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Abstract
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1 Introduction

Researchers are frequently interested in estimating heterogeneous effects on binary out-

comes in different population subgroups. Examples include studying dropout rates among

high school students by race, gender, and socio-economic status, examining labor mar-

ket participation decisions among married and single women, and investigating self-

employment outcomes by age and education level. In the empirical literature, it is common

to estimate such group-specific parameters by dividing the sample into corresponding sub-

samples and performing the estimation separately for each group. While this approach

is intuitively appealing, it generally results in inconsistent estimators when sorting into

groups is not random. Similar to linear models (Vella, 1988), consistent estimators of

heterogeneous parameters can only be obtained if the full information set is utilized, i.e.

when each group is considered as a part of the entire population. Estimation is further

complicated when considering panel data models, which are characterized by unobserved

hererogeneity at the unit level and cross-group transitions over time. The present paper

discusses methods that address nonrandom sorting and produce consistent estimators of

heterogeneous parameters and partial effects in binary response panel data models.

The related literature includes studies of linear switching regression models (Goldfeld

and Quandt, 1973; Lee 1978; Maddala and Nelson, 1975; Maddala 1983). Such models

specify two equations, where the applicability of either equation depends on the endoge-

nous switching from one regime to the other. Another relevant strand of the literature

includes studies of program evaluation and estimation of treatment effects. Analogous to

switching regression models, program evaluation studies focus on addressing endogenous

self-selection into treatment. One parameter of interest is the effect of treatment on the

treated, which can be formulated within either a switching regression or self-selection

framework (Bjorklund and Moffitt, 1987; Heckman et al., 2006). Furthermore, several

studies have proposed methods for estimating heterogeneous treatment effects using the
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instrumental variables methodology (Heckman et al., 2006; Basu, 2014, and others).

The problem of nonrandom selection is discussed in studies of sample selection, in-

cluding the seminal paper by Heckman (1979). In those models, parameters are assumed

to be the same for all units in the population, and the selection problem arises because

the dependent variable is not observed for some part of the population. The existing

literature discusses methods for addressing sample selection in linear and binary response

models. Moreover, both cross section and panel data models have been considered (Heck-

man, 1979; Kyriazidou, 1997; Newey, 2009; Semykina and Wooldridge, 2017; Wooldridge,

1995, among others).

Regarding heterogeneous effects in binary response models, several studies discuss

switching probit for cross section and panel data (Carrasco, 2001; Manski et al., 1992).

Similar to linear models, the endogenous switching is between two regimes, and parame-

ters are regime-specific. However, to the best of our knowledge, estimating heterogeneous

effects models with an arbitrary number of groups (regimes) has not been considered so

far. The present paper proposes methods for estimating heterogeneous effects in binary

response panel data models with two or more groups. The models account for the pres-

ence of unobserved heterogeneity that may be correlated with explanatory variables and

accommodate multiple ordered and unordered groups.

The rest of the paper is structured as follows. Section 2 presents binary response

models with heterogeneous effects. Estimation of population parameters and partial ef-

fects is discussed in Section 3. Simulation results are presented in Section 4. Section 5

contains an empirical application, and Section 6 concludes.
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2 Heterogeneity in binary response panel data mod-

els

2.1 General Setup

Consider a population that consists of J groups (or subpopulations). Assume that the

number of periods, T , is fixed, and N → ∞, where N is the cross section sample size.

Consider the following binary response model with heterogeneous effects:

y∗itj = xitβj + cij + uitj, (1)

yitj = 1[xitβj + cij + uitj > 0], t = 1, . . . , T, j = 1, . . . , J,

where y∗itj is a continuous latent variable, yitj is the observed binary outcome for unit i

in group j in period t, and 1[·] is an indicator function equal to one if the expression in

brackets is true. The vector of explanatory variables, xit, is 1 × K, and βj is a K × 1

group-specific vector of parameters. Define xi = (xi1, . . . ,xiT ) and make the following

assumption:

Assumption 1 uitj|xi, cij ∼ uitj.

The assumption implies that xit is independent of the idiosyncratic error, but may

be correlated with a time-constant group-specific unobserved effect cij. It also indicates

that the observed covariates are strictly exogenous conditional on cij, i.e. past and future

values of xit do not affect the distribution of yit after accounting for the current values of

covariates.

Note that a given cross section unit may appear in different groups in different t.

Transitions may occur due to changes in both time-varying covariates and idiosyncratic

shocks and may be endogenous with respect to yitj. For example, a shock to the main

outcome may affect both P(yitj = 1) and the probability of belonging to group j in
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period t. Even if j is constant across t, group sorting is not random if time-constant

and/or time-varying unobservables affecting the group assignment are correlated with the

unobservables in (1). As discussed in detail below, such endogeneity causes inconsistency

in the estimators of βj obtained by estimating (1) separately for each j.

Let dit be a discrete random variable identifying groups, dit = {1, 2, . . . , J}. After

defining dichotomous indicators for each group as sitj = 1[dit = j], t = 1, . . ., T, j =

1, . . . , J , the outcome for unit i in a given period can be written as

yit =
J∑

j=1

sitjyitj, t = 1, . . . , T. (2)

Apart from βj, j = 1, . . . , J , parameters of interest include partial effects. These

can be of two types. We define the unconditional partial effect (PEU
j ) as a change in

the probability of success in group j due to an increase in variable x for a randomly

selected unit from the population. In the population, the unconditional partial effect of

a continuous explanatory variable is

PEU
j,k =

∂P(yj = 1|x, cj)
∂xk

, j = 1, . . . , J. (3)

On the other hand, a conditional partial effect (PEC
j ) is a change in the probability

of success due to an increase in x for a unit in group j. For a continuous covariate,

PEC
j,k =

∂P(y = 1|d = j,x, cj)

∂xk

=
∂P(yj = 1|d = j,x, cj)

∂xk

j = 1, . . . , J. (4)

Although both effects may be of interest, PEU
j is often deemed more suitable for cross-

group comparisons, whereas PEU
j is useful when focusing on a particular group.

In practice, cj is not observed, which makes it impossible to estimate PEU
j,k and

PEC
j,k. Instead, it is common to estimate average partial effects (APE) that are obtained
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by ‘averaging’ over the distribution of the unobserved effect, cj:

APEU
j,k = Ecj

[
∂P(yj = 1|x, cj)

∂xk

]
, (5)

APEC
j,k = Ecj

[
∂P(yj = 1|d = j,x, cj)

∂xk

]
, j = 1, . . . , J.

If group assignment is random, then P(yj = 1|x, cj) = P(yj = 1|d = j,x, cj), and

consistent estimators of model parameters are obtained by estimating (1) separately for

each j. However, because of self-selection and other factors sorting into groups may be

nonrandom, which causes inconsistency. In this paper, we allow for a possibility that

P(yitj = 1|dit = j,xit, cij) ̸= P(yitj = 1|xit, cij) and discuss how it can be addressed when

obtaining consistent estimators of βj and APE. We start by considering a simple case

with only two groups and then discuss more general models with J > 2, where groups

may be ordered or unordered.

2.2 Model for two groups

Let yj be determined as in equation (1), where J = 2. Applications of such models

include, for example, examining labor force participation among married and non-married

women, as well as estimating the determinants of dropout incidents among economically

disadvantaged and other students. Assume that sorting into groups is determined by the

value of a latent variable d∗it,

d∗it = zitδ + bi + vit, (6)

dit = 1 if d∗it ≤ 0,

dit = 2 if d∗it > 0,
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where zit is a 1×L vector of exogenous variables, bi is a time-constant unobserved effect,

and vit is an idiosyncratic error. Setting the cut point at zero is at no cost, as long as

zit contains an intercept. Vector zit = (xit, zit1) contains at least one additional variable

that is not in xit.
1 Similar to the main equation, define zi = (zi1, . . . , ziT ) and assume

that the following holds:

Assumption 2 vit|zi, bi ∼ vit.

Hence, zit is strictly exogenous conditional on bi, but may be correlated with bi. This

correlation causes an omitted variable problem that has to be resolved before addressing

nonrandom sorting. Building upon the work by Mundlak (1978) and Chamberlain (1980),

unobserved effects can be modeled as

cij = z̄iψcj + acij, j = 1, 2, (7)

bi = z̄iψb + abi,

where z̄i =
∑T

t=1 zit, and (aci1, aci2, bi) are independent of zi. This modeling approach has

been previously used in both theoretical and applied work (Abrevaya and Dahl, 2008;

Jäckle and Himmler, 2010; Papke and Wooldridge, 2008; Semykina, 2018; Semykina and

Wooldridge, 2010, 2018; Wooldridge, 1995, among others).2 Note that although zit may

contain time-constant covariates, equation (7) indicates that their causal effects cannot be

distinguished from the impact of cij and bi, unless they are independent of the unobserved

effects. Nevertheless, it is important to include such variables as controls to prevent

inconsistency due to an omitted variable problem.

1Strictly speaking, the exclusion restriction is not required for identification. However, when zit = xit,
identification relies exclusively on the functional form of the likelihood function, which is less reliable.

2Mundlak (1978) has shown that when this method is used for estimating linear models, the resulting

β̂j is identical to the fixed effects estimator of βj .
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Using (7), equations (1) and (6) can be written as

yitj = 1[xitβj + z̄iψcj + ηitj > 0], t = 1, . . . , T, j = 1, 2, (8)

dit = 1 if zitδ + z̄iψb + ϵit ≤ 0,

dit = 2 if zitδ + z̄iψb + ϵit > 0.

where ηitj = acij+uitj, j = 1, 2, and ϵit = abi+vit. We formulate the following assumption:

Assumption 3 hello

(i) (ηtj, ϵt) are independent of zi, j = 1, 2, t = 1, . . . , T .

(ii) For each t,  ηtj

ϵt

 ∼ Normal


 0

0

 ,
 1

ρj 1


 , j = 1, 2. (9)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, 2.

The assumption is stated for the underlying population; hence, subscript i is dropped.

However, by random sampling, it also holds for a randomly selected unit from the popu-

lation. Part (i) imposes strict exogeneity of covariates in (8). The normality assumption

in (ii), is rather standard in the literature and permits obtaining formulae for conditional

probabilities and partial effects. Because each i can only belong to one group in a given t,

Corr(ηit1, ηit2) is not defined. Moreover, note that Corr(ηit1, ηis2) and Corr(ηitj, ϵis), t ̸= s,

are not specified, but can be (and likely are) different from zero. Finally, part (iii) ensures

that there are cross section units in each group in at least some periods in the population.

Under Assumption 3, the two-group model is a switching probit model, which is

analogous to a linear switching regression model discussed in the literature (Carrasco,

2001; Lee 1978; Maddala and Nelson, 1975; Maddala 1983; Manski et al., 1992). In the

linear case, nonrandom group assignment is usually addressed by constructing a correction
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term. In binary response models, however, this approach is inapplicable because of the

nonlinearity of the conditional mean. Instead, using the properties of normal distributions,

we can write

ηitj = ρjϵit + eitj, (10)

eitj|zi, ϵit ∼ Normal(1, 1− ρ2j),

so that yitj = 1[xitβj + z̄iψcj + ρjϵit + eitj > 0], t = 1, . . . , T , j = 1, 2.

Define wit = (xit, z̄i), θj = (β′
j,ψ

′
cj)

′, qit = (zit, z̄i), and π = (δ′,ψ′
bj)

′. Then, the

conditional probability for j = 1, period t, can be written as

P(yit = 1|dit = 1, zi) =
P(−eit1 < witθ1 + ρ1ϵit, ϵit ≤ −qitπ|zi)

P(ϵit ≤ −qitπ|zi)
(11)

=

∫−qitπ
−∞ Φ

(
witθ1+ρ1ϵ√

1−ρ21

)
ϕ(ϵ)dϵ

1− Φ(qitπ)
,

and the corresponding conditional probability for j = 2 is

P(yit = 1|dit = 2, zi) =

∫ qitπ
−∞ Φ

(
witθ2+ρ2ϵ√

1−ρ22

)
ϕ(ϵ)dϵ

Φ(qitπ)
, (12)

where ϕ(·) and Φ(·) are standard normal density and cumulative distribution functions,

respectively. Note that P(yitj = 1|zi) = Φ(witθj) and is the same regardless of the number

of groups and ordering. These probabilities can be used to obtain APEU
j and APEC

j , as

will be discussed in Section 3.
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2.3 Model for multiple ordered groups

Let the total number of groups, J , exceed two. Using the unobserved effects model in (7),

define vectors qit and π as in the previous section. Also, define d∗it and dit as

d∗it = qitπ + ϵit, (13)

dit = j if Cj−1 < d∗it ≤ Cj, j = 1, . . . , J,

C0 = −∞, and CJ = ∞.

Such a model is applicable, for example, when the goal is to study the labor force

participation or probability of self-employment by age or education level.

Similar to a two-group case, it is convenient to assume that the distribution of ϵit

is normal, which results in an ordered probit model. Formally, let Assumption 3 hold

for j = 1, 2, . . . , J , so that the errors are independent of zi and have a joint normal

distribution. Then, using the argument similar to the one in Section 2.2, we can write

yitj = 1[witθj + ρjϵit + eitj > 0], t = 1, . . . , T, j = 1, . . . , J, (14)

eitj|wit, ϵit ∼ Normal(1, 1− ρ2j),

where wit and θj are defined as in Section 2.2.

From (13) and (14), the conditional probabilities for each group are

P(yit = 1|dit = j, zi) =

∫ Cj−qitπ
Cj−1−qitπ

Φ
(

witθj+ρjϵ√
1−ρ2j

)
ϕ(ϵ)dϵ

Φ(Cj − qitπ)− Φ(Cj−1 − qitπ)
, j = 2, . . . , J − 1,

C0 = −∞, CJ = ∞.
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2.4 Model for unordered multiple groups

In some cases, there may be multiple groups that are not ordered. For example, one might

want to study the determinants of job promotion among workers in different occupations.

Then, the choice of dit = j can be described in the context of a multinomial response

model. To formalize ideas, define

d∗itj = qitπj + ϵitj, t = 1, . . . , T, j = 1, . . . , J, (15)

where the parameter vector and error term now vary by group.

Following the standard formulation of a multinomial response model, the cross-section

unit i will be in group j in period t if it has the highest chance of belonging to that group.

In the case of self-selection, choice j is the best option in the available set:

dit = j if d∗itj = max{d∗it1, d∗it2, . . . , d∗itJ} (16)

The choice in (16) will be made if qitπj + ϵitj > qitπl + ϵitl for all l ̸= j. It is clearly seen

that only differences between d∗itj are identified, so that a reference category needs to be

assigned – a feature that is common to all multinomial response models. We formulate

the following assumption:

Assumption 4 hello

(i) (ηtj, ϵt1, . . . , ϵtJ) are independent of zi, for j = 1, . . . , J , t = 1, . . . , T .
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(ii) For each t,



ηtj

ϵt1

. . .

ϵtj

. . .

ϵtJ



∼ Normal





0

0

. . .

0

. . .

0



,



1 0 . . . ρj . . . 0

0 1 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .

ρj 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . 1





, j = 1, . . . , J.

(17)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, . . . , J .

Note that Assumption 4 imposes restrictions on the variance-covariance matrix. The-

oretically, one could allow the variance in part (ii) to be completely unrestricted. How-

ever, in practice it is usually necessary to impose restrictions to ensure feasibility of the

estimation. In the present context, the imposed restriction are reasonable. Specifically,

Cov(ϵtj, ϵtl) = 0 is effectively true by independence across i because each cross section unit

can only belong to one group in a given t. For the same reason, Cov(ηtj, ϵtl) = 0 holds.

Importantly, Cov(ϵtj, ϵsl) and Cov(ηtj, ϵsl), s ̸= l, are left completely unrestricted, which

is consistent with what would be observed in the population. Indeed, these covariances

are likely different from zero because of transitions across groups over time.

Define ϵ̃itl = ϵitj − ϵitl, and π̃l = πj − πl, for l ̸= j. Then, under Assumption 4, for

group j = 1, for example, we obtain

P(yit = 1, dit = 1|zi) =
∫ ∞

−witθ1

∫ ∞

−qitπ̃2

. . .
∫ ∞

−qitπ̃J

ϕ(eit1, ϵ̃2 . . . ϵ̃J ; Σ)du1dϵ̃2 . . . dϵ̃J ,(18)

P(dit = 1|zi) =
∫ ∞

−qitπ̃2

. . .
∫ ∞

−qitπ̃J

ϕ(ϵ̃2, . . . , ϵ̃J ; Σ̃)dϵ̃2 . . . dϵ̃J ,

where Σ and Σ̃ are variance-covariance matrices of vectors (eit1, ϵ̃2 . . . ϵ̃J)
′ and (ϵ̃2 . . . ϵ̃J)

′,

respectively. Using (18), the conditional probability is obtained as P (yit = 1|dit = 1, zi) =
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P (yit=1,dit=1|zi)
P (dit=1|zi) . Probabilities P (yit = 1|dit = j, zi), j = 2, . . . , J , are obtained similarly.

Because equation (18) does not have a closed form solution, one would need to nu-

merically evaluate a J-dimensional integral. Although simulated likelihood methods have

been helpful in addressing computational difficulties, the estimation may still be infeasible

if there are more than four groups. Therefore, we also discuss a different approach.

The unordered multiple groups case can be considered in the context of selection

models, where the choice is made between the best option (observed choice) and the

second best alternative. Define a binary indicator for group j in period t as

ωitj = 1[qitπj + ϵitj > d̄itj], (19)

d̄itj = max
l ̸=j

{qitπl + ϵitl},

which can be re-written as

ωitj = 1[qitπ̄j + ϵ̄itj > 0], t = 1, . . . , T, j = 1, . . . , J, (20)

where π̄j is the difference between πj and the vector of parameters that correspond to

d̄itj, and ϵ̄itj is the difference between ϵitj and the error corresponding to d̄itj. Because

in the unordered case the second best option is not known, π̄j is a weighted average of

πj−πl, l ̸= j, where weights depend on the probability that group l is the best alternative

to j. Notice that in this model it is not possible to estimate πj. Fortunately, this does

not affect our ability to consistently estimate parameters θ, which is the main goal of the

estimation.

Assumption 5 hello

(i) (ηtj, ϵ̄tj) are independent of zi, j = 1 . . . , J , t = 1, . . . , T .
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(ii) For each t,

 ηtj

ϵ̄tj

 ∼ Normal


 0

0

 ,
 1

ρj 1


 , j = 1, . . . , J. (21)

(iii) 0 < 1
T

∑T
t=1 P(dt = j) < 1, j = 1, . . . , J .

Under Assumption 5, conditional probabilities for each j and t are obtained as

P(yit = 1|dit = j, zi) = P(yit = 1|ωitj = 1, zi) =

∫ qitπ̄j

−∞ Φ
(

witθj+ρj ϵ̄√
1−ρ2j

)
ϕ(ϵ̄)d¯̄ϵ

Φ(qitπ̄j)
. (22)

3 Estimation

To estimate the models presented in Section 2, one can use the maximum likelihood

estimator (MLE). Full MLE would be an efficient estimator, but it requires specifying

conditional density f(yi1, ..., yiT |di1, ..., diT , zi). Because yi1, ..., yiT are likely not serially

independent even after conditioning on di1, ..., diT , zi (largely due to the presence of the

time-constant unobserved effect), the joint density function would generally be very com-

plicated. That would increase computational costs and can make the estimation infeasible,

unless additional restrictions on the error variance-covariance matrix are imposed. In this

paper, we use a more feasible partial MLE estimator, which only requires specifying the

conditional density in a given t.

Consider a general model with J ≥ 2, but for the moment ignore the second unordered

groups model discussed at the end of Section 2.4. For each t, the likelihood function for

observation i is

Lit(γ) = Pyitsit1
it,11 · P(1−yit)sit1

it,01 · . . . · PyitsitJ
it,1J · P(1−yit)sitJ

it,0J , (23)
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where Pit,1j = P(yit = 1, dit = j|zi;γ), Pit,0j = P(yit = 0, dit = j|zi;γ), j = 1, ..., J ,

γ = (θ′1, . . . ,θ
′
J ,π, ρ1, . . . , ρJ)

′ for the models in Sections 2.2 and 2.3, and γ = (θ′1, . . . ,

θ′J , π̄1,. . ., π̄J , ρ1, . . . , ρJ)
′ for the first model in Section 2.4.

Joint probabilities for the two-group model are

P(yit = 1, dit = j|zi;γ) =
∫ −qitπ

−∞
Φ

witθj + ρjϵ√
1− ρ2j

ϕ(ϵ)dϵ, (24)

P(yit = 0, dit = j|zi;γ) =
∫ −qitπ

−∞

1− Φ

witθj + ρjϵ√
1− ρ2j

ϕ(ϵ)dϵ, j = 1, 2.

For ordered multiple groups, the probabilities are

P(yit = 1, dit = j|zi;γ) =
∫ Cj−qitπ

Cj−1−qitπ
Φ

witθj + ρjϵ√
1− ρ2j

ϕ(ϵ)dϵ, (25)

P(yit = 0, dit = j|zi;γ) =
∫ Cj−qitπ

Cj−1−qitπ

1− Φ

witθj + ρjϵ√
1− ρ2j

ϕ(ϵ)dϵ,
C0 = −∞, CJ = ∞, j = 1, . . . , J.

In the unordered case, the first equation in (18) specifies P(yit = 1, dit = 1|zi;γ)

for the first model in Section 2.4. Probabilities for j = 2, . . . , J are obtained similarly.

Changing the limits of integration permits computing P(yit = 0, dit = j|zi;γ).

Partial MLE is obtained by solving the following optimization problem:

max
γ

N∑
i=1

T∑
t=1

lnLit(γ). (26)

The resulting partial MLE is consistent under Assumptions 3, 4, and 5.2 for the pa-

rameters in the corresponding models if T is fixed, N → ∞, and standard MLE regularity

conditions hold (see, for example, Wooldridge, 2010, Chapter 13). However, the informa-

tion matrix equality does not hold because the likelihood function is specified for a given

t. The score vectors are generally serially correlated, so that it is necessary to obtain
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fully-robust standard errors that account for serial correlation. Subsequently, inference

can be performed using the fully-robust t and Wald test statistics. The likelihood ratio

test can also be used.

Several null hypotheses may be of particular interest. For example, to check whether

sorting is random, and the usual group-by-group estimation is valid, one can testH0 : ρ1 =

. . . = ρJ = 0. Also, the equality of the coefficients in two or more groups can be tested

either for each explanatory variable separately, or for the entire vector of parameters, θj.

As discussed in Section 2.4, parameters in the unordered multiple groups model can

be estimated using a simpler approach that relies on Assumption 4.2. For each group j,

we then write the likelihood function for observation i in period t as

Lit(γj) = P
yitωitj

it,11 · P(1−yit)ωitj

it,01 · P(1−ωitj)
it,0 , (27)

where

Pit,11 ≡ P(yit = 1, ωitj = 1|zi;γj) =
∫ qitπ̄j

−∞
Φ

witθj + ρj ϵ̄√
1− ρ2j

ϕ(ϵ̄)d¯̄ϵ, (28)

Pit,01 ≡ P(yit = 0, ωitj = 1|zi;γj) =
∫ qitπ̄j

−∞

1− Φ

witθj + ρj ϵ̄√
1− ρ2j

ϕ(ϵ̄)d¯̄ϵ,
Pit,0 ≡ P(ωitj = 0|zi;γj) = 1− Φ(qitπ̄j).

Subsequently, γj can be estimated separately for each j by partial MLE. The limitation

of this estimation approach is that hypothesis testing is complicated when parameters

from different groups are involved. A relatively simple solution is to use panel bootstrap,

where all γj are estimated using the same bootstrap sample in each replication. Then, it

becomes relatively straightforward to obtain estimators of covariances and test statistics.

To obtain an estimator of APEC
j , note that from (7) we can write

P(yj = 1|d = j,x, cj) = P(yj = 1|d = j, z, z̄, acj, abj, v), (29)
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where we also use the fact that d is a deterministic function of (z, z̄, abj, v) in the popu-

lation. After interchanging the integration and differentiation, it follows that conditional

APE of a continuous variable xk in group j is

∂Ez̄,acj ,abj ,v[P(yj = 1|d = j, z, z̄, acj, abj, v)]

∂xk

. (30)

Hence, for j = 2 in a two-group model, conditional APE can be estimated as

ÂPE
C

2,k =
1

NT

N∑
i=1

T∑
t=1

δ̂k · ϕ(qitπ̂)

Φ(qitπ̂)
· Φ

witθ̂2 + ρ̂2qitπ̂√
1− ρ̂22

 (31)

+
1

Φ(qitπ̂)
· β̂2k√

1− ρ̂22
·
∫ qitπ̂

−∞
ϕ

witθ̂2 + ρ̂2ϵ√
1− ρ̂22

ϕ(ϵ)dϵ− δ̂k ·
ϕ(qitπ̂)

Φ(qitπ̂)
· P̂C

it,12

 ,

where δ̂k, β̂2k, π̂, θ̂2, and ρ̂2, are the estimators of δk, β2k, π, θ2, and ρ2, respectively,

and P̂C
it,12 is the estimator of P(yit = 1|dit = 2, zi), which is defined in equation (12).

Correspondingly, ÂPE1,k is obtained by replacing π̂ and δ̂k with−π̂ and−δ̂k, respectively,

and changing θ̂ and ρ̂ subscripts to one. Notice that when the group assignment is random,

the partial effects on the conditional probabilities are the same as the unconditional partial

effects. However, they are different when ρj ̸= 0.

For the ordered groups model, conditional APE for each j can be estimated using

ÂPE
C

j,k =
1

NT

N∑
i=1

T∑
t=1

 δ̂k
Φ(α̂j)− Φ(α̂j−1)

·

ϕ(α̂j−1)Φ

witθ̂j + ρ̂jα̂j−1√
1− ρ̂2j

 (32)

− ϕ(α̂j)Φ

witθ̂j + ρ̂jα̂j√
1− ρ̂2j


+

1

Φ(α̂j)− Φ(α̂j−1)
· β̂jk√

1− ρ̂2j
·
∫ α̂j

−α̂j−1

ϕ

witθ̂j + ρ̂jϵ√
1− ρ̂2j

ϕ(ϵ)dϵ

+ δ̂k ·
ϕ(α̂j)− ϕ(α̂j−1)

Φ(α̂j)− Φ(α̂j−1)
· P̂C

it,1j

}
,

Ĉ0 = −∞, ĈJ = ∞, α̂j = Cj − qitπ̂,
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where Ĉj and α̂j are the estimators of Cj and αj, respectively, and P̂C
it,1j is the estimator

of P(yit = 1|dit = j, zi) defined in equation (15).

Given the complexity of the conditional probability function for multiple unordered

groups, APEC
j for the first model in Section 2.4 would have to be evaluated numerically.

However, APEC
j for the second unordered groups model can be estimated using (31) after

replacing π̂ with π̂j.

From (31) and (32), it is seen that the sign of ÂPE
C

j,k does not necessarily coincide

with the sign of βjk. When xk increases, it affects not only the probability that yj = 1,

but also the probability that d = j. Consequently, more or fewer units are induced into

group j, so that the size and composition of the group changes. Hence, the direction of

the change in P(yj = 1|d = j) depends on both βjk and δk (or, δjk) and is uncertain.

Unconditional APE can be estimated similarly. In all models,

ÂPE
U

j,k = β̂jk
1

NT

N∑
i=1

T∑
t=1

ϕ(witθ̂j), j = 1, . . . , J, (33)

for a continuous variable xk.

Average partial effects of discrete variables (e.g. binary indicators) are obtained as

average changes in estimated probabilities. For a discrete variable h in group j

ÂPE
M

j,h =
1

NT

N∑
i=1

T∑
t=1

[
P̂M1
it,1j − P̂M0

it,1j

]
, M = U,C, (34)

where P̂U1
it,1j = P(yit = 1|zli; γ̂), P̂C1

it,1j = P(yit = 1|dit = j, zli; γ̂), l = 0, 1, for zli =

(xl
it, zit,1, z̄i), x

1
it = (xit,1, . . . , xit,h−1, x

1
it,h, xit,h+1, . . . , xit,k), and x0

it =
(
xit,1, . . . , xit,h−1, x

0
it,h ,

xit,h+1, . . . , xit,k, ).

Note that (34) can also be used to obtain conditional APE for continuous variables.

One can simply consider a particular (e.g. one unit) increase in xk from a given value,

such as the sample mean of xk. Given the complexity of formulas in (31) and (32), using
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(34) may be preferred. It appears to be especially attractive when obtaining APEC
j in a

model with multiple unordered groups.

In the above, estimators of APE are obtained by averaging over the distribution of

all covariates other then the one whose effect is being estimated. Alternatively, one can

obtain APE evaluated at particular values of other explanatory variables (z̃), such as

sample means or median values. Then, equation (34), for example, would become

ÃPE
M

j,h = P̃M1
1j − P̃M0

1j , M = U,C, (35)

where P̃U1
1j = P(y = 1|z̃l; γ̂), P̃C1

1j = P(y = 1|d = j, z̃l; γ̂), l = 0, 1, for some fixed values

z̃l = (x̃l, z̃1, ˜̄z), x̃1 = (x̃1, . . . , x̃h−1, x
1
h, x̃h+1, . . . , x̃k) and x̃0 = (x̃1, . . . , x̃h−1, x

0
h, x̃h+1, . . . , x̃k).

APE of continuous covariates are obtained similarly.

4 Monte Carlo Simulations

To study the performance of proposed estimators in finite samples we conduct limited

Monte Carlo experiments. In addition to the methods discussed in Section 3, parameters

in each group were also estimated by pooled probit, which is a commonly used method

in applied research. In every regression, the list of covariates was augmented by variable

time means, z̄i. Hence, the focus is on assessing the gains from accounting for nonrandom

sorting.

Data were simulated for a two-group model, a model with three ordered groups, and

the one with three unordered groups. Explanatory variables are (1, xit, x̄i, z̄i) in the main

equations, and (1, xit, zit, x̄i, z̄i) in the sorting equations. The covariates are generated as

xit = bi1 + ζit1, (36)

zit = bi2 + ζit2,
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x̄i =
T∑
t=1

xit, z̄i =
T∑
t=1

zit, (37)

where bij are independent across i, bij ∼ Normal(0, σ2
b ), j = 1, 2, and Corr(bi1, bi2) = 0.25.

Correspondingly, zetaitj are independent across i and t, ζitj ∼ Normal(0, σ2
ζ ), j = 1, 2,

σ2
b + σ2

ζ = 1, and
σ2
b

σ2
b
+σ2

ζ
= 0.5

The coefficients on time means are set at ξcj = (−0.3,−0.3)′, j = 1, 2, ξb = (0.3, 0.3)′

in all models. However, other population parameters vary by the model to ensure that

cross-section units are approximately equally distributed across groups. In a two-group

model, yitj and dit are generated as in (8), using β1 = (1,−1)′, β2 = (0.5, 1)′, δ =

(0.1, 0.5, 1)′. The response variables for the model with three ordered groups are created

using β1 = (−0.5,−1)′, β2 = (0.2,−2)′, β3 = (−0.2, 2)′, δ = (0.5, 0.5, 1)′, and cut points

C1 = −0.3, C2 = 1.2. In the model with three unordered groups, the parameters are set

at β1 = (−0.5,−1)′, β2 = (1,−2)′, β3 = (1, 2)′, δ2 = (−0.5, 0.5, 1)′, δ2 = (−0.5,−0.5, 1.2)′,

and j = 1 is a base group.

For each j, error terms were generated as ηitj = acij + uitj, ϵit = abi + vit, where

acij ∼ Normal(0, σ2
a), abi ∼ Normal(0, σ2

a), uitj ∼ Normal(0, σ2
u), vit ∼ Normal(0, σ2

v),

σ2
a + σ2

u = σ2
a + σ2

v = 1, σ2
a

σ2
a+σ2

u
= σ2

a

σ2
a+σ2

v
= 0.5, and Corr(acij, abi) = Corr(uitj, vit) = ρj. In

the two-group model, data are simulated using ρ1 = −0.5, ρ2 = 0.5, while in both three-

group models the correlations were ρ1 = 0.5, ρ2 = 0.5, ρ3 = −0.5. We also generated data

for ρj = 0, ∀j. Simulations were done for T = 3, N = 500, using 1000 replications.

Simulation results are presented in Tables 1-4. In all tables, PMLE is the partial MLE

estimator discussed in Section 3. As seen in Table 1, probit and joint PMLE estimators

have small biases in a two-group model when ρj = 0. However, probit estimators have

smaller standard errors and, therefore, smaller root mean-square errors (RMSE). When

ρj are different from zero, joint PMLE estimators still have small biases. Also, their

standard errors decrease compared to ρj = 0 case. In contrast, biases tend to be large for

probit, and so do RMSE.
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For the model with three ordered groups (Tables 2), results are a qualitatively the

same. Joint PMLE outperforms probit in terms of smaller biases and RMSE when ρj ̸= 0,

although it has larger standard errors, on average. In the model with three unordered

groups (Tables 3), both joint PMLE and PMLE for the second (“best alternative”) model

in Section 2.4 have smaller biases than probit when error correlation is different form zero.

A notable exception is a relatively poor performance of the “best alternative” PMLE for

estimating parameters in group j = 1 (noticeably larger biases and standard errors). It

is not entirely clear what causes such a poor performance. However, it appears the “best

alternative” PMLE is generally less reliable than the joint PMLE.

Table 4 displays simulation outcomes or the parameters in the sorting equations in all

three models. All results are obtained using the joint PMLE method. In all cases biases

are very small. Standard errors and RMSE of the estimators of slope parameters are also

small. The estimators of the correlation coefficients tend to have larger standard errors

suggesting that it is hard to estimate ρj with a high degree of precision.

5 Empirical Application

To illustrate the presented theoretical argument with an empirical example, we study the

determinants of labor force participation among married and unmarried white women

with and without children. In total, there are four groups that are likely characterized by

heterogeneous effects: married women with children, married women without children,

and unmarried women with and without children. Because previous studies find that

fertility decisions are endogenous with respect to labor supply and labor force participation

decisions, sorting into different groups is expected to be nonrandom. The errors in the

main and sorting equations are likely correlated, which implies that the methodology

presented above should be helpful. Given that there are four unordered groups, we use

estimators presented in Section 2.4.
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To perform estimation, we use data from the National Longitudinal Survey of Youth,

1979 (NLSY79). The initial sample is representative of all individuals who were 14 to 22

years old in 1979. To maximize the sample size we utilize 1990-1994 waves of the survey

because the response rate was relatively high in those years (90% or higher). In 1990, all

respondents were at least 25 years old, and the age of the oldest respondent in 1994 was

37. Because the supplemental sample of white women was discontinued in 1991, only the

respondents from the main and white poor cross-section samples were included. Women

in the military sample and those working in a family business were excluded. Limiting the

data to female respondents who participated in all five waves of the survey (1990-1994)

results in a balanced sample of 2,114 white women. After dropping the observations with

missing information on any of the variables used in the analysis, the final sample includes

1,933 women, and a total of 9,577 person-year observations. About 25.6% of the women

transitioned from one group to another at least once during the considered period.

The main dependent variable is an indicator equal to one if the woman worked for at

least some time during the period since the last interview. The list of explanatory variables

includes age, education, and urban location indicator. To control for individual differences

in cognitive ability we include the woman’s score on the Armed Forces Qualification Test

(AFQT), which was administered in 1979. The AFQT score is standardized to have a

zero mean and unit variance in the sample. Vector z̄i includes the individual time mean

of the urban indicator. For most women, education remained constant over time, which is

why education was excluded from z̄i. In other words, we assume that after accounting for

innate ability (measured by AFQT score), education is not correlated with the unobserved

effect. The time mean of age was also omitted from z̄i due to perfect collinearity with

year dummies.3 A year-specific intercept is included in all equations.

As mentioned earlier, it is necessary to have an exclusion restriction to ensure the

3Because age increases by one every year for all women, the individual time mean of age is not identified
when year dummies are included.
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reliability of the estimators. Such a restriction can be obtained by assuming that the

probability of working is determined by economic factors (e.g. skills and educational

qualifications), but personality traits may be of minor or no importance. On the other

hand, personality may influence the probability of marriage and likelihood of having

children. In the context of the presented analysis, we include self-esteem, a measure of

risk aversion, as well as the respondent’s ideal and desired number of children in the

sorting equations, but not in the main (employment) equation. The self-esteem measure,

developed by Rosenberg (Rosenberg, 1965), is aimed to assess the degree of approval or

disapproval toward oneself. In the sample, the self-esteem measure is standardized to have

a zero mean and unit variance. As a measure of risk aversion, we use an indicator that

equals one if the woman responded affirmatively to the following question: “Other than

for a minor traffic violation, have you ever been stopped by the police, but not picked up

or arrested?” Because more frequent encounters with police indicate riskier behaviors, an

affirmative answer indicates lower risk aversion.4 This question was asked in 1980 and,

hence, the corresponding measure is time constant. Similar to the employment equation,

z̄i includes the individual time mean of the urban indicator.

Summary statistics are presented in Table 5. As seen in the Table, women without

children are much more likely to be employed and tend to have more years of schooling.

They also on average are slightly younger than women with children and tend to reside

in urban locations, especially if not married. Women without children are more likely to

engage in risky behaviors (the percent stopped by police is higher). The most risk averse

group is married women with children. Unmarried women with children have the lowest

AFQT and self-esteem scores among all four groups. There are no discernible differences

in the ideal number of kids across groups, but the number of desired children tends to be

slightly higher among married women with children.

To obtain main results, the employment equation was first estimated separately for

4Similar measures were used by Fairlie (2002) and Semykina (2018) in studies of self employment.
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each group of women by pooled probit. Subsequently, the same equations were estimated

using the two methods described in Section 2.4. Estimated coefficients and standard errors

are presented in Table 6. As expected, estimates vary by the estimation method, and in

some cases differences are substantial. For example, the estimated effect of AFQT among

non-married women without children is noticeably smaller for both partial MLE methods

than for probit. However, PMLE produced slightly larger AFQT coefficients in equations

for married women. Similarly, the estimated effects of education among non-married

women with and without children are substantially larger when using PMLE.

Differences in coefficient estimates translate into qualitatively similar differences in

estimated APE (Table 7). It is also interesting to compare conditional (last column in

Table 7) and unconditional APE (first three columns in Table 7). The differences are

especially stark for married women without children. In this group, conditional APE are

substantially larger in magnitude and do not always agree in their signs with APEU . The

results in Table 8 help to understand some of these differences. For example, age has a

negative effect on employment among married women without children, but it also reduces

the probability of being married without kids. Hence, as age increases, the proportion

of older women without children decreases, so that the overall effect on employment is

slightly positive. On the other hand, the coefficient on education is positive in both

employment and sorting equations. Therefore, when education increases, more of the

educated women are induced into being married without children, which results in a

larger positive conditional APE of education in this group of women. The argument is

similar for the urban location and AFQT score.

6 Conclusion

This paper discusses the methodology for consistently estimating heterogeneous parame-

ters in binary response panel data models. In addition to a two-group case, we consider
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estimating parameters for multiple heterogeneous groups, which may be ordered or un-

ordered. Simulations show that considered methods perform well in finite samples. The

computed biases remain small when the correlation between errors in the main and sorting

equations increases. The RMSE are also smaller than probit RMSE when error correla-

tions are different from zero. As an illustration, we estimate heterogeneous effects on

employment outcomes of married and non-married women with and without children

using NLSY79 data. We find that accounting for nonrandom group sorting produces dif-

ferent results as compared to simple group-by-group estimation. Moreover, conditional

APE can be consistently estimated only when the full information set is utilized.

The proposed methods can be used for estimating heterogeneous effects using cross-

section data. It would correspond to a special case with T = 1. Obviously, the Mundlak-

Chamberlain model of the unobserved effect cannot be used in such a setting. Instead,

one would need to include a sufficient set of controls to avoid inconsistencies resulting

from an omitted variable problem.
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Table 1: Simulation results for J=2 (T = 3, N = 500)

ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5
—————————————– —————————————–
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit 0.010 0.089 0.089 -0.288 0.081 0.299
Joint PMLE 0.003 0.163 0.165 -0.018 0.123 0.119

β11

Probit -0.008 0.101 0.100 0.030 0.097 0.102
Joint PMLE -0.001 0.105 0.104 -0.003 0.094 0.095

β02

Probit 0.005 0.078 0.080 -0.367 0.075 0.375
Joint PMLE -0.011 0.163 0.162 -0.011 0.134 0.135

β12

Probit 0.006 0.098 0.098 -0.034 0.096 0.101
Joint PMLE -0.003 0.103 0.102 0.003 0.092 0.091
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Table 2: Simulation results for J=3, ordered groups (T = 3, N = 500)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.004 0.113 0.116 -0.592 0.130 0.607
Joint PMLE -0.004 0.425 0.267 -0.022 0.523 0.270

β11

Probit -0.020 0.128 0.138 -0.173 0.137 0.226
Joint PMLE -0.011 0.174 0.144 -0.014 0.241 0.161

β02

Probit 0.009 0.087 0.087 0.006 0.093 0.094
Joint PMLE 0.006 0.113 0.087 0.003 0.104 0.086

β12

Probit -0.031 0.201 0.211 -0.419 0.238 0.492
Joint PMLE -0.012 0.321 0.213 -0.048 0.566 0.303

β03

Probit -0.007 0.117 0.122 -0.560 0.128 0.576
Joint PMLE -0.007 0.357 0.278 -0.025 0.346 0.272

β13

Probit 0.037 0.187 0.201 0.233 0.202 0.310
Joint PMLE 0.012 0.278 0.201 0.016 0.343 0.230
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Table 3: Simulation results for J=3, unordered groups (T = 3, N = 500)

ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5
—————————————— ———————————————
Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE

β01

Probit -0.009 0.081 0.084 0.355 0.076 0.363
Joint PMLE 0.020 0.344 0.357 0.062 0.301 0.321
Best alt. PMLE 0.091 0.471 0.694 0.211 0.453 0.704

β11

Probit -0.015 0.126 0.127 -0.068 0.128 0.148
Joint PMLE 0.029 0.143 0.134 0.012 0.151 0.148
Best alt. PMLE 0.162 0.197 0.238 0.129 0.213 0.233

β02

Probit 0.025 0.140 0.146 0.452 0.161 0.484
Joint PMLE 0.018 0.290 0.296 0.024 0.320 0.332
Best alt. PMLE 0.019 0.297 0.302 0.015 0.331 0.341

β12

Probit -0.035 0.201 0.208 -0.178 0.214 0.287
Joint PMLE -0.008 0.211 0.208 -0.017 0.239 0.245
Best alt. PMLE -0.008 0.212 0.209 -0.012 0.242 0.248

β03

Probit 0.017 0.129 0.138 -0.348 0.117 0.368
Joint PMLE 0.003 0.256 0.262 -0.006 0.205 0.212
Best alt. PMLE 0.004 0.264 0.271 0.003 0.211 0.218

β13

Probit 0.054 0.200 0.221 0.041 0.199 0.224
Joint PMLE 0.026 0.209 0.218 0.027 0.197 0.214
Best alt. PMLE 0.026 0.210 0.219 0.027 0.198 0.214
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Table 4: Simulation results for parameters in sorting equations (T = 3, N = 500)

Bias Avg. Std. Err. RMSE Bias Avg. Std. Err. RMSE
J=2

ρ1 = ρ2 = 0 ρ1 = −0.5, ρ2 = 0.5
δ0 0.001 0.051 0.051 0.000 0.051 0.052
δ1 -0.001 0.067 0.063 0.003 0.066 0.065
δ2 0.007 0.076 0.076 0.003 0.076 0.076
ρ1 -0.003 0.217 0.222 0.024 0.186 0.186
ρ2 -0.016 0.192 0.197 -0.013 0.154 0.156

J=3, ordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ1 0.003 0.058 0.050 0.001 0.063 0.050
δ2 0.008 0.071 0.058 0.008 0.079 0.058
ρ1 -0.004 0.359 0.220 -0.018 0.361 0.189
ρ2 -0.003 0.309 0.175 -0.018 0.284 0.160
ρ3 0.002 0.327 0.250 0.016 0.278 0.206

J=3, unordered
ρ1 = ρ2 = ρ3 = 0 ρ1 = ρ2 = 0.5, ρ3 = −0.5

δ02 -0.005 0.079 0.076 -0.009 0.079 0.082
δ12 0.004 0.093 0.090 0.009 0.093 0.095
δ22 0.004 0.107 0.105 0.009 0.107 0.109
δ03 -0.003 0.079 0.076 -0.010 0.079 0.079
δ13 -0.002 0.093 0.088 -0.002 0.093 0.091
δ23 -0.006 0.107 0.102 -0.010 0.107 0.109
ρ1 -0.007 0.458 0.478 -0.077 0.417 0.443
ρ2 -0.010 0.333 0.333 -0.016 0.296 0.307
ρ3 0.000 0.296 0.316 0.006 0.257 0.273

Estimation was performed using joint PMLE estimator.
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Table 5: Summary Statistics

Variable married, not married, married, not married,
has children has children no children no children

Working (%) 77.59 79.01 95.51 96.33
Age 31.42 31.12 30.13 30.41

(2.56) (2.69) (2.48) (2.60)
Education 13.26 12.18 14.53 14.47

(2.19) (1.85) (2.32) (2.47)
Urban location (%) 71.54 71.26 76.97 84.16
AFQT score 0.02 -0.48 0.21 0.22
Ever stopped by police (%) 6.46 11.74 9.39 11.14
Self-esteem 0.04 -0.31 0.08 0.10
Ideal number of children 2.78 2.79 2.74 2.78

(1.12) (1.12) (0.95) (1.09)
Desired number of children 2.63 2.51 2.46 2.54

(1.36) (1.48) (1.33) (1.66)

Number of observations 5,189 1,482 1,246 1,660
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Table 6: Estimated Coefficients and Standard Errors for Probability of Being Employed

Probit Best alt. PMLE Joint PMLE
Married women with children

Age -0.008 0.020 0.005
(0.016) (0.023) (0.024)

Education 0.025 -0.004 0.013
(0.019) (0.027) (0.027)

Urban 0.081 0.045 0.066
(0.136) (0.128) (0.136)

AFQT 0.085** 0.114*** 0.100**
(0.043) (0.043) (0.047)

ρ 0.524 0.313
Non-married women with children

Age -0.004 -0.014 -0.014
(0.027) (0.012) (0.023)

Education 0.067* 0.138*** 0.126***
(0.038) (0.018) (0.041)

Urban 0.220 0.089 0.139
(0.215) (0.173) (0.201)

AFQT 0.318*** 0.318*** 0.346***
(0.082) (0.036) (0.076)

ρ -0.998 -0.862
Married women without children

Age -0.027 -0.053 -0.047
(0.051) (0.087) (0.071)

Education 0.061 0.090 0.085
(0.054) (0.088) (0.079)

Urban 0.681* 0.666* 0.676*
(0.368) (0.348) (0.358)

AFQT -0.051 -0.046 -0.046
(0.121) (0.119) (0.119)

ρ 0.327 0.313
Non-married women without children

Age -0.085* -0.090*** -0.092***
(0.050) (0.025) (0.035)

Education -0.040 0.087*** 0.077
(0.067) (0.033) (0.055)

Urban 0.312 0.092 0.122
(0.268) (0.154) (0.189)

AFQT 0.520*** 0.191* 0.282*
(0.179) (0.107) (0.160)

ρ 0.949 1.062
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Table 7: Estimated Average Partial Effects in the Employment Equations

Probit Best alt. PMLE Joint PMLE Joint PMLE
APEU APEU APEU APEC

Married women with children
Age -0.002 0.008 0.002 -0.001
Education 0.007 -0.002 0.004 0.001
Urban 0.024 0.017 0.022 0.019
AFQT 0.024 0.042 0.033 0.017

Non-married women with children
Age -0.001 -0.001 -0.001 0.029
Education 0.018 0.006 0.008 -0.104
Urban 0.066 0.006 0.012 0.022
AFQT 0.069 0.012 0.017 -0.015

Married women without children
Age -0.007 -0.013 -0.010 0.003
Education 0.016 0.020 0.016 0.139
Urban 0.198 0.180 0.160 0.404
AFQT -0.013 -0.011 -0.009 0.046

Non-married women without children
Age -0.023 -0.029 -0.033 -0.018
Education -0.010 0.029 0.028 0.026
Urban 0.086 0.029 0.043 0.013
AFQT 0.114 0.065 0.104 0.022
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Table 8: Estimated coefficients in sorting equations, joint PMLE

Married, Not married, Married,
has children has children no children

Age 0.121*** 0.090*** -0.050**
(0.021) (0.025) (0.023)

Education -0.188*** -0.275*** 0.014
(0.025) (0.031) (0.025)

Urban location -0.080 0.066 0.049
(0.121) (0.143) (0.235)

AFQT score 0.061 -0.140** -0.002
(0.060) (0.069) (0.063)

Ever stopped by police -0.561*** -0.196 -0.109
(0.147) (0.166) (0.154)

Self-esteem 0.031 -0.092 0.016
(0.051) (0.057) (0.054)

Ideal number of kids -0.050 -0.031 -0.017
(0.054) (0.062) (0.055)

Desired number of kids 0.107** 0.039 -0.008
(0.048) (0.058) (0.047)
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