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ABSTRACT. Using data from online auctions of train tickets in Sweden, we study the “declining

price anomaly” in sequential auctions. First, we study a model of sequential second-price auctions

with independent private values that closely matched the auctions for train tickets and assume bid-

ders have maxmin expected utilities over multiple priors. In the unique symmetric equilibrium,

bidders use their worst-case conditional beliefs to evaluate their payoffs in each round of the auc-

tion. This makes bidders underestimate their future payoffs and thus bid relatively more aggres-

sively in earlier rounds and causing prices to decline on average. Also, equilibrium, in general, is

history-dependent even in the independent private values paradigm, which is symptomatic of dy-

namic inconsistency, a common feature of dynamic problems with ambiguity. We show that this

latter implication can distinguish the ambiguity aversion explanation from other theoretical expla-

nations of the anomaly depending on the direction of the dependence. A reduce form analysis of

the bidding behavior in the train ticket auctions shows that bidding in the auctions is positively

history-dependent, which provides evidence in favor of our approach over other models.

Finally, we show that using dynamic bidding data we can identify and disentangle bidders worst-

case beliefs from the true distribution of valuations, even in the presence of dynamic inconsistency,

using a novel technique that exploits bidders’ inter-temporal first order conditions. Employing our

identification we estimate the true distribution of valuations and bidders’ worst-case beliefs. Our

estimation uncovers a first-order stochastic dominance relationship between beliefs and the true

distribution as well as changing of beliefs over time, both consistent with ambiguity aversion. Our

counterfactuals show that, while ambiguity increases the seller’s revenue by at least 18% compared

to the common prior case, switching to sequential first-price auctions would further increase revenue

by at least 11%.
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1. INTRODUCTION

Sequential auctions are one of the oldest and most commonly used auction formats for selling

multiple units of a good. In a canonical version of this format, goods are sold sequentially in

auctions to the highest bidder in each round. In much the same way, in 2010-11 the Swedish

rail road company (SJ) sold train tickets in over 6,500 online sequences of auctions where tickets

sold in a sequence were identical. Prices in these auctions on average declined 8.5% between

consecutive rounds which is a curious, but common, pattern for sequential auctions with identical

objects. In fact, following the seminal work on wine auctions by Ashenfelter (1989), many studies

have documented instances of such “declining price anomalies,” which contradict the theoretical

predictions in standard sequential auctions (Milgrom and Weber (2000)).1 Informally, prices for

identical goods in a sequential auction are predicted to be a martingale, in the standard model, to

avoid arbitrage opportunities.2

In this paper we study sequential auctions theoretically and empirically using Swedish train

ticket auctions. These auctions used an eBay style online auction format that closely resembles

sequential second price auctions with price announcements. Thus, we study a theoretical model of

sequential second-price auctions (sSPAs) with independent private values but augment the standard

model by allowing for ambiguity regarding bidders’ valuation distribution. That is bidders know

their own values but may not precisely know the distribution of valuations. Bidders are modeled

as being averse to such ambiguity and thus maximize their worst-case payoff. That is they have

maxmin preferences a lá Gilboa and Schmeidler (1989).

Using a solution concept called Consistent Planning Equilibrium (Strotz (1955), Siniscalchi

(2011)) that generalizes weak Perfect Bayesian Equilibrium to an environment with ambiguity we

prove the existence and uniqueness of a symmetric equilibrium in which bidders in each round

use their worst-case conditional beliefs to calculate their probability of winning, where beliefs

are conditioned on previous round prices. We show that under simple conditions prices decline

in equilibrium due to bidders’ inter-temporal pessimism resulting from ambiguity aversion: since

bidders use their worst-case beliefs, they underestimate their ‘option value’ of participating in

future rounds. Hence they bid more aggressively on average in the current round causing prices to

decline on average in future rounds as lower valuation bidders, who are relatively less aggressive

than the current round winner, will win future rounds in a monotone equilibrium.

1See Ashenfelter and Genovese (1992) (condominiums), McAfee and Vincent (1993) (wines), Beggs and Graddy
(1997) (art), Van den Berg et al. (2001) (roses), Lambson and Thurston (2006) (fur), and Snir (2006) (computers).
2More specifically, there are two forces that affect subsequent prices in sequential auctions: a valuation affect pushing
prices down, since lower valued bidders win later rounds in any equilibrium that is monotone in values and a com-
petition affect pushing prices affect due to diminishing relative supply. The standard auction model with independent
private values shows that these two effects cancel each other.
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Furthermore, since bidders use worst-case conditional beliefs to evaluate their payoffs, bidding

can be history-dependent, as worst-case beliefs can change round to round depending on the right

truncation of the valuation support. That is in each round bidders can back out information about

the highest possible value in the current round from the previous round price due to monotonicity

of the bid functions. The upper end of the support will affect bidder’s worst-case beliefs. This

history-dependence is a novel feature of sequential auctions with ambiguity and private values.

With private values, previous round prices do not inform remaining bidders anything about their

valuations, as is the case in models with affiliation, but rather about the worst-case competition

they face. Such history-dependent bidding is symptomatic of dynamic inconsistency, a regular

feature in dynamic problems with ambiguity.3

Besides ambiguity aversion, there have been many theoretical explanations for the declining

price anomaly over the years and we discuss them in detail in the literature section. However, to

the best of our knowledge, not many papers have empirically evaluated the different explanations

or carried out an estimation exercise in the presence of declining prices. Thus, in the empirical part

of the paper we first evaluate the reduced form implications of the existing formalized theoretical

explanations for this puzzle using our data set, and then structurally estimate our sequential auction

model with ambiguity averse bidders, which best fits the reduced form evidence.

There are three “preference-based” explanations of the declining price anomaly in the literature:

risk aversion or aversion to price risk (McAfee and Vincent (1993) and Mezzetti (2011)), loss

aversion (Rosato (2023)) and ambiguity aversion (Ghosh and Liu (2021) and this paper). While

all three models predict declining prices, they have different implications regarding the relationship

between bids and previous round prices in the independent private value paradigm: risk aversion

predicts history-independence, loss aversion predicts negative history-dependence and ambiguity

aversion allows for history dependence that can be positive or negative (depending on the set of

bidders’ priors). We show that bidding in the train ticket auctions has a slight positive history

dependence: controlling for all other factors, a one percent increase in the price in round k − 1

corresponds to 0.04− 0.08 percent increase in the bids in round k. Only a model with ambiguity

averse bidders is consistent with this pattern since ambiguity aversion allows for positive history-

dependence. In a model with ambiguity, history-dependence comes from changing of beliefs. The

model does not restrict how these beliefs change and how they affect bidding.

Finally, we carry out a structural estimation exercise in order to estimate the primitives of the

model: valuation distribution and bidder beliefs. There are two difficulties associated with such an

exercise in our environment. The first is that it is hard to disentangle bidders beliefs from the true

distribution of valuations in auctions. In private value auctions, under the assumption of a common

prior, the two distribution are the same. Following the rich literature in empirical auctions, the

3Bidding is dynamically inconsistent if a bidder reverses her preference over sequences of bidding functions over time.
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distributions of values can then typically be identified and non-parametrically estimated using the

distribution of bids (Guerre et al. (2000)). However, with ambiguity, the distributions of valuations

may not be same as the (worst-case) beliefs. For single unit auctions, Aryal et al. (2018) showed

that generally the two distributions cannot be identified unless some source of exogenous variation,

such as number of bidders, can be used to separate the two. Complimenting this paper we show

that dynamic bidding data from sequential auctions can be used to identify both the distributions

without any additional restrictions. Specifically, for simplicity consider a two round sSPA. Since

it is weakly dominant to bid one’s valuation in the final round, it is straightforward to identify the

true distribution of values from final round bids. However, bids in the first round depend on the

bidder’s beliefs as well as her expected payoff, and therefore her bid, in the final round. Thus,

we can identify bidders (worst-case) beliefs using bidders’ bids from both rounds and the inter-

temporal first-order condition from the first round, which gives a tight connection between the two

bids and bidders’ beliefs.

A second difficulty is that of dynamic inconsistency. As discussed previously, bidding in our

model can be history-dependent as bidders worst-case beliefs can change from round to round

depending on previous round prices. Such changing beliefs can cause reversal of bidder prefer-

ences over sequences of bidding functions, thus causing bidding to be dynamically inconsistent.

Due to these changing beliefs, bidder’s beliefs are a family of distributions which can potentially

lead to non-identification. To overcome this issue we use monotonicity of the equilibrium bidding

functions to back out all valuations and then treat previous round prices as ‘state variables’ when

estimating beliefs. Specifically, consider a three round auction. Following the approach outlined in

the previous paragraph we can estimate the true distribution of valuations from the final round bids.

Then, matching percentiles of bids and valuations, we can recover the valuations of all bidders in

the first and second rounds. Grouping close by valuations in the first round into ‘bins’ we then

separately estimate bidders beliefs in the second round for each bin using the methodology we de-

scribed in the previous paragraph. This gives us a family of worst-case conditional beliefs. Finally,

using these beliefs, bidders valuations and bids in the first round we can estimate bidders beliefs in

the first round, which correspond to bidders’ unconditional worst-case beliefs. Estimating beliefs

using this methodology also allows us to check for dynamic inconsistency in bidding behavior.

Following Aryal et al. (2018), for estimation we use a direct Bayesian approach based on Bern-

stein polynomials that are flexible enough to allow for the kinds of behavior that we observe in the

data. This approach also allows us to estimate the worst-case beliefs for various previous round

prices and compare them. Using data on the train ticket auctions we find that all worst-case beliefs

stochastically dominate the true distribution of valuations providing structural evidence of ambi-

guity. We also find that bidder worst-case beliefs change with previous round prices, providing
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evidence for dynamic inconsistency. This result also suggests an added benefit of using ambiguity

versus misspecification as a modeling choice as with the latter behavior is dynamically consistent.4

Using the recovered distributions we find that ambiguity greatly contributes to the seller’s rev-

enue: removing ambiguity or switching to a uniform price auction would have decreased the rev-

enue by 18% to 21%. Thus we find that declining prices may be synonymous with higher revenues

compared to the no ambiguity case in sequential auctions. Finally, we also carry out an exercise

where we replace the selling mechanism with sequential First Price Auctions and find that this

would have increased revenue by 11% to 15%. We also find that the level of ambiguity seems to

reduce over time. Bidders’ beliefs seem closer to the true distribution of values in the second half

of our data set than the first half. We also perform various other robustness checks to check the

validity of our approach.

1.1. Literature. This paper is related to a few strands of literature. As mentioned previously,

there is considerable evidence in support of declining prices in sequential auctions. In addition

Keser and Olson (1996) and Neugebauer and Pezanis-Christou (2007) document the existence

of this phenomenon in experimental settings. Chanel et al. (1996) and Deltas and Kosmopoulou

(2003) found evidence of increasing prices, all though the occurrence of declining prices seems to

be more common (Ashenfelter and Graddy (2003), Ashenfelter and Graddy (2011)). While all of

these studies document the evidence of price anomalies, to the best of our knowledge, the current

paper is the first to empirically investigate the declining prices using a structural econometrics

approach as well as empirically test the existing theories that can account for this anomaly.

Since the finding in Ashenfelter (1989), several explanations for puzzle have been offered. One

set of explanations suggest that specifics of the sale mechanism, such as winner’s option to buy

remaining units at the same price (Ashenfelter (1989)), absentee bidding (Ginsburgh (1998)), par-

ticipation fees (Menezes and Monteiro (1997)) and supply side uncertainty (Jeitschko (1999)), can

account for the anomaly. Another set suggests that the specific features of the goods being sold can

lead to declining prices. For example Bernhardt and Scoones (1994), Engelbrecht-Wiggans (1994),

Gale and Hausch (1994) and Kittsteiner et al. (2004) found that heterogeneity between the goods

can lead to declining prices. In a non-auction setting Sweeting (2012) showed that the selling price

of perishable goods declines as one gets closer to the expiry date.5 All these explanations, while

4Under belief misspecification, it is as if bidders are in a common prior world and do not update their ‘incorrect’
beliefs over time. See Remark 5.4 in Ghosh and Liu (2021).
5Given that we are studying perishable goods as well, this explanation may seem particularly relevant. However
there are some important differences. The sequential auctions for train tickets end within one hour of each other (so
less likelihood of entry and exit of bidders and the travel date is not that much closer to the final sequential auction
compared to the first) and the bidders are strategic. Thus prices are set by the bidders by competing against each
other and not by the seller who may have an incentive to lower prices as the travel date approaches. All these aspects
differentiate our setting from the baseball tickets environment studied in Sweeting (2012).
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important, are specific to particular settings. However, declining prices have been observed across

a wide variety of formats, goods, and settings. Thus, while our setting may share some features

with the aforementioned papers, we evaluate more ‘general’ explanations of the anomaly so that

our structural methodology may be applicable to other data sets where this phenomenon has been

observed. Furthermore, the suitability of one explanation over another is not obvious since few

papers have compared the various approaches, as we do in our paper.

Our paper is also connected to the the literature on auctions with ambiguity. In various settings

Salo and Weber (1995), Lo (1998), Levin and Ozdenoren (2004), Chen et al. (2007) and Lao-

hakunakorn et al. (2019) study single-unit first and second price auctions with ambiguity. In the

presence of ambiguity and dynamic inconsistency Bose and Daripa (2009) and Auster and Kellner

(2022) show that a dutch auctions can perform better than static auctions in contrast to Karni and

Safra (1989) who show that the two are revenue equivalent under dynamic consistency. Bose et al.

(2006) and Bodoh-Creed (2012) study optimal auctions under ambiguity. Bougt et al. (2024) com-

pares the auction revenue from several multi-unit auction formats including sequential auctions

under ambiguity, under the assumption of dynamic consistency. To the best of our knowledge, our

paper and Ghosh and Liu (2021) are the only papers that study sequential auctions where multiple

units are sold in a general environment with ambiguity.

There is a rich literature on the estimation of variables of interest from auction data.6 Most

papers in this literature require the assumption of a common prior to identify and estimate the

valuation distributions. A notable exception is Aryal et al. (2018) who identify and estimate the

distribution of valuations in static auctions in the presence of ambiguity using variation in the

number of bidders. Complimenting this work, our identification result shows that considering data

from dynamic auctions can provide techniques to ascertain the presence of ambiguity and correctly

estimate the variables of interest.7

Jofre-Bonet and Pesendorfer (2003), Donald et al. (2006), Groeger (2014), Donna and Espı́n-

Sánchez (2018) and Kong (2021) study dynamic auctions using models with capacity constraints,

multi-unit demand, learning by doing, complementarities and synergies and affiliation respectively.

Much like our paper, in these papers bidding in different rounds is linked. However all these papers

are in the common prior framework. Furthermore, to the best of our knowledge, ours is the only

paper that tackles the declining price anomaly in sequential auctions using a structural approach.

6See Athey and Haile (2007) and Hickman et al. (2012) for surveys. See Hortaçsu and McAdams (2018) for a survey
on multi-unit auctions.
7There are several papers that measure the effect of ambiguity on bidding in static auctions in experimental settings,
as in Chen et al. (2007). Beyond auction settings, most papers that carry out estimation exercises in the presence of
ambiguity consider experimental (laboratory or field) settings. See Cabantous (2007), Abdellaoui et al. (2011), and
Ahn et al. (2014) among others.



AMBIGUITY AND THE DECLINING PRICE ANOMALY 7

Finally, our paper is also related to the literature on identification in games of incomplete in-

formation. While much of this literature assumes that players beliefs are correct in equilibrium,

Aguirregabiria and Magesan (2020) study dynamic discrete games with rational players who may

have incorrect beliefs. They show that an exclusion restriction, typically used to identify games

of incomplete information, provides testable nonparametric restrictions of the null hypothesis of

equilibrium beliefs as well as a function that only depends on a players beliefs which can be used

to estimate players beliefs. Complimenting this approach we show that data on players actions at

multiple points in time (bids in different rounds) can also be used to estimate biased (i.e. worst-

case) beliefs without appealing to an exclusion restriction.

1.2. Outline. The rest of the paper is organized as follows. Section 2 describes the auction mech-

anism in our data set and provides summary statistics, including the pattern of declining prices.

Section 3 introduces our model of sequential auctions with ambiguity and provides the main theo-

retical results regarding equilibrium existence and uniqueness and price path. In Section 4 we first

discuss other theoretical explanations for the anomaly and then use the train ticket auction data to

provide reduced form evidence that supports ambiguity aversion as a plausible explanation. Sec-

tion 5 presents the empirical analysis, including our identification result and the methodology we

employ in our estimation as well as the counterfactual results. Section 6 concludes. All proofs are

contained in Appendix A. Appendix B contains formal descriptions of other explanations of the

declining price anomaly. Appendix C contains additional data. Finally, additional analysis where

indicated can be found in the Supplemental Appendices.

2. TRAIN TICKET AUCTIONS

2.1. Auction Mechanism. The data set we use consists of bids made in auctions for train tickets

sold by the Swedish rail road company (SJ). The auctions were executed online using Tradera’s

website, at the time a subsidiary of eBay. There were often multiple tickets sold in a group of

auctions, where the winner of one of the auctions within the group received one ticket. Within

a group, all tickets are observationally identical. Specifically, tickets within a group are for the

same route, same type of train, same class, and same departure time. All other features such as

seat number, aisle vs. window seat, and direction of the seat were not known until a winner of an

auction actually went to the train station and picked up the ticket on the day of departure.

Auctions within a group ran parallel for some time, before ending within a one hour time span.

The exact closing time of each auction differed within that hour. The difference in closing times

gave the auctions within a group a distinctive sequential nature. We therefore refer to a group of

auctions selling identical tickets as a sequence from here on. The closing time of an auction was

made public to the bidders at the same time as the auction was posted.
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Figure 1 illustrates a sequence of three auctions. All auctions within a sequence start within

one hour of each other. Then all auctions in the sequence are active in parallel for about two

days. Lastly, all auctions within the sequence end, in a sequential manner, between 9 and 10 pm

two days prior to the departure of the train. We index auctions in a sequence by the ending order,

where auction 1 is the auction that ends first in a sequence, and so on. By this logic, the last auction

is auction K, where K is the total number of tickets in a sequence. We will often refer to an auction

within a sequence as a round.

FIGURE 1. Illustration of a sequence with 3 tickets

Auction 1
Auction 2
Auction 3

Auctions
start

9pm 10pm Train
departs

Auctions run parallel
for about two days

Auctions end
sequentially

2 days ±
few hours

Figure 2 shows the screen faced by a bidder who is about to place a bid in an auction. Each

auction within a sequence is executed using an incremental bidding mechanism, which is often

referred to as the “proxy” bidding mechanism. In this mechanism, each auction is an ascending

price auction, where bidders can choose to actively participate, or they can choose to record a max-

imum willingness to pay (MWTP). Active bidders bid the smallest amount necessary to become

leaders of the auction, and can then raise their bid if a higher bid comes in. The smallest amount

necessary is equal to the (current leading bid + an increment).8 These bidders are often referred to

as incremental bidders because they only raise the leading bid by one increment at a time. On the

other hand, if a bidder records an MWTP, then the website will place bids in increments (so called

“ proxy” bids) on the bidder’s behalf when new bids are placed by other bidders. The website will

do so until another bidder records a bid that is higher than the first bidder’s MWTP. As a result, a

bidder who wins an auction having placed an MWTP only has to pay the second highest bid plus

an increment, or, if the second highest bid is within an increment of the MWTP, her own bid. Thus

this auction format is a hybrid between second price and first price auction (see Hickman (2010)

for a formal analysis of this mechanism).

To illustrate how proxy bidding works consider the following example. If a bidder records an

MWTP, call it bid1, that is higher than the current highest recorded MWTP of some other bidder,

8The increments in these auctions were: 1 Swedish Krona (SEK) if the leading bid is in the interval 1–99 SEK, 5 SEK
for 100–249 SEK, 10 SEK for 250–999 SEK, 25 SEK for 1000–2499, 50 SEK for 2500–4999 SEK and 100 SEK for
5000 SEK and up.
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FIGURE 2. Auction screen shot

call it bid2, then the new leading bid becomes lead = min{bid2+ increment, bid1}. Now, if a third

bidder records a bid, call it bid3, that is higher than lead, but lower (or equal) to bid1. Then the

website will keep the bidder who placed bid1 as the leader of the auction, and raise the leading bid

on behalf of this bidder to lead′ = min{bid3 + increment, bid1}. The bidder who placed bid1 will

win the auction if no more bids are placed, and she will pay the price lead′.

2.2. Declining prices. There were 42,007 tickets (auctions) grouped into 7,202 sequences that

were conducted between November 10, 2010 and June 6, 2011. In the reduced form analysis, we



10 D. BOUGT, G. GHOSH, AND H. LIU

consider sequences of 15 tickets since this includes over ninety five percent of the data.9 There

are 35,157 tickets grouped into 6,874 sequences with 15 tickets or less. The ticket information

contained in the data includes departure-destination pairs, departure time and date, and the type of

train (i.e. fast train or regional train). We present more details about the data in Appendix C.10

To formally document that prices decline we estimate equation (1):

(1) ln(pricek, j) = β0 +β1k+β2k2 +β3xk +θ j + εk, j

where pricek, j is the price of auction k in sequence j, xk captures auction-specific covariates, and

θ j is a sequence fixed effect.

FIGURE 3. Visual - Declining Price
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Figure 3 and Table 1 confirm the declining price path. The decline is stronger early on, and the

price path evens out towards the end in sequences of many tickets. Our preferred specification for

documenting declining prices is column (2) of table 1 where the sequence fixed effects are included

to deal with unobserved sequence heterogeneity. The estimates in column (3), which uses sequence

observable characteristics as controls instead of sequence fixed effects, are not statistically different

from the estimates in column (2). This suggests that auction heterogeneity is captured well in the

variables observed in the data.11 In Appendix D we show that the documented decline in prices is

robust to alternative specifications as well as holding sequence length fixed.

9In the entire data set there were sequences of up to 30 tickets. Even when the the entire data set is considered the
declining price pattern can still be observed.
10See Andersson et al. (2012) and Andersson and Andersson (2017) for additional information about the data.
11An important assumption in our estimation in section 5 is that auction heterogeneity is observed. The fact that the
estimates in column 2 and 3 of table 1 are very similar is consistent with this assumption.
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TABLE 1. Declining Price - K ≤ 15

(1) (2) (3)
VARIABLES ln Price ln Price ln Price

k -0.141*** -0.136*** -0.170***
(0.00816) (0.0124) (0.0160)

k squared 0.00546*** 0.00451*** 0.00560***
(0.000784) (0.000939) (0.00129)

Observations 34,982 34,982 34,955
Sequence FE YES YES
Sequence Controls YES
Auction Controls YES YES

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors clustered at the sequence level. In column
(3), θ j is replaced by sequence specific observable variables x j. The variables in x j are the same variables
that we use to homogenize bids in section ??.

3. MODEL

The aim of our theoretical model is to capture salient features of the auction mechanism used to

sell train tickets while also maintaining minimal assumptions to get robust theoretical predictions.

To this end our model is a second price version of the model studied in Ghosh and Liu (2021). We

begin by describing the benchmark setting for a representative sequential auction. Suppose K ≥ 2

identical tickets (units of a good) are sold, one in each round, sequentially in sealed-bid second-

price auctions with no reserve price to N ≥ K +1 bidders.12 Each bidder i has a unit demand. In

each round the bidder who submits the highest bid wins the unit and pays the second highest bid.

The winning bidder leaves the auction and the winning bid is announced. The remaining bidders

compete in the next round using the same procedure until all units are sold. Let pk be the winning

bid in round k. A public history in round k is a sequence of winning bids p̃k−1 = (p1, . . . , pk−1).

Ties are broken via a fair coin-flip.13

3.1. Bidder valuations. Bidders draw their values, vi ∈ [v,v], independently, from a common

distribution function F̃ with a strictly positive density function f̃ . The distribution F̃ belongs to a

compact and convex set of atom-less and piecewise smooth distributions ∆. Formalizing the notion

of ambiguity, bidders do not know the distribution F̃ but are aware of the parent set ∆. For any

12Many previous studies have used second price auctions to model eBay style auctions. (examples). We also follow
this approach and also note that for over 90% of the auctions the second price rule was used to determine price. See
table 5.
13The tie-breaking rule will be irrelevant since we consider monotone equilibria.
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y ∈ [v,v], the set of conditional distributions, denoted by ∆y, is{
Fy(·) =

F(·)
F(y)

: [v,y]→ [0,1], ∀F ∈ ∆

}
.(2)

As we will show, in each round, bidders ‘beliefs’ about their probability of winning belong to the

above set, conditional on the price history. Thus, to ensure the existence of a monotone equilibrium

in pure strategies in our set-up, we make the following ‘richness’ assumption. We will further

eloborate on the precise role played by this assumption after we present our equilibrium result.

Assumption 3.1. For each y ∈ [v,v],∆y is a complete join semi-lattice.14

An implication of this assumption is that the lower envelope of ∆y is always contained with the

set. Additionally, let F̄ ∈∆ be such that F̄ ≥FOSD F for all F ∈∆. Furthermore, let F̄(·|y) ∈∆y be

such that F̄(·|y)≥FOSD F(·|y) for all F ∈∆.16 Finally, for some results, we will need the following

stochastic order. Let ≥rh be the reverse-hazard rate stochastic dominance relation. From Shaked

and Shanthikumar (2007) 1.B.41, F1 ≥rh F2 if and only if F1(x)F2(y) ≤ F1(y)F2(x) for all x ≤ y.

Note that if F1 ≥rh F2 then F1 ≥FOSD F2.

3.2. Payoffs, strategies and equilibrium concept. As mentioned previously, prior beliefs for

bidders are described by the set ∆ following the multiple-priors approach of Gilboa and Schmeidler

(1989). Accordingly, we assume bidders have maxmin expected utility (MEU): in each round

they maximize the minimum expected utility over the set of priors ∆, conditional on the available

information. The distribution that is used to evaluate one’s payoff in each round is called the

worst-case belief. In accordance with the classical approach, we assume that bidders follow prior-

by-prior Bayesian updating.

A strategy for a player i, βi = {βi,1, . . . ,βi,K}, is a sequence of bid functions, where βi,k(vi, p̃k−1)

is bidder i’s bid in auction k given the history of winning bids. A strategy βi is monotone if for

each k = 1, . . . ,K, βi,k is increasing in vi for all p̃k−1. Denote βk = {βi,k}N
i=1 and βββ = {βk}K

k=1. A

strategy profile βββ is symmetric if βi = β j ≜ β , for all i, j = 1, . . . ,N. As is common in auctions,

we focus on monotone and symmetric strategies and drop the subscript with respect to bidders. To

slightly abuse notations, we use β to denote a monotone and symmetric strategy profile.

Observe that, since strategies are monotone, a bidder with the k-th highest value will win the

k-th round. Therefore, the previous winning bids, p1, . . . , pk−1, can be mapped back to the realized

values, y1 ≥ . . . ≥ yk−1, of the winners before round k. By induction backwards, the bidding

14The following definitions are slight variations of those in Topkis (2011). Let ≥FOSD be the first-order stochastic
dominance partial order on ∆, i.e., F1 ≥FOSD F2 if and only if F1(x) ≤ F2(x) for all x ∈ [v,v]. For any F1,F2 ∈ ∆, let
F1 ∨F2 be the join of F1 and F2.15 Note that F1 ∨F2 ≥FOSD Fi for i = 1,2. If the join of every pair of distributions in ∆

belongs to ∆, then ∆ is a semi-lattice. A semi-lattice ∆ is complete if every nonempty subset of ∆ has a join in ∆.
16See example 4.3 in GL to see cases where F̄ and F̄(·|y) are different. That is F̄(·|y) , F̄(·)/F̄(y) for some y.
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functions can be rewritten as βk(v,yk−1), as in round k a bidder believes that all other remaining

bidders’ values are bounded above by yk−1.

It is well known that in dynamic decision problems under ambiguity optimal (sequentially ra-

tional) choices made by agents can violate dynamic consistency (Siniscalchi (2011)). In order to

accommodate possible time inconsistency that can occur for maximin expected utility maximizing

bidders, we follow the multiple-selves approach introduced by Strotz (1955) and use consistent

planning equilibrium as our solution concept. Essentially the idea behind this approach is that

each active bidder in a each round is treated as different ‘self’ (of the bidder) who has different

information than her previous self, which can influence her worst-case beliefs. Thus, this ‘self’ of

the bidder may choose optimal actions differently than her previous version. That is a bidder’s op-

timal bid in a round of the auction may be different that what she would have chosen in that round

with beliefs she held in some previous round. Consistent planning allows for such discrepancy by

allowing a bidder to maximize her optimal action in a round while being cognizant of the optimal

actions of her future self.

Formally, a bidder’s payoff is given by

ΠK(v,z,yK−1) = min
F∈∆

(
F(z)

F(yK−1)

)N−K z∫
v

(v−βK(x,yK−1))d
(

F(x)
F(z)

)N−K

,

and, for k = 1, . . . ,K −1,

(3)

Πk(v,z,yk−1) = min
F∈∆

(
F(z)

F(yk−1)

)N−k z∫
v

(v − βk(x,yk−1))d
(

F(x)
F(z)

)N−k

+

yk−1∫
z

Γk+1(v,x,F)d
(

F(x)
F(yk−1)

)N−k

.

In any around the ‘probability’ of winning is calculated conditional on the previous round winner’s

valuation, and the payment conditional on winning is the second highest bid. For the final round,

there is no future round so the payoff is the standard payoff function for a second price auction

amended to include ambiguity and maxmin expected utility. For all other rounds, the first term in

equation (3) is the bidder’s current round payoff and the second term is her continuation payoff if

she bids as if her valuation was z in the current round. The term Γk+1 is defined recursively as

(4)

Γk+1(v,x,F)=

(
F(v)
F(x)

)N−k−1 v∫
v

(v−βk+1(z,v))d
(

F(z)
F(v)

)N−k−1

+

x∫
v

Γk+2(v,w,F)d
(

F(w)
F(x)

)N−k−1
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and

ΓK(v,x,F) =

(
F(v)
F(x)

)N−K v∫
v

(v−βK(z,x))d
(

F(z)
F(v)

)N−K

.

In words, Γk+1(v,x,F) is the payoff in round k+1 to a bidder with value v who bids according

to the strategy βββ in k+ 1 and all future rounds, given the value of round k’s winner, x, evaluated

using some belief F . Importantly, the belief F also enters the bidder’s continuation payoff. Then

we have the following definition.

Definition 3.2. A strategy profile β = (βk)
K
k=1 is a consistent planning equilibrium if for each

k = 1, . . . ,K, v, and yk−1, we have

v ∈ argmax
z

Πk(v,z,yk−1).

3.3. Equilibrium and prices. In single unit auctions, a bidders maximization problem of choos-

ing the optimal bid can be de-coupled from her minimization problem of finding a worst-case belief

which will be used to evaluate various bids. This can be seen from the payoff function in the final

round of the sequential auction, where the distribution that minimizes the payoff can be found by a

point-wise minimization. However, in all other rounds such a technique is not directly applicable as

the bidder’s beliefs also impact her continuation payoff. In face of this challenge, our approach is

to first establish certain monotonicity properties of the continuation payoff. Specifically, we show

that Γ is weakly declining in the second argument. Furthermore, it turns out that Γk+1(v,x,F) is less

than v−βk(v,yk−1) for x ≥ v. As a result, the integrand in the objective function of the minimiza-

tion problem is monotone decreasing, which implies that the worst-case belief–the minimizer–is

the lower envelope of the set of conditional distributions. We can now state the equilibrium of the

auction in the following proposition.

Proposition 3.3. In the unique symmetric equilibrium bidders follow the strategy

βk(v,yk−1) =

v∫
v

βk+1(x,v)d
F̄(x|yk−1)

N−k−1

F̄(v|yk−1)N−k−1 ,

for k = 1, . . . ,K −1 and βK(v,yK−1) = v.

In the final round of a sSPA, it is weakly dominant for a bidder to bid her valuation. This is

independent of what beliefs a bidder has about the valuations of others in this round. To understand

the optimal bidding function in the other rounds, note that at the margin, a bidder with valuation

v calculates her optimal bid conditional on the event that she is the highest valued bidder in the

current round. Now, suppose the bidder contemplates bidding a little less. This deviation would

only matter if there was another bidder with a valuation equal to hers. For this deviation to not be

profitable, her current round payoff in this event must equal her next round expected payoff. That is
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her current round payment βk(v,yk−1) (if she won the second highest bid would be approximately

equal to her bid since there is another bidder with valuation v) must equal what she would pay in

expectation in the next round, the expected second highest bid amongst bidders with valuations

lower than hers. Importantly the expectation is taken with respect to the bidder’s worst case belief

in the current round which is given by F̄(x|yk−1). And due to assumption 3.1 we know that this

distribution is contained in the set of conditional distributions and that all remaining bidders in

a round share the same worst-case belief conditional on observing a price a history. Thus our

assumption ensures the existence of a symmetric equilibrium.

As a comparison, the unique symmetric equilibrium in sequential second price auctions with a

common prior is

β̃k(v) =
v∫

v

β̃k+1(x)d
F̃(x)N−k−1

F̃(v)N−k−1

for k < K with final rounds bids being the same.17 Note that this equilibrium can be derived

from the equilibrium bidding functions we derived under ambiguity, if ∆ is a degenerate and equal

to the true valuation distribution. From the closed form of the equilibrium strategies in the two

models we can see that bidding in the model with ambiguity can be history-dependent which is a

consequence of the dependence of worst-case conditional beliefs on the price history.18 In a model

with a common prior, prices in previous rounds only scale payoffs in a current round and thus do

not affect bidding behavior.

With regard to prices note that in sSPAs the price in a round is the second highest bid. Thus,

in equilibrium the price in round k will be the bid placed by the bidder with the second highest

valuation in that round. That is,

pk = βk(yk+1,yk−1).

Bidders in the next round observe the winning bid and hence the valuation of the winner, yk. Thus,

the expected price in the next round calculated at some F ∈ ∆ is given by the expected bid of the

second highest valued bidder out of N − k bidders conditional on the value being less than yk−1.

E [Pk+1|pk] =

yk+1∫
v

βk+1(x,yk)dF(N−k)
2 (x|x ≤ yk+1),

where F(N−k)
2 is the distribution of the second highest value out of N − k draws.

Example 3.4. Before stating our results on prices it may be useful to consider a simple example to

demonstrate how ambiguity aversion can lead to declining prices in contrast to the standard model.

For simplicity consider a case where N = 3 and K = 2. Since in the final round bidders bid their

17See Milgrom and Weber (2000) or Krishna (2009) chapter fifteen for a derivation.
18F̄(·|y) = minF∈∆ F(·)/F(y) depends on y.
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values, in this example bidding will be history independent. However, this allows us to focus on

prices. Valuations are distributed over the interval [0,1] with ∆ = {F |F(v) = va,a ∈ [0.5,2]} and

F̃(x) = x. Note that F̄(x) = x2. Then, β1(x) = 2x/3 and β2(x) = x, where as the equilibrium bid

functions in the common prior model are β̃1(x) = x/2 and β̃2(x) = x. Using these closed forms,

p1 =

1∫
0

β1(x)dF̃(3)
2 (x) =

1
3

; p2

1∫
0

β2(x)dF̃(3)
3 (x) =

1
4

are the prices in the model with ambiguity and

p̃1 =

1∫
0

β̃1(x)dF̃(3)
2 (x) =

1
4

; p̃2 =

1∫
0

β̃2(x)dF̃(3)
3 (x) =

1
4

are the prices in which the prior F̃ is known. As we can see that that the expected prices in the

ambiguity model shows a declining trend.

Why do prices in the above example show a declining trend? Intuitively, ambiguity causes

an overestimation of future competition: since bidders believe that the distribution of values is

stronger they will underestimate their chances of winning in the future. This causes them to un-

derestimate their option value of moving to the next round which makes them bid relatively more

aggressively in the current around. This can cause a declining price trend.

However, as Ghosh and Liu (2021) showed in the context of sequential FPAs, with ambiguity,

average prices can also rise for some sets of priors. The reason for this possibility is that with

history dependence, bidders beliefs can change in radical ways that makes prices rise. Thus, we

provide two sufficient conditions under which prices will decline.

Proposition 3.5. If for any y ∈ [v,v], F̄(·|y) ≥rh F(·)/F(y) then pK−1 > EF [PK|pK−1]. Further-

more there exists ε > 0 such that for yk+1 ∈ (yk − ε,yk], pk > EF [Pk+1|pk].

The above condition state that if the bidder’s beliefs do not change too much from round to

round then continuity of bid functions ensures that prices will decline due to the intuition we

mentioned before. Importantly, the above result shows that prices can decline in our framework,

under dynamic inconsistency as well as positive or negative history dependence. However, from

the above result, a sufficient condition for prices to decline on average is that the winning valuations

are not too far apart in previous rounds. This is not necessary as we can see from the proof which

only uses continuity to establish the result. The ε can be as high as yk. We also provide another

sufficient condition for declining prices that relies on a stronger form of stochastic relationship

between worst-case beliefs.
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Proposition 3.6. If for any y ∈ [v,v], F̄(·|y) ≥rh F(·)/F(y) then pK−1 ≥ EF [PK|pK−1]. Further-

more if F̄(·|y)≥rh F̄(·|y′)/F̄(y|y′) for y ≤ y′ then pk > EF [Pk+1|pk].

Remark 3.7. Both the above results provide sufficient conditions for declining prices. Due to con-

tinuity of bid functions this also implies that the results are generically true in the neighborhoods

of beliefs for which the results hold with strict inequality as is the case in the two propositions. We

also think that the above two conditions are reasonable in many settings. Especially in ours as we

discuss in the empirical portions of the paper.

4. CASE FOR AMBIGUITY

The standard sequential auction model studied in Milgrom and Weber (2000) predicts constant

prices in the i.p.v. setting.19 The price prediction of the standard model is clearly refuted by

the data. Many previous studies have provided theoretical explanations for the declining price

anomaly. Among these, ambiguity aversion, risk aversion (Mezzetti et al. (2008)) and loss aversion

(Rosato (2023)) are based on generalizations of bidder preferences beyond risk neutrality and

standard expected utility maximization, and thus are not specific to particular auction mechanisms.

Another aspect of equilibrium bidding in the standard auction model is that of history indepen-

dence: prices in previous rounds do not affect a bidders bid in a round. Under i.p.v. a bidder

will bid more aggressively as the rounds progress due to shrinking relative supply but will not

be affected by previous round prices, as prices only scale a bidders current round payoff. The

three theoretical models that predict declining prices however have different predictions regarding

history dependence of bids in an i.p.v. framework compared to each other. To understand these

differences, we briefly describe the other two models.

4.1. Risk aversion. Informally, Ashenfelter (1989) argued that risk aversion could possibly ex-

plain the anomaly since, theoretically, prices in later rounds are more variable than the current

round and hence risk-averse bidders may bid more in the current round to avoid future price vari-

ations.20 This logic was formalized in McAfee and Vincent (1993) but the results required that

the bidder’s utility function satisfy non-decreasing absolute risk aversion in wealth which is an

unconventional assumption.21 Alternatively, using an additively separable utility function with a

convex cost function, which captures ‘aversion to price risk’, Mezzetti (2011) proves the existence

19In an affiliated values setting prices increase. See pages 219-220 of Krishna (2009) for a full and concise treatment.
20For example, in Krishna (2009) (page 226):“[Even] though prices are expected to decline in the future, his greater
aversion to risk offset the incentive to wait for a random future price, which is lower on average.”
21McAfee and Vincent (1993) write that “Ashenfelter suggests that declining prices is consistent with risk averse
bidders....We show that this intuition is not likely to be satisfied in practice.”
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of a monotone equilibrium that generates declining prices. Importantly, the equilibrium is charac-

terized by history-independent bidding in the i.p.v. paradigm. In appendix B.1 we reproduce these

results from Mezzetti (2011) formally using an example.

4.2. Loss aversion. Rosato (2023) studied a sequential auction model where bidders have ex-

pectations based reference dependent preferences ((Köszegi and Rabin, 2006)), within an i.p.v.

paradigm. The winning bid in a round is part of forming reference points for the bidders who

remain in the next round. The equilibrium in this setting is also characterized by declining prices

due to a ‘discouragement effect’: a higher winning bid in a round leads to less aggressive bidding

in the next round, and since bidders choose bids conditional on being pivotal, they underestimate

the discouragement effect. This model also predicts a negative relationship between winning bids

in the a round and bids in the next, which can be tested empirically. A more formal example is

presented in appendix B.2

Thus, to sum up, while all three models predict declining prices, risk aversion predicts history-

independence in bids, loss-aversion predicts a negative relationship and ambiguity aversion allows

for any kind of history independence as we can see from the closed form of the bidding functions

in 3.3. In the latter, the price history affects the worst-case beliefs but does not put any restriction

on how these beliefs will specifically affect bidding. This observation is illustrated by our two

sufficient conditions for declining prices in Propositions 3.5 and 3.6. The former result allows for

positive history dependence whereas the latter leads to negative history dependence. Thus, the

ambiguity model is flexible enough to generate declining prices under positive or negative history

dependence.

4.3. Effect of price history in train ticket auctions. We now document the relationship between

various observable variables and bidding within a sequence and make a case for ambiguity aver-

sion as a plausible explanation for declining prices. Some of the variables we consider include

the number of bidders (demand), the number of items left (supply), and the price in the previ-

ous auction (history). The main comparative static on equilibrium bidding that distinguishes the

preference based explanations from each other is the relationship between bids in a round and

the price-history in the sequence. We estimate equation (5) to evaluate the relationships between

bidding and observables:

ln(bidi,k, j) = β0 +β1 ln(pricek−1, j)+β2nk, j +β3(K j − k)+θi, j + εi,k, j.(5)

Here bidi,k, j is the bid placed by bidder i in auction k of sequence j. nk, j is the number of bidders in

auction k of sequence j, and K j is the number of tickets for sale in sequence j. θi, j captures bidder-

sequence fixed effects. This implies that identification comes from bidders who have participated

in at least two of the auctions in sequence j. Furthermore, this implies that valuation for the object
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is held constant, given that we have included bidder specific fixed effects, when evaluating how the

covariates of interest impact bidding behavior.

The main parameter of interest is β1, which captures the potential history dependence of round

k bids on round k − 1 prices. A complication is that auctions are not purely sequential but run

parallel before ending sequentially. Hence, bids made while auctions run parallel are made when

the history is unknown. For this reason, equation (5) will be estimated using bids made after

auction k−1 has ended.

TABLE 2. Bidder Behavior - K ≤ 15

(1) (2)
VARIABLES ln bid ln bid

ln price(k-1) 0.0759*** 0.0487***
(0.0143) (0.0101)

Bidders when Bidding 0.0600*** 0.0671***
(0.00416) (0.00636)

(K-k) -0.0776*** -0.0422***
(0.00377) (0.00266)

Bidders in current auction -0.0636***
(0.00585)

ln Current Lead when Bidding 0.379***
(0.0121)

Observations 25,963 25,947
BidderXSequence FE YES YES
BidderXRound Controls YES YES

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors that are clustered at bidder X sequence level.
Current Lead when Bidding is the bid that must be surpassed when the bidder places the bid.

Table 2 reports the results from estimating equation (5). All estimates indicate that bids are

history dependent. It can further be rejected the coefficient on ln price(k−1) is less than or equal

to 0 (p < 0.01 when testing H0 : βln price(k-1) ≤ 0). Among the preference based explanations that

can account for the declining price pattern, only the ambiguity aversion model can account for the

documented positive relationship between bids in a round and the price in the previous round in

an i.p.v. paradigm. This evidence suggests that neither risk nor loss aversion can alone account

for the declining price anomaly as these preferences structures predict zero and negative history

dependence respectively.

While being positive, the magnitude of the history dependence is small. A one percent increase

in the price in round k−1 corresponds to 0.04-0.08 percent increase in the bids in round k. It also

appears as if bidders bid more aggressively if there are many bidders present in the auction when

they make their bid. Bidders also bid more aggressive when there are few tickets left. This captures

the supply effect.
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While the number of bidders at the time of bidding has a positive effect on bids, the number

of bidders at the end of an auction seems to be negatively related to the bid. The source of this

relationship could be the open bidding nature of the auction as late arriving low valued bidder do

not submit bids if the current leading bid at the time is too high.

5. ESTIMATION

5.1. Identification. Having made a case for ambiguity aversion we now turn to estimation of

primitives of the model. Our objects of interest are bidder’s valuations, the true valuation generat-

ing process, F̃ , and the beliefs bidders use to calculate their bids. The latter include, the worst-case

unconditional belief, F̄ and worst-case conditional beliefs F̄(·|y).
Due to second price nature of the sequential auctions, we can estimate valuations and the true

value distribution simply from the final round bids since bidders bid their values from the final

rounds. Then, by matching percentiles in each round, we can estimate all valuations in all rounds

by only appealing to monotonicity of the equilibrium.

Identification of F̄(·|y) follows from bidders optimality conditions. For simplicity, suppose

K = 2. Then using bidders first order conditions in the first round, we can express a bidders bid

as a function of her valuation, number of competitors and her beliefs, which in two round auction

would be given by F̄ . Specifically, the optimal bid in the first round is

b1 = β1(v) =
v∫

v

xd
F̄(x)N−2

F̄(v)N−2 .

Thus, F̄ can be identified. Now, for K > 2 the beliefs that will be identified using bids in the penul-

timate round are bidder worst-case conditional beliefs F̄(·|y). Essentially, we can treat previous

round prices/valuations as a state variable and then identify the conditional beliefs. Thus, we have

the following result.

Proposition 5.1. Under assumption 3.1 if K ≥ 3 then F̃ , F̄ and F̄(·|y) are identified.

5.2. Data set. We consider sequences where there are at least 3 items being sold (K j ≥ 3).We ob-

serve J sequences and from each sequence we have bj = {b(2)j,k |yk−1,N j,K j}
K j
k=1, where b(2)j,k |N j,K j

is the second highest (homogenized) bid in auction k of sequence j out of (N j − k+ 1) potential

bids when the winner of auction k − 1 had valuation yk−1, and the total number of items to be

auctioned off is K j. In essence we observe the second highest order statistic of bids in the first

auction, third highest order statistic of bids in the second auction, fourth highest order statistic of

bids in the third auction, and so on, where the order statistic is relative to valuations. We col-

lect the observations from the first auction of each sequence in b1 = {b(2)j,1|N j,K j}J
j=1, the second
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auction in each sequence in b2 = {b(2)j,1|y1,N j,K j}J
j=1, and the last auction in each sequence in

bK = {b(2)j,K|yK−1,N j,K j}J
j=1.

In the first auction of a sequence, bidders use the unconditional worst-case beliefs,F̄(·), when

placing their bid:

b1(v|N,K) = b1(v|N) =
∫ v

v
b2(x|v,N)

dF̄(x)N−2

F̄(v)N−2 .

In the second auction of a sequence, bidders use the conditional worst-case belief, F̄(·|y1), when

placing their bid:

b2(v|y1,N,K) = b2(v|y1,N) =
∫ v

v
x

dF̄(x|y1)
N−3

F̄(v|y1)N−3 .

In the last auction of a sequence, it is a weakly dominant strategy for bidders to bid their valua-

tion. Bids are therefore independent of any beliefs:

bK(v|yK−1,N,K) = bK(v) = v.

Note that F̄(·|y1) = F̄(·|yk) for k = 3, ...,K − 1 if y1 = yk. As a result, with variation in y1

across sequences, bids from the second round carry all the necessary information about worst-case

conditional beliefs. While using bids from all intermediate auctions in a sequence would increase

the power in the estimation, it is not necessary and it comes at a cost of increased computational

time. We therefore restrict the data used to recover worst-case conditional beliefs to bids placed in

the second auction of a sequence.

5.3. Statistical model. The goal is to estimate the distribution of valuations, F(v), the uncondi-

tional worst-case beliefs, F̄(v), and the conditional worst-case beliefs F̄(v|yk−1) along with their

density functions. To do this, we implement a Bayesian estimation technique that relies on a flexi-

ble (almost non-parametric) specification that utilizes Bernstein polynomials.

We collect the observable bids in b = (b1,b2,bK), the observed number of bidders in each

sequence, and we collect the latent structural parameters to be estimated in Θ = (θF ,θF̄ ,θF̄ |yk−1
).

Bidder i in sequence j has valuation vi, j. Assume that

vi, j
iid∼ F(vi, j|θF)

with an associated density f (vi, j|θF), which is strictly positive on its bounded support [v,v] ⊂
R+.
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The conditional density of observing the second highest bid in auction K of sequence with N

bidders, b(2)K (v), is then22

g′K(b
(2)
K (v)|θF) =

(
N!

(N −K −1)!K!

)
f (b(2)K (v)|θF)F(b(2)3 (v)|θF)

N−K−1[1−F(b(2)3 (v)|θF)]
K

Given a prior distribution P0,F(θF) for the latent variable θF , and an associated density p0,F(θF),

the posterior density of θF is

pF(θF |bK) = p0,F(θF)
J
∏
j=1

g′K(b
(2)
K, j|yK−1,N j,K j,θF)ML(bK)

−1

∝ p0,F(θF)
J
∏
j=1

g′K(b
(2)
K, j|yK−1,N j,K j,θF).

ML(bK) is the marginal likelihood of the data and is defined by

ML(b3) =
∫

p0(θF)p(θF |bK)dθF .

Moving to estimation of θF̄ . Given an estimates, f̂ (v) and F̂(v), of f (v) and F(v), let θF̄ be the

parameter capturing the worst-case beliefs in auction 1. To estimate the worst-case belief, we use

a change of variable {cite GPV}. Let φ1,N,θF̄
= φ1(b1(v|N,θF̄)) be the inverse bidding function in

auction 1 when N bidders participate in the sequence. Then we have that the distribution of bids in

the first auction is

G(b1(v|N)|F̂(v),θF̄) = F̂(φ1,N,θF̄
)

g(b1(v|N)| f̂ (v),θF̄) = f̂ (φ1,N,θF̄
)φ ′

1,N,θF̄

Bidding in auction one can also be re-written in terms of the inverse bidding strategy.

b1(v|N,θF̄) = b2(v|N,θF̄)−
F̄(v|θF̄)

(N −2) f̄ (v|θF̄)φ
′
1,N,θF̄

The density of bids in auction 1 can now be expressed in terms of parameters to be estimated

g(b1(v|N)| f̂ (v),θF̄)

=
f̂ (v)F̄(v|θF̄)

(N − 2) f̄ (v|θF̄)[b2(v|N,θF̄)− b1(v|N,θF̄)]
1(b1(v|N,θF̄) ≤ b1(v|N,θF̄) ≤ b1(v|N,θF̄)

22The Kth + 1 highest order statistic (of valuations) out of N.



AMBIGUITY AND THE DECLINING PRICE ANOMALY 23

The conditional density of observing the second highest bid, b(2)1 (v)|N, in auction 1 of sequence

with N bidders is then23

g′(b(2)1 (v|N)| f̂ (v), F̂(v),θF̄) =

(
N!

(N −2)!

)
g(b1(v|N)| f̂ (v),θF̄)F̂(v)N−2[1− F̂(v)]

Given a prior distribution P0,F̄(θF̄) for the latent variable θF̄ , and an associated density p0,F̄(θF̄),

the posterior density of θF̄ is

pF̄(θF̄ |b1) = p0,F̄(θF̄)
J
∏
j=1

g′(b(2)1, j(v|N j)|θ̂v,θF̄)ML(b1)
−1

∝ p0,F̄(θF̄)
J
∏
j=1

g(b(2)1, j(v|N j)|θ̂v,θF̄).

ML(b1) is defined analogously to ML(bK).

Note that we can back out y1 once we have an estimate of F(v).24 To estimate θF̄ |y1
, we group

observations of bids in the second auctions into bins based on y1 and assume that the worst case

beliefs within a bin is the same. Suppose we divide [v,v] into M many equally spaced bins, with

each bin being denoted Ym with m = 1, ...,M, and let

ym = max{y|y ∈ Ym}.

Then we have θF̄ |y1
= {θF̄ |Ym

}M
m=1 to estimate. Use the same change of variable as with bids in

the first auction, φ2,N,θF̄ |Ym
= φ2(b2(v|N,y1,θF̄ |Ym

)), which is the inverse bidding function in auction

2 when N bidders participate in the sequence and the winners valuation in auction 1 was in bin Ym

(y1 ∈ Ym). We have a similar mapping from distribution of bids to the distributions of estimated

valuations

G2(b2(v|N,y1)|F̂(v),θF̄ ,Ym)) =
F̂(φ2,N,θF̄ |Ym

)

F̂(y1)

g2(b2(v|N,y1)|, f̂ (v), F̂(v)θF̄ ,Ym)) =
f̂ (φ2,N,θF̄ |Ym

)φ ′
2,N,θF̄ |Ym

F̂(y1)

Similarly, we also have that

b2(v|N,y1,θF̄ |Ym
) = v−

F̄(v|θF̄ |Ym
)

(N −3) f̄ (v|θF̄ |Ym
)φ ′

2,N,θF̄ |Ym

.

23The second highest order statistic (with respect to valuations) out of N.
24This is under the assumption that you observe also the highest bid in the first auction. We have to make an assumption
on what we use as the ”history-relevant” variable”.
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The density of bids in auction 2 can now be expressed in terms of parameters to be estimated

g2(b2(v|N,y1)| f̂ (v), F̂(v),θF̄ ,Ym)) =
f̂ (v)F̄(v|θF̄ |Ym

)

(N −3) f̄ (v|θF̄ |Ym
)[v−b2(v|N,θF̄ |Ym

)]F̂(y1)

×1(b2(v|N,y1,θF̄ |Ym
)≤ b2(v|N,y1,θF̄)≤ b2(ym|N,θF̄ |Ym

)

The conditional density of observing the second highest bid, b(2)2 (v|N,y1), in auction 2 of a

sequence with N bidders is then25

g′2(b
(2)
2 (v|N,y1)| f̂ (v), F̂(v),θF̄ ,Ym

)=

(
(N −1)!

(N −3)!

)
g2(b

(2)
2 (v|N,y1)| f̂ (v), F̂(v),θF̄ ,Ym

)F̂(v)N−3[F̂(y1)− F̂(v)]

F̂(y1)N−1

Let Jm denote the subset of observed sequences of auctions where y1, j is in Ym. Given a prior

distribution P0,F̄ |y1
(θF̄ |y1

) for the latent variable θF̄ |y1
, and an associated density p0,F̄ |y1

(θF̄ |y1
), the

posterior density of θF̄ |y1
is

pF̄ |y1
(θF̄ |y1

|b2) = p0,F̄ |y1
(θF̄ |y1

)
M
∏

m=1
∏

j∈Jm

g′2(b
(2)
2, j(v|N,y1, j)| f̂ (v), F̂(v),θF̄ |Ym

)ML(b2)

∝ p0,F̄ |y1
(θF̄ |y1

)
M
∏

m=1
∏

jm∈Jm

g′2(b
(2)
2, jm(v|N,y1)| f̂ (v), F̂(v),θF̄ |Ym

)

ML(b2) is also defined analogously to ML(b3).

The marginal likelihood is useful for comparing different models (different parameter spaces).

However, given the parameter space, the marginal likelihood is just a constant that does not affect

the comparison of likelihoods of different parameters from that space.

To summarize, the estimation will be done in the following steps:

1 Use bK to estimate θF .

2 Use b1 along with the estimated F̂(v) to calculate ŷ1.

3 Use b1 and b2 along with the estimated F̂(v) and ŷ1 to estimate θF̄ and θF̄ |y1
.

5.4. Estimation. While tickets within a sequence are for the same train, tickets in different se-

quences vary across dimensions such as type of train used, route, departure day of the week, and

so on. Thus, in order to carry out a structural estimation using the above procedure, we need to

homogenize the bids for different sequences. Using the sequence specific covariates we homoge-

nize bids by removing the effect of these variables that are common to all bidders in a sequence. In

Appendix E we discuss this procedure which is based on a similar exercise in Shneyerov (2006).

25Observing the third order-statistic conditional on the first order-statistic being equal to y1.
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We model the latent distributions using Bernstein polynomials (Petrone (1999)). Bernstein poly-

nomials have previously been used in the structural auctions literature Aryal et al. (2018). A Bern-

stein polynomial of order K of a function F(x) on x ∈ [0,1] is defined by

(6) B(x|K,F) =
K

∑
k=0

F

(
k

K

)(
K
k

)
xk(1− x)K−k.

The derivative of equation (6) is

(7) b(x|K,F) =
K

∑
k=1

wkbeta(x|k,K − k+1)

where

wk = F

(
k

K

)
−F

(
k−1

K

)
for k = 1, ...,K

and beta(·|k,K − k+1) is the standard beta distribution with parameters k and K − k+1. From

Lorentz (1953) we have that

Theorem 5.2. For a function F(x) bounded on [0,1], the relation

lim
K→∞

B(x|K,F) = F(x)

holds at each point of continuity x of F . The relation holds uniformly on [0,1] if F is continuous

on this interval.

In that sense, Bernstein polynomials are flexible enough that they can approximate any con-

tinuous distribution function on a bounded interval. From an estimation point of view, Bernstein

polynomials are attractive as they are just a mixture of beta distributions, which are relatively easy

to compute.

Given K, f (v) is given by

f (v|θF ,K) =
K

∑
k=1

wkbeta(v|k,K − k+1)

and given F(v) is given by

F(v|θF ,K) =
K

∑
k=1

([
k

∑
j=1

wk

](
K
k

)
vk(1− v)K−k

)
.

f̄ (v|θF̄ , K̄), F̄(v|θF̄ , K̄), { f̄m(v|θF̄ |Ym
, K̄Y ,v ≤ Ym)}M

m=1, {F̄m(v|θF̄ |Ym
, K̄Y ,v ≤ ym)}M

m=1 are analo-

gously defined.
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When estimating the density, we will be using Kth + 1 order statistic. A complication following

from this is that there will be few observations in the upper range of the support. Inferring what the

upper bound is from observations is therefore difficult. To deal with this, we will treat the upper

bound, vK , as a parameter to be estimated.

The parameters to be estimated are θF |K = (w1, ...,wK,vK), θF̄ |K̄ = (w̄1, ..., w̄K̄), and θF̄ ,y1
|K̄Y =

{(w̄m
1 , ..., w̄

m
K̄Y
)}M

m=1.

In principle, K, K̄, and K̄Y
26 can be treated as parameters to be estimated. We choose the alterna-

tive to first estimate θF |K for different Ks and treat them as different models. Then we use Bayes

model selection to choose K. Given the chosen K, we then get the estimates for the distribution

and density of values given the chosen K. We do the same for K̄, and K̄Y . The procedure for

selecting K is as follows. If p0,K(K) is the prior for K ∈ K and p0,F,K(θF |K) is the prior given K,

and pF,K(θF |b3,K) is the posterior of θF given K and the data. Then we choose the model, K, for

which the posterior of K is maximized, where the posterior is

pK(K|b3) ∝ p0,K(K)ML(b3|K).

As priors over the parameter-space we use

p0,F,K(θF |K) = Dirichlet({1}K
k=1)×U [0,1]

p0,F̄ ,K̄(θF̄ |K̄) = Dirichlet({1}K̄
k=1)

pp,F̄ |y1,K̄Y
(θF̄ |y1

|K̄Y ) = ∏
M
m=1 p0,F̄m,K̄Y

(θF̄ |Ym
|K̄Y )

p0,F̄m,K̄Y
(θF̄ |Ym

|K̄Y ) = Dirichlet({1}K̄Y
k=1) m = 1, ...M

p(K) = pois(λ = 10).

5.4.1. Posterior inference: We use posterior moments for inference. For a a measurable function

h(θ), the posterior mean is defined as

(8) E[h(θ |x)] =
∫

h(θ)p(θ |x)dθ .

We are interested in the density of valuations, f (v), and the distribution bidders use when they

place their bids in the first round, F̄(v).27

26K̄Y could be different across ms, and the parameters could be estimated separately for each bin. We choose to
estimate these parameters jointly. Our structure still allows as to select different Ks for different bins after we have
estimated them jointly.
27The prior over parameters gives that E0[ f (v|K)] =U [0,1] for any K.
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Given an ergodic sample of the parameters {θ s
F ,θ

s
F̄}

S
s=1, the estimate for f (v) is then given by

the point-wise mean

(9) f̂ (v) =
1

S

S

∑
s=1

f (v|θ s
F)

along with its 95% confidence interval which we get by taking the 2.5 and 97.5 percentile of

{ f (v|θ s
F)}S

s=1; and the estimate for F̄(v) is given by the point-wise mean

(10) ˆ̄F(v) =
1

S

S

∑
s=1

F̄(v|θ s
F̄)

along with its 95% confidence interval. In order to estimate f̂ (v) and ˆ̄F(v) we must ensure

that the sample {θ s
F ,θ

s
F̄}

S
s=1 is drawn from the respective posterior pF,K(θF |b3) and pF̄ ,K̄(θF̄ |b1).

To this end we employ the Gaussian Metropolis Hastings algorithm, which can be implemented

without having to compute the marginal likelihood of the data. In Supplemental Appendix F we

describe the algorithm as well as illustrate the performance of our estimator using an example.

5.5. Train-ticket estimation. We now apply our outlined estimation to the train-ticket auction

data. We restrict the sample to sequences where three tickets were sold. We also remove se-

quences where the same bidder was the second highest bidder more than once. This leaves us with

265 sequences, which translates into 265 bids in each auction round. The composition of unique

bidders within a sequence can be found in Figure 4

The estimated density of valuations, density of unconditional worst-case beliefs, along with their

associated probability distributions can be found in Figure 5. The probability distributions reveal

a first order stochastic dominance relationship that is consistent with declining prices.

In the train-ticket data, we do not observe y1, which is an input to the estimation of conditional

worst-case beliefs. However, given estimates of F(v) and the unconditional worst-case beliefs,

F̄(v), we can back out the implied expected value of y1 conditional on the second highest bid in

the first auction. Call this backed out expected value ỹ1.

ỹ1 = EF̂

(
Y1|φ1

(
b(2)1 (v|N, ˆ̄F)

)
≤ Y1

)
To estimate conditional worst-case beliefs, we bin bids using ỹ1. The counts of ỹ1 in each bin is

visualized in the histogram in Figure 6.

In figure 7 we report our estimates of bidders worst-case conditional beliefs. As we can see that

bidders beliefs show a shift with changes in previous round prices, thus indicating dynamically
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FIGURE 4. Histogram of number of bidders per sequence

inconsistent behavior. And as we can see from figure 5 we can see that bidders beliefs stochastically

dominate the true distribution of valuations indicating the presence of ambiguity.

5.6. Counter factual analysis. We perform three counter factual experiments based on our re-

covered distributions of valuations and beliefs. First, is a robustness check of our method. We

use our estimated model primitives to generate auction outcomes and compare them against the

results from the reduced form analysis. Second, we check the revenue implications of ambiguity

by calculating the revenue generated in a counterfactual model where the bidders beliefs were the

same as the true (recovered) distribution of valuations. And finally, we calculate the revenue that

would be generated in alternate auction formats to see if the seller could have done better/worse

by using some other commonly used auction formats.

To offer evidence on the internal consistency of our approach we use the mean distributions,

F̂(v) and ˆ̄F(v), that we have estimated to simulate prices in sequences of auctions. For simplicity,

we only use the unconditional worst-case distributions.28 In this exercise we hold K fixed to be

able to compare the price pattern in the simulated data to the price pattern estimated using equation

(1) in the non-homogenized raw data. By holding K fixed we can normalize both patterns by the

average price in auction K. Hence, we can compare the price pattern in terms of price ratios, where

the normalizing price for an object k is the hypothetical average price that would have realized if

no ambiguity were present. The result of this exercise for K = 5, which is the average length of a

28This adds an additional bias in our estimates since we are ignoring the dynamic inconsistency.
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FIGURE 5. Plotted distributions from estimation using train-ticket auction data.
Data restrictions: 3 tickets for sale and different second highest bidder in each auc-
tion within each sequence (J = 265).

sequence in the data, can be seen in figure 8. The result suggests that the simulated price pattern

falls within the 95% confidence interval of the price pattern estimated in the raw data.29

In the next part of the counter factual analysis we change some aspect of the environment to see

what implications the change has for revenues. We first ask how much revenue would SJ lose if

29A joint test fails to reject the null hypothesis that the price trend in the raw data is the same as for the simulated
price trend (p-value of an F-test of the dummy regression is 0.22, and the p-value of and F-test of the linear quadratic
regression is 0.15).
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FIGURE 7. History dependent beliefs vs. beliefs without history

there was no uncertainty regarding F(v)? To do this exercise we compute bidders’ optimal bids as

if they knew the true distribution of (pseudo) values, F̂ .
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FIGURE 8. Price Pattern - Simulated vs. Reduced Form
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Note: The simulated price pattern is generated using the mean distributions, F̂(v) and ˆ̄F(v). The sequences
in the simulated sample holds length fixed at K = 5, and uses N ∈ {6, ...,21}. The fraction of the sample
with a particular N matches the fraction in the true data for K = 5. 87% of sequences where K = 5 have
N ∈ {6, ...,21}, 10% of sequences have N ≤ 5, and the remainder has N > 21. The estimated price pattern is
the normalized predictions from estimating equation (1) on the sub-sample where K = 5 and N ∈ {6, ...,21}.
The estimates are normalized by the predicted price in the last auction. The left panel predictions are based
on a dummy regression: ln(pricek j) = ∑

K j
i=1 γiDi,k +θ j +βxk + εk j. The right panel is based on a prediction

where a linear quadratic relationship is imposed: ln(pricek j) = β0 +β1k+β2k2 +β3xk +θ j + εk j.

The second question we ask is how much revenue would SJ have gained by selling the tickets

through sequences of first price auctions while maintaining the uncertainty regarding F(v). From

the estimation, since we know F̂ , ˆ̄F and bidders’ pseudo valuations we can do the above exercise

by using the optimal bidding function for sequential FPAs from Ghosh and Liu (2021). Further,

Bougt et al. (2024) show that sequential FPAs generate more revenue than sequential SPAs under

some conditions. The results can be found in Table 3. The findings suggest that SJ’s revenues

would decrease by something in the range of 18.6 and 21.2% if there was no uncertainty regarding

F(v).30 On the other hand, if SJ had been able to change the selling mechanism to a first price

auction instead, then their revenues would increase by something in the range of 11.5 to 15.4%.

TABLE 3. Revenue Changes
(1) (2)

Mean %∆ in Revenues CI
Remove Uncertainty −19.7% [−21.2%,−18.6%]
Change to first price 13.5% [11.5%,15.4%]

Note: The changes in revenues are calculated using the revenue made in sequences of second price auctions
when uncertainty is present as the baseline.

30The mean is given by 1−1.245
1.245 , while the CI is given by [ 1−1.229

1.229 , 1−1.269
1.269 ]. These numbers can be found in table 4.
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TABLE 4. Revenue Comparisons
(1) (2) (3) (4)

Average Lower Bound Upper Bound CI
No Ambiguity (distributions used) F̂ F̂.975 F̂.025
first price=second price=uniform price 1.000 0.971 1.031

Ambiguity (distributions used) F̂ ˆ̄F F̂.975
ˆ̄F.975 F̂.025

ˆ̄F.025
first price 1.412 1.329 1.509 [1.370, 1.464]
second price 1.245 1.192 1.307 [1.229, 1.269]
uniform price 1.000 0.971 1.031

Note: The revenues are from sequences with (N,K) pairs that match the SJ data, where 1 ≤ K ≤ 10 and
K < N ≤ 20. There are 5,279 sequences in the SJ data that satisfy this criteria. 1,000 sequences have been
simulated for each (N,K) pair, after which the average revenue has been calculated. A weighted average of
these averages have then been used to get total revenues. The weights correspond to the frequency in the
real data of the (N,K) pair relative to the total number of sequences that satisfy the restriction above. Lastly,
the revenues have been normalized by the revenues made in the hypothetical case of no ambiguity where
valuations have been drawn from F̂(v) (column 1).

6. CONCLUSION

Using a data set comprised of bids placed in sequential train ticket auctions in Sweden, we studied

various aspects of bidder behavior. Prices in these auctions show a declining trend, confirming

the presence of the declining price anomaly. Using a similar model as Ghosh and Liu (2021) we

showed that a model of sequential SPAs with ambiguity averse bidders can generate declining

prices as well as positive history dependence (dynamic inconsistency) in bids in an ipv setting.

The latter prediction distinguished our model from other theoretical explanations of the anomaly.

Based on the theoretical model we carried out a structural estimation exercise that provided further

evidence for the presence of ambiguity and dynamic inconsistency.

The declining price anomaly has been a long standing feature of sequential auctions for identical

units of a good. It has been observed for many types of goods and auction mechanisms. In future

work we would like to apply our methodology to other data sets and further understand the role of

ambiguity and and experience over time.
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APPENDIX A. PROOFS

A.1. Proof of Proposition 3.3. We solve for the equilibrium strategies backward starting from

the final round. In the final round bidders have a weakly dominant strategy to bid their valuation.

Given this, their payoff in the final round is given by

min
FyK−1 ∈∆yK−1

FyK−1(v)
N−Kv −

v∫
v

xdFyK−1(x)
N−K = min

FyK−1∈∆yK−1

v∫
v

(v − x)dFyK−1(x)
N−K

where FyK−1 =F(·)/F(yK−1). Since v−x is decreasing in x, the above payoff function is minimized

by the lower envelope of ∆yK−1, F̄(·|yK−1). Now, define the following payoff function for round K.

ΓK
(
v,y,FyK−2

)
=

v∫
v

(v− x)d
FyK−2(x)

N−K

FyK−2(y)N−K

This is the consistent planning bidder’s evaluation of her round K payoff in round K − 1 given

some conditional belief about the distribution of values in round K − 1, FyK−2 ∈ ∆yK−2 and the

round K −1 winner’s valuation y. Clearly ΓK is increasing in v and decreasing in y. Now consider

the payoff in round K − 1. Suppose bidders are following some strategy βK−1 in this round that

possibly depends on previous round prices and a bidder bids as if her valuation is z ≥ v. Then,

(11)

ΠK−1(v,z,yK−2) = min
FyK−2∈∆yK−2

z∫
v

(v − βK−1(x,yK−2))dFyK−2(x)
N−K+1

+

yK−2∫
z

ΓK(v,x,FyK−2)dFyK−2(x)
N−K+1

Let F̂yK−2 minimize the above payoff. Taking first order conditions with respect z and setting z = v,

we get

v−βK−1(v,yK−2)= ΓK(v,v, F̂YK−2)= v−
v∫

v

xd
F̂yK−2(x)

N−K

F̂yK−2(v)N−K
=⇒ βK−1(v,yK−2)=

v∫
v

βK(x)d
F̂YK−2(x)

N−K

F̂yK−2(v)N−K
.

Note that for x ≤ v ≤ y,

v−βK−1(x,yK−2)≥ v−βK−1(v,yK−2) = ΓK(v,v, F̂YK−2)≥ ΓK(v,y, F̂YK−2)

since βK−1(·,yK−2) is increasing and ΓK is non-increasing in the second argument. Thus, inspecting

(11) it is clear that in F̂YK−2(·) = F̄(·|yK−2). Thus

βK−1(v,yK−2) =

v∫
v

βK(x)d
F̄(x|yK−2)

N−K

F̄(v|yK−2)N−K .
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Next, we consider the consistent planning continuation payoff function ΓK−1.

ΓK−1(v,y,FyK−3) =

v∫
v

(v − βK−1(x,y))d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1 +

y∫
v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

=

v∫
v

v − x +
x∫

v

F̄(z|y)N−K

F̄(x|y)N−K dz

d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

+

y∫
v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1 .

Note that the first term in the above is non-increasing in y due to the Envelope Theorem. For the

second term, note that the derivative with respect to y,

(N −K +1)
fyK−3(y)
FyK−3(y)

ΓK(v,y,FyK−3)−
y∫

v

ΓK(v,x,FyK−3)d
FyK−3(x)

N−K+1

FyK−3(y)N−K+1

≤ 0

since ΓK(v,y,F) is non-increasing in y as we established in step 1 of the proof. Thus, ΓK−1(v,y,FyK−3)

is non increasing in y.

A bidder’s payoff function in round K −2 is given by

ΠK−2(v,z,yK−3) = min
FyK−3∈∆yK−3

z∫
v

(v − βK−2(x,yK−3))FyK−3(x)
N−K+2

+

yK−3∫
z

ΓK−1(v,x,FyK−3)dFyK−3(x)
N−K+2.

Let F̂K−3 minimize the above payoff function. Then, first order conditions and z = v imply

v−βK−2(v,yK−3) =ΓK−1(v,v, F̂yK−3) =

v∫
v

(v−βK−1(x,v))d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1
=⇒

βK−2(v,yK−3) =

v∫
v

βK−1(x,v)d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1

Note that
v∫

v

βK−1(x,v)d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1
=

v∫
v

x−
x∫

v

F̄(z|v)N−K

F̄(x|v)N−K dz

d
F̂yK−3(x)

N−K+1

F̂yK−3(v)N−K+1

Again, it is straightforward to show that the above is increasing in v using the Envelope Theorem.

Finally, note that
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v−βK−2(x,yK−3)≥ v−βK−2(v,yK−3) = ΓK−1(v,v, F̂yK−3)≥ ΓK−1(v,y, F̂yK−3)

where the second inequality follows monotonicity of βK−2(·,yK−3) and the fourth inequality fol-

lows from the monotonicity of ΓK−1(v, ·,F). Thus F̂yK−3 = F̄(·|yK−3) and

βK−2(v,yK−3) =

v∫
v

βK−1(x,v)d
F̄(x|yK−3)

N−K+1

F̄(v|yK−3)N−K+1

The proof for the remaining rounds follows exactly the same procedure. The independence of

F̄(·|y) from the bidders valuation follows from assumption 3.1. For a proof see Step 5 of the proof

of Proposition 4.1 of Ghosh and Liu (2021).

A.2. Proof of Proposition 3.5. Note that

E [Pk+1|pk] =

yk+1∫
v

βk+1(x,yk)dF(N−k)
2 (x|x ≤ yk+1)

= (N − k)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1 − (N − k − 1)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k

F(yk+1)N−k

Now, for k = K −1,

pK−1 = βK−1(yK,yK−2)

=

yK∫
v

βK(x)d
(

F̄(x|yK−2)

F̄(yk+1|yK−2)

)N−K

≥
yK∫
v

βK(x)d
(

F(x|yK−2)

F(yk+1|yK−2)

)N−K

= (N − K + 1)

yK∫
v

βK(x)d
F(x)N−K

F(yK)N−K − (N − K)

yK∫
v

βK(x)d
F(x)N−K

F(yK)N−K

> (N − K + 1)

yK∫
v

βK(x)d
F(x)N−K

F(yK)N−K − (N − K)

yK∫
v

βK(x)d
F(x)N−K+1

F(yK)N−K+1

= E [PK|pK−1]

where the third equality follows from the supposition in the statement of the proposition.

In second price auctions, since prices are determined by the second highest values, yk and yk+1

are valuations that determine prices in rounds k−1 and k. Thus, the supposition in the second part

of the Proposition does restrict the valuation that determines prices in round k+ 1. Now, for the
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second part of the result, suppose yk = yk+1. Then,

E [Pk+1|pk] = (N − k)

yk∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk)N−k−1 − (N − k−1)

yk∫
v

βk+1(x,yk)d
F(x)N−k

F(yk)N−k .

Now, consider

pk = βk(yk+1,yk−1)

= βk(yk,yk−1)

=

yk∫
v

βk+1(x,yk)d
F̄(x|yk−1)

N−k−1

F̄(yk|yk−1)N−k−1

≥
yk∫

v

βk+1(x,yk)d
F(x|yk−1)

N−k−1

F(yk|yk−1)N−k−1

= (N − k)

yk∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1 − (N − k − 1)

yk∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1

> E [Pk+1|pk]

Then due to continuity of the bid functions, the second part of the result follows from the final

inequality.

A.3. Proof of Proposition 3.6. The first part of the proof as the same as in the previous result.

For the second part note that for any k and y ≤ y′,

(12)

βk(x,y) =
x∫

v

βk+1(z,x)d
F̄(z|y)N−k−1

F̄(x|y)N−k−1

≥
x∫

v

βk+1(z,x)d
F̄(z|y′)N−k−1

F̄(x|y′)N−k−1

= βk(x,y′).
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Note,

pk = βk(yk+1,yk−1)

=

yk+1∫
v

βk+1(z,yk+1)d
F̄(z|yk−1)

N−k−1

F̄(yk+1|yk−1)N−k−1

≥
yk+1∫
v

βk+1(z,yk)d
F̄(z|yk−1)

N−k−1

F̄(yk+1|yk−1)N−k−1

≥
yk+1∫
v

βk+1(z,yk)d
F(z)N−k−1

F(yk+1)N−k−1

= (N − k)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1 − (N − k − 1)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1

> (N − k)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k−1

F(yk+1)N−k−1 − (N − k − 1)

yk+1∫
v

βk+1(x,yk)d
F(x)N−k

F(yk+1)N−k

= E [Pk+1|pk]

where the second inequality follows from (12) and the third inequality follows from the first sup-

position in the statement of the proposition.

For the final result, continuity also implies that we prices will decline for ’close-by’ distributions

as well which may not satisfy the reverse hazard rate condition.

A.4. Proof of Proposition 5.1. Identification of v and F̂: In sequential SPAs bidders bid their

valuations in the final round. Thus, from bids in the final round, we can immediately identify the

valuations of bidders remaining in the final round. Thus we know the N −K +1-th, N −K-th and

so on order statistics from F̂ . Thus, the true data generating process is identified from bids in

the final round. Given F̂ , note that due to monotonicity of equilibrium bidding in valuations, all

valuations from each round can be identified by matching percentiles bid distributions with their

corresponding percentiles in F̂ .

Identification of F̄(·|y): For notational parsimony, assume that N and K are fixed. Then, let

Gk(bk|ỹk−1) represent the bid distribution in the k-th round conditional on the price history, and

gk(bk|ỹk−1) the corresponding bid densities. Abusing notation we will write ỹk−1 as just yk−1.

Conditional on previous round price, let φk(·|yk−1) = β
−1
k (·|yk−1) be the inverse bidding strategy.

In equilibrium, bidding strategies are monotone and increasing. Thus,

Gk(bk|yk−1) = F(φk(bk|yk−1)) and gk(bk|yk−1) = f (φk(bk|yk−1))φ
′
k(bk|yk−1).(13)
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Now, consider round K −1. First order conditions for an optimal bid imply that conditional on

winning round K−1, bidders payoff on round K−1 must equal her expected payoff from the next

round. That is

v−bK−1 =ΠK(v,v,φK−1(bK−1)) =

v∫
v

(v− x)d
(

F̄(x|yK−2)

F̄(v|yK−2)

)N−K

.

Now, note that the above can also be written as

bK−1F̄(φK−1(bK−1|yK−2))
N−K =

φK−1(bK−1|yK−2)∫
v

xdF̄(x|yK−1)
N−K.

Taking derivative of the above with respect to bK−1 we get

F̄(φK−1(bK−1|yK−2))
N−K +

bK−1(N − K)F̄(φK−1(bK−1|yK−2))
N−K−1 f̄ (φK−1(bK−1|yK−2))φ

′
K−1(bK−1|yK−2) =

φK−1(bK−1|yK−2)(N − K)F̄(φK−1(bK−1|yK−2))
N−K−1 f̄ (φK−1(bK−1|yK−2))φ

′
K−1(bK−1|yK−2).

Rearranging and using the fact that φK(bK|yK−2) = v for any yK−2, we have

(14)
v = bK−1 +

F̄(φK−1(bK−1|yK−2))

(N − K) f̄ (φK−1(bK−1|yK−2))φ
′
K−1(bK−1|yK−2)

= bK−1 +
F̄(v|yK−2)

(N − K) f̄ (v|yK−2)φ
′
K−1(bK−1|yK−2)

.

Substituting from (13) we get

f̄ (v|yK−2)

F̄(v|yK−2)
=

f (v)
(N −K)(bK −bK−1)gK−1(bK−1|yK−2)

.(15)

where f is estimated using final round bids. Thus, with variation in yK−2, F̄(·|y) is identified from

the above equation along with the condition F̄(y|y) = 1. From this part of the proof we can also see

that in order to identify worst-case conditional beliefs, data from the final two rounds is sufficient.

Using a similar approach we can add to the power of our tests by estimating worst-case conditional

beliefs from other rounds, as they only depend on the previous round y.

Identification of F̄: Once F̄(·|y) have been identified, note that we can estimate βk(x,y) for any

K > k > 1, where yk−1 = y. Specifically, since β2 can be estimated, note from the closed form of

the equilibrium

b1 =

φ1(b1)∫
minbi,1

β2(x,φ1(b1))d
F̄(x)N−2

F̄(φ1(b1))N−2
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Now, since all v have already been estimated for each bidder in each round, we know the value of

φ1(b1). Thus, F̄ can be estimated from the above equality. Alternatively, note that F̄(·|v̄) = F̄(·),
thus we can also use estimates of F̄(·|y).

APPENDIX B. OTHER MODELS

B.1. Aversion to price risk. Bidder’s preferences are defined as

Payoff from winning = v− l(payment); l′′(·)≥ 0

where l is increasing and convex. Now consider K = 3, and N bidders. Much like bidding in

a second price auction, the final round with aversion to price risk has dominant strategies where

bidders bid

β
risk
3 (v) = l−1(v).

Then first order conditions in the second round imply

v− l
(

β
risk
2 (v,y1)

)
=

v∫
v

(v− l(l−1(x))d
(F(x)/F(y1))

N−3

(F(v)/F(y1))N−3 =⇒ β2(v) = l−1

 v∫
v

xd
F(x)N−3

F(v)N−3


where the first term in the left hand is the payoff in the second round conditional on being a pivotal

bidder and the term after the first equality is the expected payoff from winning the final round.

Note that bidding in the second round is history-independent. With these bid functions,

p2 = β
risk
2 (y3) = l−1

 y3∫
v

xd
F(x)N−3

F(y3)N−3

≥
y3∫

v

l−1(x)d
F(x)N−3

F(y3)N−3 = E[P3|p2],

where the inequality is due to Jensen’s inequality. Similarly, we can show that prices between

round 1 and 2 are also a super-martingale.

B.2. Loss aversion. Under these preferences,

Payoff in round k =

v− payment; if bk > maxb j,k

−Λv F(v)N−k

F(yk−1)N−k ; otherwise

where Λ is a parameter of loss-aversion. Consider K = 3 and N bidders. Using the standard

argument, bidding in the final round is

β
loss
3 (v,y2) = v+Λv

F(v)N−3

F(y2)N−3

Note that bidding in the final round is negatively related to the price/valuation of the winner in the

second.
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Now, using first order conditions

v−β
loss
2 (v,y1)+Λv

F(v)N−2

F(y1)N−2 =

v∫
v

v−β
loss
3 (x,v)d

F(x)N−3

F(v)N−3

=⇒ β
loss
2 (v,y1) =

v∫
v

β
loss
3 (x,v)d

F(x)N−3

F(v)N−3 +Λv
F(v)N−2

F(y1)N−2

Again, bidding in the second round is inversely related to first round winning bid. Calculating

prices we get that

p2 = β
loss
2 (y3,y1) =

y3∫
v

β
loss
3 (x,y3)d

F(x)N−3

F(y3)N−3 +Λv
F(y3)

N−2

F(y1)N−2 >

y3∫
v

β
loss
3 (x,y3)d

F(x)N−3

F(y3)N−3

>

y3∫
v

β
loss
3 (x,y2)d

F(x)N−3

F(y3)N−3 = E[P3|p2]

Thus the model generates prices that are a super-martingale and bidding that is negatively history

dependent.

APPENDIX C. DATA

C.1. Summary statistics. The data set contains all bids made in the auctions for train tickets. A

bidder who engaged in incremental bidding could have recorded multiple bids in the same auction.

We therefore treat the highest bid that a bidder records in an auction as the bidder’s revealed bidding

strategy. A further complication is that we cannot treat most winning bids as revealed strategies.

That is due to proxy bidding and the fact that most auctions are settled using the second price rule

(see table 5). Thus, we treat the winning bids as prices only, and treat non-winning bids as revealed

bidding strategies. In addition to the bids, the data also contains bidder identifiers and the date,

hour, and minute that the bid was placed.

In the following sections we describe some features of the data. In many cases we divide the

data into two categories. One is the set of all bids that were submitted. The other is a subset of bids

that were placed in an auction after the previous round of the sequence ended. These bids capture

the sequential nature of the auctions.

As we discussed before, the bidding mechanism implies that winners of an auction on occasion

have to pay their own bid. This happens about 9 percent of the time (see table (5)). If one con-

siders auctions where the winning price was greater than 99 SEK, the share increases to 14 percent.

Another feature of the proxy bidding mechanism is that the increment that a bidder must raise

the current leading bid by increases as the current leading bid increases. This has implications
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TABLE 5. Pricing Rule

All Auctions Price> 99
Number Percent Number Percent

price=2nd bid + increment 31,941 91 14,995 86
price=1st bid 3,216 9 2,364 14
Total 35,157 100 17,379 100

for the available bidding range to a bidder. As can be seen in table 6, at the time of placing their

highest bid, 72 percent of bidders were free to place any bid as long as it was higher than the

current leading bid. 20 percent of bidders were restricted to place a bid that surpassed the current

leading bid by at least 5 SEK.

TABLE 6. Highest Bid by
Increment Category

Increment Number Percent
1 SEK 107,254 72
5 SEK 29,926 20
10 SEK 12,226 8
25 SEK 6 0
missing 72 0
Total 149,484 100

TABLE 7. Summary Statis-
tics: Auctions

Auctions=35157
Mean SD

Price 131.90 128.43
Bidders in auction 4.25 2.31
Bids 11.02 8.79

On average 4 bidders participated in each auction and 11 in a sequence. The average sequence

consisted of 5 tickets. Almost all tickets were for either intercity or fast train trips. There was a

fairly even distribution of the weekday of train departure. The auctions were conducted in close

succession with less than ten minutes between closing times. This suggests that there was no

discounting for tickets sold in later rounds of a sequence. The average price of tickets was 131.90

SEK, not conditioning on train types. The average price decline between two auctions within a

sequence was about 9%.

Turning to all the bids, the average bid in the auctions was about 90.69 SEK. Importantly this

was below the price at which the bid increments changed. In addition, on average, bidders led the

auction only once. That is bidders typically did not lead the auction multiple times which suggests

that bidders were bidding as if they were in a sealed bid mechanism.
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TABLE 8. Summary Statistics: Sequences
Sequences=6874
Mean SD

Bidders in sequence 10.75 6.48
Tickets in sequence 5.11 2.82
Traintype: Intercity 0.48 0.50
Traintype: Regional 0.01 0.08
Traintype: X2000 0.52 0.50
Sunday 0.07 0.26
Monday 0.15 0.36
Tuesday 0.16 0.36
Wednesday 0.18 0.38
Thursday 0.16 0.37
Friday 0.14 0.34
Saturday 0.14 0.35
Minutes between auctions 8.65 5.96

TABLE 9. Summary Statistics: Bids

All Bids
Bids=387579

Highest Bids
Bids=149484

Non-Winning Bids
Bids=114327

Mean SD Mean SD Mean SD
Bid 90.69 100.76 106.20 114.43 98.30 108.56
Share incremental bid 0.28 0.45 0.24 0.43 0.23 0.42
Share auction elapsed 89.36 22.43 87.58 24.51 85.94 25.74
Share leading bid 0.42 0.49 0.70 0.46 0.61 0.49
Bids by bidder 2.59 3.02 . . .
Leading bids by bidder 1.08 0.95 . . .
Share ever leading 0.78 0.41 . . .
Share leading and returning 0.25 0.43 . . .

APPENDIX D. ROBUSTNESS - DECLINING PRICES

In section 2.2 we document declining prices by assuming a linear-quadratic relationship between

log prices and the position in a sequence. This result is robust to alternative specifications as well.

In particular, consider the event study specification

(16) ln(pricek j) =
15

∑
i=1

γiDi,k +θ j +βxk + εk j.

Here Di,k = 1 if i= k and 0 otherwise. Figure 9 plots the estimated effects of such a specification.

Again, the declining price path is clear also when no particular functional form is assumed.
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FIGURE 9. Visual - Declining Price Dummy
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In table 1 in section 2.2 we also include the results from an estimation where the the sequence

fixed effects, θ j, are replaced with a set of sequence covariates x j. To complement the coefficients

reported in column (3), here we include a graph where the estimated effect at the averages of

sequence covariates overlay the estimated effect from the fixed effect regression. The results is

captured in figure 10.

FIGURE 10. Visual - Fixed effect vs. sequence controls
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Note: Estimated marginal effects at each position in the sequence. For OLS, the marginal
effects have been computed at the average of sequence covariates.

When documenting the declining price anomaly, we pool sequences of various length. One con-

cern then is that this gives rise to some spurious relationships that are misinterpreted as declining

prices. To address this, we first reverse the assignment of a position within a sequence. In the orig-

inal estimation, we assign k = 1 to the auction ending first within a sequence, k = 2 to the auction

ending second, and so on. We know re-estimate equation (1) but assign k = 1 to the auction ending
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last in a sequence, k = 2 to the auction ending second to last, and so on. We should then expect

a figure with the same concavity as in figure 3, but trending upwards. The result is displayed in

figure 11.

FIGURE 11. Visual - Auction order reversed
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Note: Estimated marginal effects for each position in a sequence based on estimating equa-
tion (1), but assigning k = 1 to the auction ending last, k = 2 to the auction ending second
to last, and so on.

In addition to reversing the order of auctions, we can also document the pattern holding the

number of items fixed. That is estimating equation (1) separately for each K. Figure 12 displays

the results for K = 2, ...,10. We have here, for comparability chosen to normalize the price pattern

with the price in auction K. As can be seen, declining prices is present in for all K apart from

K = 2 (although not significant for some K), which displays a flat price trend.

In appendix E, we derive the bidding functions when sequence heterogeneity enters multiplica-

tively. We show that bi, j,k = a jβk,N j(vi) when vi j = a jvi. This means that pk, j = a jβk,N j(v
k:N j),

where vk:N j is the kth highest valuation out of N j valuations. If the assumption that auction het-

erogeneity enters multiplicatively is correct, then we should be able to construct similar estimates

of price ratios Pk, j =
pk+1, j
pk, j

by estimating equation 16 as we do by estimating a log differences

equation without fixed effects.

APPENDIX E. HOMOGENIZING BIDS

E.1. Sequence heterogeneity. In order to homogenize bids across sequences we follow the fol-

lowing procedure. Let there be J sequences. Tickets sold within a sequence are identical. Let N j

and K j represent the number of bidders and the number of tickets in sequence j. Bidder i’s valu-

ation for a ticket sold in sequence j is given by vi, j. A bidder’s valuation depends on a privately

drawn signal, vi, as in the benchmark theoretical model. In addition, there is a sequence specific
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FIGURE 12. Visual - Fixed number of items
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Note: The predicted price pattern from estimating equation (1) holding K fixed. All es-
timates are normalized by the predicted price in auction K, and confidence intervals are
based on standard errors calculated using the delta method.

FIGURE 13. Price ratio
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and ∆εk, j = εk+1, j − εk, j .
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signal, common to all bidders, a j. This signal is commonly known to all bidders participating in

the sequence j.

Multiplicative: One way of defining bidder’s valuation is to assume that sequence heterogeneity

enters the valuation multiplicatively. That is

vi j = via j

With such a formulation note that bidders believe that vi j ∼ F̄j
[
a jv,a jv

]
where F̄j(x) = F̄(x/a j).

Then, from the definition of equilibrium bidding functions it is straightforward to show that

bi, j,K j = β j,K j,N j(vi j) = vi j = a jvi = a jβK(vi)

bi, j,k = β j,k,N j(vi j) =

vi j∫
a jv

β j,k+1,N j(x)d
(

F̄j(x)
F̄j(vi j)

)N j−k−1

= a j

vi∫
v

βk+1,N j(x)d
(

F̄(x)
F̄(vi)

)N j−k−1

= a jβk,N j(vi)

where βk,N j are bid functions as defined in the Proposition 3.3. From here, we can see that

E

[
bi, j,k

]
= a jE

[
βk,N j(vi)

]
where the expectation is taken with respect to the true distribution F . Similarly,

var
[
bi, j,k

]
= a2

jvar
[
βk,N j(vi)

]
From the above two equations, note that

E

[
bi, j,k

]
=

E

[
βk,N j(vi)

]
var
[
βk,N j(vi)

]1/2 var
[
bi, j,k

]1/2(17)

Addititive: Another way of defining bidder’s valuation is to assume that sequence heterogeneity

enters the valuation additively. That is

vi j = vi +a j

Following the same procedure as above we note that in this case

E

[
bi, j,k

]
= a j +E

[
βk,N j(vi)

]
and

var
[
bi, j,k

]
= var

[
βk,N j(vi)

]
Thus in this case there is no relationship between the first and second moments of the bids.
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In order to test whether the sequence heterogeneity enters multiplicatively or additively, we can

run the following regression on bids.

(18) b̄ jk = γ0 + γ1sd(b jk)+ ε jk

where b̄ jk is the mean bid placed in auction k in sequence j. The coefficient of interest is β1, which

captures the correlation between mean bids and standard deviation of bids within an auction. If

β1 , 0, then one can infer that a j enters multiplicatively.

Figure 14 and table 10 display the result of analyzing equation (18). It shows a significant

covariance between the mean bid and the standard deviation within an auction. This would suggest

that auction heterogeneity is multiplicative rather than additive.

FIGURE 14. Mean and Standard Deviation of Bids by Auction

E.2. Washing bids. As the previous section suggests, auction heterogeneity seems to enter mul-

tiplicatively. Hence given a vector of observable covariates, z j, in sequence j, the valuation can be

written as vi j = Γ (z j)vi, where vi is bidder i’s private information. This implies

(19) bi, j,k = β j,k,N j(vi j) = Γ (z j)βk,N j(vi)

To account for the observed heterogeneity, the procedure outlined in Haile and Tamer (2003)

and implemented in Shneyerov (2006) will be applied. Our goal is to obtain homogenized bids,

bi,k, that bidder i would have submitted in a generic auction. A generic auction is defined as one
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TABLE 10. Auction Heterogeneity - Model Evaluation

(1) (2)
Mean Mean

VARIABLES Bid Bid

s.d. Bid 1.049*** 0.990***
(0.00718) (0.00815)

Tickets Left -1.036***
(0.109)

Bidders 2.836***
(0.173)

Constant 27.32*** 20.45***
(0.465) (0.910)

Observations 24,862 24,862
Controls YES
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

where the effect of covariates is given by the average covariates. Thus, let

b0(n,k) = E(βk,n(vi)) and Γ0 = EZ(Γ (z))

be the mean bid placed in the generic auction k and the mean sequence covariates. Then, rewriting

equation (19) we get

(20) bi jk = Γ0Γ1(z j)b0(n,k)b1(vi,n,k)

Using the above equation, our aim is to obtain homogenized bids, bi,k that a bidder would place

in a generic auction k, where Γ1(z j) = 1. From the above equation

bik = Γ0b0(n,k)b1(vi,n,k) =
bi jk

Γ1(z j)

Since bi jk are the observed bids, we need to have estimates of Γ1(z j) in order to obtain homoge-

nized bids. Taking logs in (20) we get

log(bi jk)− log(Γ1(z j)) = log(Γ0)+ log(b0(n,k))+ log(b1(vi,n,k))

To estimate b̂i j, it is further assumed that Γ1(z j) = zγ j
j , and that log(b1(vi,n,k)) has mean zero

conditional on n,k,z j. Given this, the following regression is estimated to homogenize bids:

(21) log(bi jk) = α0 + γ j log(z j)+D(n,k)+ εi jk
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where D(n,k) is a set of dummies for the number of a participants in an auction, and the number of

tickets left after the auction. An issue with this is that most of the observable ticket characteristics

are dummy variables, such as route and train type. An alternative way of specifying these variables

would be to find continuous variables that can describe these tickets. To wit, we use the following

variables are considered for this purpose.

TABLE 11. Continues Proxy Variables for Ticket Characteristics
Dummy Variable Continuous Variable

Population
Household disposable income

Departure/Destination Latitude
Longitude
Distance

Est. Travel Time
Train Type Distance

(Distance) X (Travel Time)
Week Day Treat as continuous

Average Temperature
Month Avg precipitation

Sun Hours

To evaluate how well the continuous variables capture auction heterogeneity, the estimated R2

from a regression of the categorical variables onto the continuous proxy variables are reported in

table (12), along with the number of variables used for the regression. As can be seen, the captured

variance ranges from .45 for the month variables, to .68 for the departure-destination variables.

TABLE 12. Continuous Variable Evaluation

(1) (2) (3)
Departure Departure

VARIABLES Destination Month Train
R-squared 0.682 0.446 0.633
Observations 104,137 104,137 104,137
# of Variables 9 6 3

Note: Month variables used include both long run averages and the
recordings of the 2010/2011 values.

To further evaluate how well the proxy variables capture ticket heterogeneity, the estimated bid

correction Γ̂1(z j) is regressed on the categorical variables. The goodness of fit is reported in table

13. The first column is without weekday as it is also included as a continuous variable. The

adjusted R2 is over .9 in both estimations, suggesting that the fit is good overall.

Going a step further and looking at the prediction from the regression against the estimated

Γ̂1(z j) (figure 15), one can see that there are a few observations where the fitted value from the
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TABLE 13. Bid Correction Evaluation

(1) (2)
Without With

VARIABLES Weekday Weekday
Adjusted R-squared 0.926 0.943
Observations 104,137 104,137

regressions in table (13) are above the estimated Γ̂1(z j). Common for these are that the tickets are

for either Stockholm to Gothenburg and the other way around.

FIGURE 15. Continuous Proxy Variable Evaluation

Note: Fitted values of a regression of the estimated bid correction from
using the continuous variables on the categorical variables. R2=.94

APPENDIX F. ESTIMATOR PERFORMANCE

F.1. Gibbs Metropolis Hastings Algorithm: We use a Markov Chain Monte Carlo algorithm to

estimate the posteriors of θF |K and θF̄ |K̄. The algorithm is the same for both parameters, but since

the estimated f̂ (v) and F̂(v) are inputs to the estimation of θF̄ |K̄, we start by estimating θF |K, for

K = 4,6,8,10,12.

Dropping, K, for exposition. We start by picking a θF such that

L(θ (0)
F ) = p0(θ

(0)
F )

J

∏
j=1

g′(b(2)3, j |N j,y2,θ
(0)
F )
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is not zero. Then, for each iteration (s), generate a candidate, θ ∗
F , from density q(·|θ (s−1)

F ). Let

(22) z = min

 L(θ ∗
F)q(θ

(s−1)
F |θ ∗

F)

L(θ (s)
F )q(θ ∗

F |θ
(s−1)
F )

,1


and set θ

(s)
F = θ ∗

F with probability z, and set θ
(s)
F = θ

(s−1)
F with probability 1− z. {cite Tierney

1994} shows that under mild conditions, the sample {θ
(s)
F }S

s=1 converges to the posterior, such that

for any measurable function h(·)

lim
S→∞

1

S

S

∑
(s)=1

h(θ (s)
F )

a.s.→
∫

h(θF)p(θF |⊯)dθF = E(h(θF)|b1)

We further simplify calculation of 22 by using the Gaussian kernel. That is, we draw the candi-

date parameter from N({θ
s−1
F }K−1

k=1 ,ΩF). The proposal densities then cancel out in equation 22 by

the symmetry of the Gaussian kernel.

To estimate θF̄ |y1
we partition the parameters according to the bins. Let θF̄ |−Ym

=(θF̄ |Y1
, ...,θF̄ |Ym−1

)

for m≥ 2 and θF̄ |+Ym
=(θF̄ |Ym+1

, ...,θF̄ |YM
) for m<M. Then we have that θF̄ |y1

=(θF̄ |−Ym
,θF̄ |Ym

,θF̄ |+Ym
).

For each m = 1, ...,M, generate a candidate θ ∗
F̄ |Ym

from q(·|θ (s)
F̄ |−Ym

,θ
(s−1)
F̄ |Ym

,θ
(s−1)
F̄ |+Ym

). Note that given

the structure of the model

L(θ (s)
F̄ |−Ym

,θ ∗
F̄ |Ym

,θ
(s−1)
F̄ |+Ym

)

L(θ (s)
F̄ |−Ym

,θ
(s−1)
F̄ |Ym

,θ
(s−1)
F̄ |+Ym

)
=

p0,F̄ |Ym
(θ ∗

F̄ |Ym
) ∏

jm∈Jm

g′2(b
(2)
2, jm(v|N,y1)| f̂ (v), F̂(v),θ ∗

F̄ |Ym
)

p0,F̄ |Ym
(θ

(s−1)
F̄ |Ym

) ∏
jm∈Jm

g′2(b
(2)
2, jm(v|N,y1)| f̂ (v), F̂(v),θ (s−1)

F̄ |Ym
)

:=
Lm(θ

∗
F̄ |Ym

)

Lm(θ
(s−1)
F̄ |Ym

)
.

Hence, while we do estimate the parameters jointly, this is equivalent as to estimate them one-

by-one, and we can still perform model selection individually for each bin m.

F.2. Illustration with history dependent bids. We here illustrate our estimator. Valuations are

drawn from a log normal distribution with mean 0 and variance 1 truncated at .55 and 2.5, and

transformed to fall within 0 and 1. For worst case beliefs we use the point-wise minimum of two

distributions, F̄1(v) and F̄2(v). F̄1 =U(0,1) and

F̄2(v) =


0 if v < 0

81/2v3/2 if 0 ≤ v ≤ 1/2

1 if 1/2 < v

The chosen distributions introduces history dependence in bidding. They pose a slight challenge

to estimation as they also introduces a kink in the distribution function of the worst case beliefs,
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which might be difficult to approximate without letting K̄ be very large. However, we still restrict

our estimation in this dimension to K̄=4,...,15.

We use a sample that resembles what is available to us in the actual estimation when 3 train

tickets are for sale by using 100 sequences with 4, 5, 6 and 7 bidders each, 80 sequences with 8

bidders, 70 sequences with 9 bidders, and 50 sequences with 10 bidders. This means that we have

600 observations that can be used to recover the distribution of valuations and 600 observations

that can be used to recover worst case beliefs without any history. We also place bids in the second

auction in 10 equally spaced bins based on the winner’s valuation.

We estimate (θF |K) for K = 4, ...,15, and then select K̂ with the Bayes model selection described

above. We then estimate (θF̄ |K̄) for K̄ = 4, ...,15 using f̂ (v) and F̂(v) as inputs, and again choose
ˆ̄K with Bayes model selection.

Lastly, we estimate (θF̄ |y1
|K̄Y ) for K̄Y = 4, ...,15 using f̂ (v) and F̂(v) as inputs. Our assumed

structure then allows as to select different K̄Y for different bins. While the estimation procedure is

done jointly for all θF̄ |Ym
|K̄Y , observations not in bin Ym are independent of θF̄ |Ym

|K̄Y . Thus, after

estimating θF̄ |Ym
|K̄Y , we use Bayes model selection for each bin to select K̄Ym .

We first show the estimated density if valuations along with estimated unconditional worst case

belief, which can be found in Figure 16. The density of valuations is precisely estimated. The

selected K is 10. The distribution of unconditional worst case beliefs falls within the estimated

95% confidence interval, but by inspection one can see that the estimate does not fully capture the

kink where the worst case switches from F2 to F1.
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FIGURE 16. F(v) : lognormal(µ = 0,σ = 1); F̄(v) : point wise min of F̄1(v) and
F̄2(v).
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Before looking at the estimated conditional worst case beliefs, we give a sense of how many

observations there are per bin. This can be found in Figure 17. As the observations are grouped

based on a high order statistic, ”higher” bins have more observations.
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FIGURE 17. Observations per bin, Ym

We now show the performance of the estimated conditional worst case beliefs. We contrast the

estimates to (1) the true conditional worst case beliefs, which can be found in Figure 18; and (2)

the estimated unconditional worst case beliefs, which can be found in Figure 19.

The second comparison is relevant as it will be the basis to evaluate the history dependence.

Without history dependence, the estimated conditional worst case belief should be the same as the

estimated unconditional worst case belief, conditional on common support.

Figure 18 shows that all the true conditional worst case beliefs are within the estimated confi-

dence intervals. Figure 19 shows that the history dependence is recovered where it is most preva-

lent. That is when y1 ∈ Y5. Beliefs are changing in all bins, but for m ≤ 5, F̄2 is the only relevant

distribution for F̄(v|y1 ∈ Ym). For m > 5 over some part of the domain of valuations, F̄1 is the

distribution relevant for F̄(v|y1 ∈ Ym), while over another part of the domain, F̄2 is the relevant

distribution. For the unconditional worst case belief, F̄2 is the relevant distribution for only a very

small part of the domain of valuations.
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10 ]).
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