (p = 0.02), indicating that bidding with
a low default penalty is less aggressive than predicted. In the D25% treatment, we also find
evidence that observed bids are lower than predicted with a coefficient of .94, however the p-value

resulting from the coefficient test for difference from 1 is only marginally significant (p = 0.09).26

(1) (2) (3) (4) () (6)

all last 20 ;<30 x; <30 &last 20 x; > 30 x; > 30 & last 20
x; 0.886%**  (0.934***  (.942%** 0.972%** 0.689%** 0.760%**
(0.0215)  (0.0217)  (0.0306) (0.0274) (0.0427) (0.0720)
R 3.153%** 1.330 3.178%** 1.137* 3.182%** 1.699
(0.393) (0.769) (0.479) (0.592) (0.949) (1.086)
D5% 3.342%%F 3 202%HF  3.854%F* 3.828%** 2.598*** 2.238%**
(0.420) (0.341) (0.608) (0.378) (0.450) (0.686)
D25% 1.582%* 0.655 1.007 0.176 2.475% 1.521
(0.701) (0.958) (0.691) (0.845) (1.146) (1.158)
Constant 12.51%F%*  13.21%%*%  11.92%** 12.76%** 20.05*** 20.04***
(0.574) (0.614) (0.544) (0.436) (1.708) (2.892)
Observations 2,880 1,920 1,719 1,191 1,161 729
R-squared 0.692 0.766 0.494 0.551 0.189 0.301
Clusters 12 12 12 12 12 12

Robust standard errors in parentheses
R p<0.01, ** p<0.05, * p<0.1

Table 4.4: Fixed effects regressions with bid as the dependent variable. Standard errors clustered
at the subsession level.

To examine the treatment effects on bidding behavior, table 4.4 presents fixed effects regres-
sion results with bid as the dependent variable. Models 1 and 2 examine basic treatment effects,
while models 3-6 account for differences based on low and high signal draws. Models 1, 3, and
5 use data from all periods, while models 2, 4, 6 restrict the data to the last 20 periods. In
all specifications, the full liability treatment is the baseline and all models include the private
signal draw z; and treatment dummies.

The positive significant coefficients on all treatment dummies in model 1 indicate that bids

are significantly higher in all limited liability treatments than in the full liability baseline, pro-

between D5%/D25% was higher. Hence, to reach a power level of 80%, given a = 0.05, we would need 20
independent observations (the current data has 8).

260Omitting observations where bidders bid below their signal or above the upper bound for final value, we
obtain similar qualitative results except for the R treatment, where a test that the coefficient on theory bid is
equal to 1 is rejected (coefficient 0.97, p = 0.05), so observed bids are lower than predicted.
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viding support for the theoretical predictions. Post-estimation tests between the limited liabil-
ity coefficients also demonstrate significant differences between the D25% and both the D5%
(p = 0.05) and R treatments (p = 0.07), supporting theoretical results 1 and 3. No significant
differences are found between the R and D5% treatments (p = 0.74), in contrast to the prediction
of theoretical result 4.

In models 3 and 5, the significant effect of the D25% treatment is mitigated, only reaching
marginal significance for high signals. Coeflicient tests between liability treatments in model 3
(low signals) demonstrate results similar to model 1: significant differences between the D25%
and both the R and D5% treatments (p = 0.02 and p = 0.01, respectively), and no significant
differences between the R and D5% treatments (p = 0.39). In model 5, differences between the
limited liability conditions are reduced as coefficient tests demonstrate no significant difference
between treatments (p > 0.58), although bidding is still higher than with full liability.

In model 2, 4, and 6, the positive significant coefficient on the D5% treatment across all
specifications restricted to the last 20 periods indicate that bids are significantly higher than
in the full liability baseline, while no significant differences are found for the R and D25%
treatments. Notice, however, that this is not necessarily due to a reduction in aggressive bidding
in these treatments, because the higher constant in models 2 and 4 indicates higher average bids
than in the full liability treatment. This mirrors what was observed in the average bids summary
in table 4.1. Consequently, the increase in bids in the baseline F' makes it less likely to observe
differences, unless bids are also increasing in the limited liability treatments.

Coefficient tests between the limited liability treatments in model 2 demonstrate significant
differences between the D5% and both R and D25% treatments (p = 0.04 and p = 0.02, respec-
tively), while no significant difference emerges between the R and D25% treatments (p = 0.59).
Results are similar for coefficient tests in model 4.27 In model 6, coefficient tests show no signif-
icance difference between the limited liability treatments (p > 0.60), confirming that for higher

signals treatment differences are minimal in later periods.?®

Empirical Result 1: Bidding with limited liability is more aggressive than with full liability (F),
especially in the low default penalty (D5%) and resale (R) treatments. This difference decreases
over time, except in the low default penalty (D5%) treatment.

2TCoefficient tests between the D5% and R or D5% and D25% report p < 0.01, while the test between R and
D25% reports p = 0.37.

28We report the same set of regressions with observations where bidders bid below their signal or above the
upper bound for final value omitted in table A.2 in the appendix. Similar to the regressions testing the theoretical
bid, the discussed results qualitatively hold, with a notable difference in the R treatment. In this case, bidding
more aggressively than the F treatment is then only marginally significant. Of course, with resale, speculation
is a possible strategy, so bidding above bounds can be explained by this and so the restricted results are not as
informative since overbidding is not necessarily due to mistakes in bidding.
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4.3. Outcomes

In this section, we formally analyze outcomes including auction prices, sellers’ revenue, efficiency,
and buyers’ earnings.

Table 4.5 presents pooled OLS regressions on auction price, final revenue, and final efficiency.
The first two models have the auction price as the dependent variable; model 1 includes data
from all periods and model 2 is the restricted to the last 20 periods. The variables X () and
X(2) represent the highest and second highest signal draws in each auction group, respectively.
We also include variables for the risk profile of the participants in an auction group: max Safe
is the highest number of safe choices and min Safe is the minimum number of safe choices made

by a participant in the Holt and Laury (2002) risk preferences procedure.?

M @) ) @ &) ©)
Auction Price Final Revenue Final Efficiency
last 20 last 20 last 20
Xa) 0.129%**  0.106***  0.186***  0.170***  0.00590***  0.00611***
(0.0194)  (0.0202)  (0.0235)  (0.0269)  (0.000915)  (0.000795)
X2 0.766***  (0.888***  (0.655***  0.716%**  -0.00469*** -0.00628***
(0.0189)  (0.0286)  (0.0380)  (0.0645)  (0.000997) (0.00138)
R 4.623*FF  3.365%FF  4.532%FF 3. 112FF*  (0.0751*** 0.0741%%*
(0.612) (0.872) (0.556) (0.797) (0.00732) (0.00764)
D5% 3.748%** 3 564*HK 4 508FFF  _6.466%FF  -0.17THFHFF -0.195%**
(0.741) (0.828) (0.891) (1.632) (0.0213) (0.0325)
D25% 0.206 -1.134 -1.654%* -2.711°% -0.0491** -0.0293
(0.705) (0.912) (0.685) (1.298) (0.0209) (0.0187)
max Safe -0.461*%  -0.707**  -0.524* -0.610%* -0.00571 -0.00331
(0.243) (0.264) (0.261) (0.232) (0.00453) (0.00483)
min Safe 0.272 0.581 0.138 0.232 -0.00298 -0.0101
(0.466) (0.614) (0.337) (0.490) (0.00640) (0.00920)
Constant 9.852%**  10.44***F  10.76***  12.02%** 0.851*** 0.885***
(2.707) (2.972) (2.350) (2.761) (0.0521) (0.0482)
Observations 1,440 960 1,440 960 1,440 960
R-squared 0.546 0.624 0.457 0.492 0.167 0.190
Clusters 12 12 12 12 12 12

Robust standard errors in parentheses
K p<0.01, ** p<0.05, * p<0.1

Table 4.5: Pooled OLS regressions with either auction price, final revenue, or final efficiency as
the dependent variable. Standard errors clustered at the subsession level.

By theoretical results 1-4, the auction price should be highest in the D5% treatment and
lowest in the F treatment (and also in the D25% treatment for higher signals). The results in
table 4.5 partially support the theory. The significant coefficients on the R and D5% treatment
dummies and joint coefficient tests between the R and D5% treatments (p > 0.212) provide

29We obtain similar qualitative results for treatment effects if we exclude these behavioral measures.
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evidence that auction prices are highest in the D5% treatment, but also that they are equivalently
high in the R treatment (in contrast to predictions). The second highest signal impacts the
auction price more than the highest signal, which is expected in a second price auction where

the highest losing bid sets the price.

Empirical Result 2: Auction prices are highest in the low default penalty (D5%) and resale
(R) treatments, and lowest in the high default penalty (D25%) and full liability (F) treatments.

Models 3 and 4 examine final revenue of the auction seller, which can differ from the auction
price only in the default treatments. More aggressive bidding and lack of default in the resale
treatment leads to the highest final revenue. While auction prices are high also in the D5%
treatment, the frequency of default significantly lowers revenue compared to the full liability
treatment. Default also significantly lowers revenue in the D25% default treatment, but the
magnitude of this effect is smaller and, in later periods, is only significantly different from full
liability at marginal levels. The data also provides a behavioral effect of risk aversion: the
negative and significant coefficient on max Safe shows that groups with more risk averse bidders
have lower prices, and this effect is strengthened over time.

Models 5 and 6 examine final efficiency, which takes into account default and resale. Final
efficiency is 0 with default (since the buyer returns the item to the seller), is 1 with resale
(since the item is transferred to the bidder with the highest final value), and is equivalent to
auction efficiency otherwise. The positive significant coefficient on the resale treatment (R)
dummy and negative significant coefficient on the low default penalty (D5%) dummy indicate
that final efficiency is higher with resale and lower with a low default penalty than in the full
liability baseline, as expected. Behavioral differences in bidding also impacted efficiency because
increases in the second highest signal of a group reduces efficiency: the higher the signal of the

bidder who should lose, the more likely the auction allocation is to be inefficient.?’

Empirical Result 3: Final revenue and efficiency are highest in the resale treatment (R) and
lowest in the low default penalty treatment (D5%). Final revenue and efficiency are lower in
the high default penalty treatment (D25%) than in the full liability treatment (F), but this effect

decreases over time.

Table 4.6 examines bidders’ welfare and provides fixed effects regressions on bidders’ final
earnings, taking into account both resale and default. Models 1 and 2 have unconditional final
earnings as the dependent variable, while models 3 and 4 only consider observations where
bidders were making a loss at the conclusion of the auction (in order to analyze which limited

liability treatment is most effective in mitigating losses).

30Table A.3 in the appendix reports the same set of regressions with restricted data that omit groups with at
least one bidder who bid less than his signal or more than his highest final value. The results are qualitatively
similar, but significance levels are reduced. Of course, this must be interpreted cautiously since the restriction
eliminates a large number of group observations due to the strict rule of deleting any group where at least one
bidder bid outside of bounds (regardless of whether the other bidder bid within bounds).
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(1) (2) (3) (4)

Final Earnings Final Losses
last 20 last 20
T 0.528*** (0.508***  -0.0523 -0.0371
(0.0445)  (0.0367)  (0.0476) (0.0224)
R -0.440 0.280 8.280** 5.141
(0.894) (0.950) (2.713) (3.370)
D5% -1.189 0.0294 7.363%*F  7.501%**
(1.052) (1.636) (0.747) (0.992)
D25% -2.639** 0.433 3.168 4.309*
(1.114)  (1.713)  (L.795)  (2.107)
Constant 0.170 -0.746  -T7.361%**  _7.843%F*
(1.264) (0.762) (0.927) (0.675)
Observations 1,440 960 296 221
R-squared 0.166 0.142 0.232 0.246
Clusters 12 12 12 12

Robust standard errors in parentheses
¥k 5<0.01, ** p<0.05, * p<0.1

Table 4.6: Fixed effects regressions with bidder final earnings as the dependent variable. Stan-
dard errors clustered at the subsession level.

In model 1, the negative coefficients on the D25% treatment dummy indicates that bidders
earned significantly less under the 25% default penalty than full liability (F'). For the R and D5%
treatments, earnings are not significantly different from the full liability baseline. Coefficient
tests indicate that earnings are not statistically different between any of the limited liability
treatments (p > 0.15). In model 2 (the last 20 periods), bidders’ earnings in the R, D5%, or
D25% treatments are not significantly different from full liability and coefficient tests between
limited liability treatments also indicate no differences (p > 0.85). Models 3 and 4 provide
evidence that the R and D5% treatments reduce final losses, while the D25% treatment does
not significantly improve losses over full liability. Shifting to the last 20 periods (in model 4),
the D5% treatment is the only treatment that robustly mitigates losses.3!

Empirical Result 4: Bidders’ earnings are statistically equivalent across all treatments. Bid-
ders’ losses are lowest in the resale (R) and low default penalty (D5%) treatments, but this effect

decreases over time for the resale (R) treatment.

5. Conclusion

We study how different liability conditions affect bidder strategies in auctions with uncertain

values, and consequently revenue, efficiency, and bidders’ welfare. Evidence from an incentivized

31 The same set of regressions where the data is omitted when a bidder bid below his signal or above the highest
final value yield the same qualitative results (see table A.4 in the appendix). No differences are found in bidders’
earnings between treatments.
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environment shows that bidders do respond to changes in liability rules, but the level of the
response depends on the form and level of liability. Bidders are most aggressive when statutory
liability requirements (i.e. default payments) are low, but they also respond aggressively to
external market-based limited liability induced by the presence of a resale market. In contrast
to predictions, bids under a high default penalty are not more aggressive than with full liability
and are significantly lower than in the other limited liability environments.

Although a low default payment yields the most aggressive bidding, default limits the revenue
collected by the seller to a fraction of the auction price. The highest revenue is achieved in
the resale treatment, where more aggressive bidding leads to higher prices without default.
Moreover, resale outperformed the other environments in terms of efficiency since it provides an
opportunity to correct an inefficient auction allocation. From the bidder’s perspective, resale
and the low default penalty are most effective in mitigating losses.

While we provide a first empirical look into bidders’ response across liability requirements,
there are a number of key differences between the environments tested and the field that should
be taken into account when interpreting our results. First, we assumed an automated default
choice and did not consider future penalties in reputation or monetary payments. In the field,
bidders may be unwilling to exercise a default option for reputation reasons, so our results
are more informative for auctions where repeated interaction is unlikely. Second, the resale
market was also automated and took place immediately after the auction if gains from trade
existed. While resale does not bear the same stigma as default, market frictions like incomplete
information may limit the efficiency and the probability of resale in the field, which would lower
the limited liability incentives provided by resale.

In sum, the level of liability (high or low) and type of limited liability (statutory or through
resale) are both critical factors influencing the behavioral response of bidders. Our results
suggest that both sellers and bidders may prefer to have post-auction resale as a mechanism
to limit losses of bidders who are uncertain about their values, while simultaneously increasing
revenue. In all cases, liability requirements must be carefully considered when designing auction

markets, as they will affect the revenue and efficiency achieved.
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A. Appendix

A.1. Equilibrium Bidding Functions.

Consider first Limited Liability through Resale. In this case,

Pr[resale [i wins] = Prle; =] x Pr(e; = 0] x Pr{x; — z; < €l|a; > ]

. g 1
=min{ —; = ¢.
dz;’ 4
z;

Moreover, E [z; |i wins] = % and the expected resale price conditional on bidder ¢ winning and

reselling is

E[resale price | wins and resells] = E[v; |z; > x; and vj > v;]

S L
=max§ — +& T+ = ¢.
2 )

Finally, notice that

E[&i |:Ul > x4, x; < € and v; > Uj] = E[Si ‘61' > 6]'}

i

0x1+*x
= — 4z
3

W N

and

B Priz; <ax;—¢

Blei|zi > zj, 2 > & and v; > ;] = Pr[vi<ngmi>:rj an(}imi>€]
Prlz; — € < z; < x; and v; > vj]
Prlv; <wjlz; > x; and z; > €]

dx;, — 4 €
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Therefore, when x; < 20,

E[rm; |¢ wins] = Pr [no resale |i wins| x E[v; | wins and does not resell |+
Pr [resale | wins] x E[resale price |i wins and resells|
_3, <$i+2g) P (B )
4 3 4 2
7 3_
8

= =T + 18.
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By contrast, when x; > 20,

.. 5 2z, g 5
E[n; |i wins] = (1 - 4@) X (wz + 1z Z_E) + o X <a:Z + 2)

5
8$i '

g
:l'¢+§+

This yields the equilibrium bidding function (2.2).

Consider now Limited Liability through Default. Notice that a bidder never bids more than
x; + &, his highest possible use value. When ¢; = g, the winning bidder never defaults (since a
bidder never pays an auction price higher than z; + € and hence his profit from not defaulting
is strictly positive when ¢; = ). When ¢; = 0, the winning bidder defaults if

Zy

T, —p<—ap < p> .
11—«

Suppose that bidder ¢ defaults if ¢; = 0. Since losing the auction yields a profit of 0, in a
second-price auction the bidder bids a price p* such that his expected payoff from winning the

auction is equal to zero — i.e.,

Prie; =2 x (x; +€—p*) +Prle; =0] x (—ap™) =0
zi+e—(1+a)p
2

s

Of course, bidder ¢ never defaults if his profit from not defaulting is greater than the default
penalty, when he wins the auction at price p* and ¢; = 0 — i.e., when
x; +€ Ti+ €

_ - o go gt Lm)E
1+« 1+ ! T 2a

i

(In other words, p* < 7%= if x; > 2*, so that bidder i has no incentive to bid a price that makes
default attractive.) In this case, bidder ¢ bids z; + %, the price at which his expected profit is
equal to zero when he always pay the auction price.

Therefore, the equilibrium bidding function with default is (2.3).

A.2. Additional Regressions
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(1) (2) (3) (4)
F R D5%  D25%

Theory bid, b; 0.972%%% 1.010%¥%  0.914%%%  (.947*
(0.0169)  (0.0194)  (0.0183)  (0.0212)

Observations 1,440 480 480 480
Clusters 12 4 4 4
R-squared 0.917 0.935 0.933 0.923

Robust standard errors in parentheses
R p<0.01, ** p<0.05, * p<0.1

Table A.1: Pooled OLS regressions with the observed bid as the dependent variable using data
from all treatments. Standard errors clustered at the subsession level.

0 @) @) @ ) (©)
all last 20 z; <30 z;<30&last 20 x; > 30 z; > 30 & last 20
T; 0.987***  (0.988***  (.968%** 0.975%** 0.929*** 0.908***
(0.0127)  (0.0128)  (0.0207) (0.0164) (0.0218) (0.0347)
R 0.740* 0.307 0.880* -0.0294 0.375 0.664
(0.376) (0.437) (0.475) (0.483) (0.298) (0.536)
D5% 2.269** 2.436** 2.492** 2.384* 2.175%** 2.676%**
(0.846)  (0.803)  (0.973) (1.100) (0.662) (0.727)
D25% 0.172 0.351 0.394 0.0655 -0.529 0.696
(0.447)  (0.653)  (0.576) (0.856) (0.675) (0.476)
Constant 10.14***  10.43*** 10.32%** 10.68%** 12.65%** 13.52%**
(0.312)  (0.302)  (0.351) (0.329) (0.818) (1.398)
Observations 2,165 1,488 1,340 938 825 550
R-squared 0.909 0.923 0.757 0.791 0.631 0.666
Clusters 12 12 12 12 12 12

Robust standard errors in parentheses
R p<0.01, ** p<0.05, * p<0.1

Table A.2: Fixed effects regressions with bid as the dependent variable and the data restricted
to bids within the signal and upper bound of the final use value. Standard errors clustered at
the subsession level.
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M) @) ) () %) (©)
Auction Price Final Revenue Final Efficiency
last 20 last 20 last 20
X 0.0596%**  0.0448***  0.117***  (0.0891***  0.00606***  0.00547***
(0.0107) (0.0140) (0.0229) (0.0207) (0.000820)  (0.000695)
X(2) 0.897#F%  (0.923%**  0.776***  0.776%**  -0.00536*** -0.00621***
(0.0230) (0.0336) (0.0515) (0.0664) (0.00118) (0.00143)
R 1.873%** 1.769%* 1.889%** 1.674%* 0.0598%** 0.0613%**
(0.546) (0.896) (0.507) (0.770) (0.00832) (0.00996)
D5% 1.466 1.197 -5.493%H* - _6.312%F*  _0.162%** -0.1477%*
(0.926) (1.500) (0.488) (1.433) (0.0167) (0.0255)
D25% -1.324 -1.337 -2.411%F%  _2.438% -0.0255 -0.0220
(0.794) (0.963) (0.770) (1.172) (0.0186) (0.0181)
max Safe -0.362* -0.383 -0.419** -0.377 -0.0111%* -0.0118
(0.176) (0.257) (0.180) (0.272) (0.00571) (0.00765)
min Safe -0.158 0.0302 0.0344 0.141 0.00856 0.00551
(0.244) (0.364) (0.235) (0.379) (0.00536) (0.00785)
Constant 12.01%**  11.64%*F  11.52%F  11.90*** 0.855%%* 0.900%**
(1.577) (1.911) (1.350) (1.691) (0.0523) (0.0512)
Observations 813 o877 813 o7 813 o877
R-squared 0.780 0.778 0.621 0.604 0.184 0.174
Clusters 12 12 12 12 12 12

Robust standard errors in parentheses
K p<0.01, ** p<0.05, * p<0.1

Table A.3: Pooled OLS regressions with either auction price, final revenue, or final efficiency
as the dependent variable. The data is restricted to and the data restricted to groups where

neither bidder bid below signal or above the upper bound of the final use value Standard errors
clustered at the subsession level.
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(1) (2) (3) (4)

Final Earnings Final Losses
last 20 last 20
T 0.508%**  0.464***  0.00723 0.00124
(0.0415)  (0.0457)  (0.0368) (0.0370)
R -0.981 -0.108 6.061** 1.167
(1.457)  (1.213)  (2.375)  (1.372)
D5% -2.363* -0.797 5.556%** 5 883%**
(1.265) (2.405) (0.809) (0.943)
D25% -0.974 0.106 0.777 2.138%*
(1.191)  (1.862)  (0.551)  (1.136)
Constant 1.410 1.958*%  -6.830*** _6.885%**
(1.108) (1.150) (0.693) (0.778)
Observations 1,024 679 170 123
R-squared 0.162 0.132 0.217 0.206
Clusters 12 12 12 12

Robust standard errors in parentheses
K p<0.01, ** p<0.05, * p<0.1

Table A.4: Fixed effects regressions with bidder final earnings as the dependent variable and
the data restricted to bids within the signal and upper bound of the final use value. Standard
errors clustered at the subsession level.
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