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Abstract

Estimates of maximum obtainable Sharpe ratios for prominent multifactor models are

too large to be compatible with risk-based economic models. We provide evidence

that this arises due to optimistic bias driven by a combination of data snooping and

publication-induced learning about mispricing. We argue that common ‘out-of-sample’

research designs do not adequately address this bias, and we propose alternative eval-

uation approaches that do so. Sharpe ratio estimates fall dramatically under these

approaches, both for conventional models and for models distilled from large sets of

cross-sectional return predictors using machine learning methods. Reassuringly, our

reduced-bias Sharpe ratio estimates do not violate “good deal bounds.” However, we

also conclude that multifactor model improvements relative to the capital asset pricing

model (CAPM) are far more modest than suggested in the literature.
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1 Introduction

Estimates of Sharpe ratios associated with popular multifactor models strain credulity. As

a concrete example, the estimated maximum obtainable Sharpe ratio associated with the

Fama and French (2018) six-factor model is around 1.2 on an annualized basis, a value

that is roughly three times the Sharpe ratio for the U.S. equity market. Other recently

proposed models, such as the factors extracted from a large set of anomaly portfolios by

Lettau and Pelger (2020), produce even larger estimates of maximum obtainable Sharpe

ratios. Moreover, similarly large Sharpe ratio estimates obtain even under “out-of-sample”

research designs that guard against the possibility of overfitting tangency portfolio weights.

How should we interpret multifactor model Sharpe ratios that are several times larger

than the market Sharpe ratio? An optimist might conclude that this evidence indicates

extraordinary progress in our ability to explain cross-sectional return variation relative to

the classic Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin

(1966). However, in contrast to this view, MacKinlay (1995) argues that large increases in

maximum Sharpe ratios relative to the market more likely reflect deviations from CAPM

driven by non-risk-based explanations such as data snooping, market frictions, or investor

irrationality, than risk-based explanations. This is because risk-based deviations from CAPM

imply bounded increases in maximum obtainable Sharpe ratios, whereas maximum Sharpe

ratios under deviations attributable to other sources are not similarly bounded.1 Therefore,

implausibly large Sharpe ratios are a cause for concern, rather than celebration, at least

insofar as additional non-market factors are purported to capture priced risks.

In this paper, we consider the question of what explains seemingly excessive Sharpe ratios

associated with popular multifactor models. We identify several potential sources of upward

bias in conventional estimates of maximum Sharpe ratios associated with factor models. We

1Ross (1976) bounds asset pricing theory residuals under the assumption that no portfolio can have more
than twice the market Sharpe ratio. Similarly, Cochrane and Saa-Requejo (2000) compute bounds on asset
prices under a ‘good deals’ restriction that rules out (annualized) Sharpe ratios in excess of one. MacKinlay
(1995) posits a lower maximum achievable Sharpe ratio of around 0.6.
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then test whether evaluation methods that mitigate these biases produce lower Sharpe ratio

estimates that fall within conventional notions of good deal bounds. We show that estimates

of (maximum) Sharpe ratios obtained for popular models fall dramatically upon adopting

alternative methods that mitigate upward bias driven by the effects of data snooping (Lo and

MacKinlay (1990), Harvey et al. (2016)) and publication-driven learning about mispricing

(McLean and Pontiff (2016)). Somewhat paradoxically, we interpret these lower Sharpe ratio

estimates as ‘good news’ for multifactor models, in the sense that the lower estimates reflect

plausible risk-based explanations of deviations from the CAPM. The corresponding Sharpe

ratios are generally well within standard good deal bounds and are plausibly consistent with

maximum Sharpe ratios for calibrated versions of benchmark economic models. However,

we also find that reduced-bias Sharpe ratio estimates across a wide array of popular multi-

factor models are roughly similar to one another and to the market Sharpe ratio. Thus, at

least from a forward-looking perspective, our results challenge the accumulated perception

that increasingly sophisticated multifactor models are clearly superior to simpler multifactor

models such as the three-factor model of Fama and French (1993), or even the classic CAPM.

Empirically, we first consider a relatively prosaic explanation for excessive Sharpe ratios

reported in the literature: estimates computed using standard ‘plug-in’ estimates of unknown

factor means and covariances are upward biased in finite samples (Jobson and Korkie (1981)).

We compute alternative estimates that correct for this bias. The evidence indicates that this

source of bias is relatively small and is not the primary explanation for apparent violations

of good deal bounds.2

Given that classic finite-sample bias does not resolve the Sharpe ratio puzzle, we con-

sider other potential sources of bias. One involves data snooping with respect to factor model

specification. Characteristics-based factors are often motivated by return patterns known

to exist in prior data. Thus, when Sharpe ratios or other model metrics are computed us-

ing data that overlaps with samples examined in earlier studies, the resulting metrics are

2For example, alternative bias-reduced Sharpe ratio estimates for the Fama-French 6 factor model remain
in excess of 1.1 on an annualized basis.
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subject to optimistic bias. This reflects a form of ‘overfitting,’ such that model specifica-

tion is based, at least in part, on known empirical outcomes, and is in the spirit of pre-test

biases discussed in, e.g., Leamer (1978), and emphasized by Lo and MacKinlay (1990) in

the context of evaluating asset pricing models. An additional source of upward bias relates

to (bona fide) mispricing that is uncovered by academic research and subsequently reduced

or eliminated by practitioners who trade to exploit the mispricing, as in McLean and Pon-

tiff (2016). Sharpe ratios measured using factor returns that predate academic discovery

of corresponding anomalous return patterns are optimistically biased because they embed

mispricing that has been subsequently reduced or eliminated. To motivate the potential

importance of these channels, we contrast pre- and post-publication average returns for 11

prominent characteristics-based factors. On a pooled basis, the average post-publication

return falls by around 70% relative to pre-publication.

Researchers often evaluate factor models using ‘out-of-sample’ (OOS) empirical designs,

and several recent studies report OOS Sharpe ratio estimates for multifactor models that

are well in excess of one on an annualized basis (e.g., Fama and French (2018) and Let-

tau and Pelger (2020)). However, we show that popular OOS designs involve considerable

overlap between the OOS analysis period and sample periods previously analyzed in studies

that document anomalous return patterns associated with the characteristics featured in

the model.3 Thus, OOS returns analyzed in such studies are not free of biases related to

data snooping and publication-induced learning. Although some researchers acknowledge

potential optimistic bias even in ‘out-of-sample’ designs,4 the extent of this bias is unclear.

In order to shed light on the potential magnitude of biases in Sharpe ratio estimates, we

3As a concrete example, an OOS evaluation of the Fama-French 6 factor model using a sample of
factor returns beginning in 1963 and an initial estimation window of 10 years results in over 40% of OOS
factor-month observations overlapping with samples analyzed in original papers documenting the underlying
characteristics.

4Freyberger et al. (2020) estimate an annualized OOS Sharpe ratio in excess of 2.5 for a nonparametric
model extracted from a large set of firm characteristics using machine learning methods. They note that
“The characteristics we study are not a random sample, but have been associated with cross-sectional return
premiums in the past. Therefore, we focus mainly on the comparison across models rather than emphasizing
the overall magnitude of the Sharpe ratios.” (p. 2328).

3



contrast pre-publication and post-publication Sharpe ratios for characteristics-based factors.

We focus on characteristics for which sufficient post-publication data exists for reasonably

precise estimates. Post-publication Sharpe ratios are typically over 50% lower than pre-

publication sample Sharpe ratios for these factors, and are typically less than 0.25 on an

annualized basis. We then compare post-publication estimates of maximum Sharpe ratios

for multifactor models with full sample estimates for models with sufficient post-publication

data. Similar to results for individual factors, post-publication Sharpe ratio estimates for

these models are typically much lower than full sample estimates. The estimates are similar

to the market Sharpe ratio over the same period, and we generally cannot reject the null

hypothesis of equal Sharpe ratios.

Some popular models incorporate characteristics that were documented in the anomaly

literature only recently. This implies that post-publication samples are very short, leading

to highly imprecise Sharpe ratio estimates. In order to circumvent this constraint, we eval-

uate ‘adaptive’ versions of models. Such models begin as the CAPM, and gradually evolve

into the corresponding destination models (e.g., the Fama-French 5 factor model) as char-

acteristics motivating additional non-market factors are documented in academic literature.

This feature ensures that factor and tangency portfolio returns associated with the adaptive

model do not include data analyzed in original papers that document the underlying char-

acteristics in the anomaly literature. The Sharpe ratio for the adaptive version of a model

can be interpreted as an estimate of the Sharpe ratio that a real-time investor could achieve,

assuming the investor is sophisticated in the sense of closely following academic literature

and quickly incorporating newly proposed factors, but not unnaturally prescient in the sense

of being able to identify characteristics that predict returns in the cross section well before

they were identified in academia.5 These Sharpe ratios are informative concerning good deal

5Consider, for example, models that include the size factor proposed by Fama and French (1993). Under
such a model, the mean-variance efficient tangency portfolio will take a position in the SMB factor, in
addition to the market (and potentially other factors). However, adopting a portfolio of this form during
the 1960s and 1970s implicitly assumes an extraordinary degree of investor prescience, as the size effect
had yet to be documented and the seminal single factor CAPM had only recently been proposed. The
notion of evaluating adaptive versions of models therefore follows naturally from considering factor models
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bounds, because such bounds presumably relate to Sharpe ratios that could plausibly be

achieved by real-time investors.

We compare conventional Sharpe ratio estimates with estimates based on the adaptive

version of the corresponding model.6 Sharpe ratios based on standard in-sample tangency

portfolio returns exceed the Sharpe ratio of the market factor and often exceed one on

an annualized basis. Sharpe ratio estimates continue to violate good deals bounds under

a conventional OOS research design or using simple equal-weights for factors. However,

Sharpe ratio estimates fall precipitously upon considering adaptive versions of the models.

Strikingly, we find that Sharpe ratios for adaptive versions of the models are often roughly

equal to or below that of the market Sharpe ratio. Similarly, we show that alternative asset

pricing metrics characterising the magnitude of pricing errors with respect to a set of test

assets become substantially less optimistic under the adaptive models.

In contrast to traditional ad-hoc characteristics-based models in the spirit of Fama and

French (1993), several recent studies distill factors from large sets of characteristics or related

portfolios by applying forms of regularization or related machine learning methods.7 Esti-

mates of Sharpe ratios reported in the literature for these approaches are large, even using

OOS designs. The underlying ‘basis’ characteristics that serve as inputs for these methods

are typically chosen to be characteristics from the accumulated literature on cross-sectional

return anomalies. This creates the potential for optimistically biased assessments of the

resulting model performance similar to that for ad-hoc characteristics-based models.

As an illustration, we consider the performance of models based on principal components

analysis (PCA) applied to portfolios constructed as sorts on a large number of characteristics

as representing real-time proxies for an efficient portfolio.
6Operationally, we add new factors starting in the publication year of the original paper documenting

the characteristic that underlies a particular factor, or alternatively in the ending year of the data sample
analyzed in that paper. For example, original documentation of the size effect in returns is generally at-
tributed to Banz (1981). Our treatment is conservative, in the sense that we permit the SMB factor to be
included in adaptive models starting in 1975 (sample year end criterion) or 1981 (publication year criterion)
based on Banz (1981) rather than approximately a decade later when the SMB factor was formally proposed
by Fama and French (1993).

7Selected examples include Kelly et al. (2019), Freyberger et al. (2020), Kozak et al. (2020), and Lettau
and Pelger (2020).
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from the anomaly literature, as considered in, e.g., Kozak et al. (2018), Kozak et al. (2020),

and Haddad et al. (2020). We replicate large Sharpe ratios for statistical factors constructed

in this way, both in-sample and using standard out-of-sample designs. We then expand the

basis set of portfolios used to extract factors to include industry portfolios and portfolios

that reflect exposure to macroeconomic factors in the spirit of, e.g., Chen et al. (1986), in

addition to standard anomaly characteristics. This produces even higher in-sample Sharpe

ratios. However, OOS estimates fall on the order of 50% for models with 4–6 factors and

are well below one on an annualized basis.8 Estimates fall further if the set of included

characteristics is limited to those documented in published literature at the time.

The much smaller Sharpe ratio estimates that we obtain in this paper might seem like bad

news for popular multifactor models. However, we suggest a more positive interpretation.

It is reassuring that popular models do not violate standard notions of good deal bounds

in the sense that real-time investors who ‘factor invest’ using these models after they are

proposed do not achieve exorbitant Sharpe ratios. Our results suggest that improvements

offered by popular models relative to the CAPM are much smaller than suggested by existing

literature. But this is precisely what one should expect under risk-based alternatives, whereas

unnaturally large Sharpe ratios are evidence against risk-based explanations (MacKinlay

(1995)). Admittedly, our results also pose challenges. In particular, many models perform

similarly upon adopting evaluation methods that mitigate pre-test biases and the effects of

publication-induced learning. This exacerbates the already challenging problem of factor

model specification, and leaves ample room for yet more work on this time-honored topic.

Related Literature

Our paper contributes to a literature documenting secular reductions in average returns

or premia associated with anomaly characteristics following publication. Related papers

include Schwert (2003), McLean and Pontiff (2016), and Smith and Timmermann (2021).

8Early literature on multifactor models focuses on both macroeconomic and industry-based factors, and
thus the expanded set of basis portfolios better reflects ex ante agnosticism concerning whether industry-
based, macroeconomic, or characteristics-based factors will better explain the cross-section of returns.
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This tendency for average returns to decline may be driven, at least in part, by data snoop-

ing, in the spirit of, e.g., Lo and MacKinlay (1990), Harvey et al. (2016), Harvey (2017),

Linnainmaa and Roberts (2018), Harvey and Liu (2021), and Lopez-Lira and Roussanov

(2021). Much of the data snooping literature focuses on the properties of statistical tests for

the validity of models or the relevance of particular individual characteristics.9 In contrast,

but related to this work, we focus on obtaining reduced-bias estimates of Sharpe ratios and

other performance metrics for multifactor models.

Bessembinder et al. (2021) report evidence of significant time-variation in the number of

factors required to explain the cross-section of returns. Related to our study, they document

economically large OOS Sharpe ratios for factor models constructed as principal components

from a large set of characteristics-based hedge portfolios. They find that many factors are

statistically significant in periods before and after the sample studied by original authors.

We emphasize post-publication outcomes, which incorporates effects of publication-induced

learning as in McLean and Pontiff (2016) as well as traditional data snooping. With regard to

PCA-type factors, we highlight the role of potential hindsight bias in the choice of underlying

portfolios by demonstrating how Sharpe ratios fall when the ex ante portfolio set is less

oriented around anomaly characteristics. Bessembinder et al. (2022) show that even the

specific composition of anomaly-based portfolios can have a significant impact on Sharpe

ratios for PCA-based factors.

Other related studies show that many anomaly hedge portfolios take positions in relatively

small, illiquid firms, and/or entail significant transactions costs. For example, Novy-Marx

and Velikov (2016) study the extent to which transactions costs erode the profitability of

anomaly strategies and find that few strategies with turnover greater than 50% per month

yield significant return spreads, even after efforts to mitigate transactions costs. Hou et al.

(2018) examine a larger set of anomalies and find that many do not remain significant after

9The extent to which data snooping drives apparent anomalous return patterns remains debated in the
literature. For example, Chen and Zimmermann (2022) apply alternative false discovery rate estimators and
conclude that most claimed results in the literature are true. Chordia et al. (2020) estimate the proportion
of false discoveries in the absence of multiple testing corrections to be around 45%.
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excluding microcaps and value-weighting returns.10 Our paper shows that Sharpe ratios and

other factor model performance metrics erode substantially upon adopting methods that

mitigate biases even before considering transaction costs. Explicitly accounting for such

costs would further reduce the maximum Sharpe ratios obtainable for the models.

Pesaran and Timmermann (1995) consider predictability in excess US stock market re-

turns from a real-time perspective. They point out that approaches described as “out-of-

sample” nevertheless condition upon the relevance of a particular predictive model or set of

models. This “inevitably raises the possibility that the choice of the model could have been

made with the benefit of hindsight.” We adopt a similar real-time perspective concerning

factor models and propose evaluation methods to mitigate the problem. From a theoretical

perspective, Da et al. (2022) show how learning about investment characteristics (mispricing

in their context) creates a wedge between ex post Sharpe ratios measured by an econome-

trician versus feasible Sharpe ratios for real-time investors. Finally, our focus on addressing

hindsight bias distinguishes our paper from others that focus on econometric issues in com-

parisons of factor models including, e.g., Kan et al. (2013), Barillas and Shanken (2018), and

Fama and French (2018).

2 Factor Model Sharpe Ratios and Optimistic Bias

We aim to evaluate the performance of popular asset pricing models based on factors con-

structed from (U.S.) stocks. What differentiates our paper from previous studies is the

evaluation method we adopt and contrast with conventional methods. This section discusses

sources of bias in Sharpe ratios and other metrics associated with factor models, highlighting

potentially important biases related to model specification and academic research patterns.

We then consider alternative evaluation methods that mitigate optimistic bias.

10Related to this work, Bessembinder et al. (2022) compare the set of 207 anomalies studied in Chen and
Zimmermann (2022) to the set of 153 anomalies studied in Jensen et al. (2022) and find that value-weighting
portfolios and defining portfolios based on less extreme values of the underlying characteristics both lead to
substantially smaller Sharpe ratio estimates.
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2.1 The issue with high Sharpe ratios

A high maximum obtainable Sharpe ratio would seem to be a positive attribute for a factor

model. Indeed, if a factor model is correctly specified in the sense that it spans the tangency

portfolio for the full investment universe, then the factors maximize the attainable Sharpe

ratio. Furthermore, Barillas and Shanken (2017) show that, in comparing the relative pricing

performance of models with traded factors, test-asset returns are irrelevant and the model

that achieves the higher (maximum) Sharpe ratio is preferred. This discussion refers to

unobserved population Sharpe ratios. Of course, it is possible to estimate population Sharpe

ratios and perform statistical inference. However, the resulting estimates can be biased for

several reasons, as discussed further below.

MacKinlay (1995) argues that Sharpe ratio improvements relative to the CAPM or other

benchmark factor models are bounded under the premise that additional factors capture risk-

based variation in expected returns. In contrast, improvements that reflect alternatives such

as data snooping, market frictions, or investor irrationality are not similarly bounded. Thus,

excessive Sharpe ratio estimates are more consistent with non-risk-based alternatives than

risk-based alternatives. The essence of MacKinlay (1995)’s argument can be appreciated via

the Hansen-Jagganathan bound (Hansen and Jagannathan (1991)), which relates maximum

Sharpe ratios to a lower bound on the volatility of any stochastic discount factor (SDF) that

can price the corresponding assets. Specifically, let SR2(f) denote the maximum squared

Sharpe ratio obtainable from a set of traded factors f . Then the Hansen-Jagganathan bound

can be written as

σ(m) ≥ (1/Rf ) |SR(f)|, (1)

where m denotes any SDF that prices the factors f and Rf equals the gross risk-free rate.

The key implication of Eq. (1) is that a high obtainable Sharpe ratio associated with a factor

model imposes a large minimum volatility for for any SDF that is able to price the factors. As

SR(f) becomes very large, it becomes difficult for plausible calibrations of leading economic
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SDF models, such as, e.g., the habit model of Campbell and Cochrane (1999), to satisfy

the bound. Calibrations of most popular models imply maximum annualized Sharpe ratios

substantially below one. Thus, estimated annualized Sharpe ratios near or above one are

problematic in the sense that they seem incompatible with risk-based explanations given

existing models in the literature.

2.2 Potential sources of bias

We focus on the popular class of linear models for the SDF m:

0 = E(mt+1R
e
t+1), (2)

mt+1 = 1− b′[ft+1 − E(f)], (3)

where Re is an arbitrary excess return, ft+1 denotes a K×1 vector of excess returns on a set

of tradeable factors, and b is a K × 1 vector of factor loadings.11 The factor loadings vector

b is proportional to the tangency portfolio weights for the factors:

b = Cov(f)−1E(f), (4)

where Cov(f) denotes theK×K factor covariance matrix. The maximum squared obtainable

Sharpe ratio associated with the factors equals SR2(f) = E(f)′ Cov(f)−1E(f).

A natural and popular approach to estimating SR2(f) ‘plugs-in’ sample analogs of the

first and second moments for the factors, e.g.,

ŜR2(f) = Ê(f)
′
Ĉov(f)

−1

Ê(f), (5)

where Ĉov(f) and Ê(f) denote sample analogs of the corresponding population quantities.

11Note that we normalize the intercept of the SDF to one in this equation, which reflects our focus on
pricing excess returns for risky assets and not the risk-free rate.
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This estimator is consistent, but upward biased in finite samples see, e.g., Jobson and Korkie

(1981)). Thus, Sharpe ratio estimates reported in the literature that appear to violate good

deal bounds could simply be attributable to severe finite sample bias. We consider various

reduced-bias estimators to assess whether this potential explanation is compelling.12

A second potential source of optimistic bias involves ‘overfitting’ in the process of fac-

tor selection. Since the seminal work of Fama and French (1992) and Fama and French

(1993), it has become common to specify factors as long-short hedge portfolios constructed

by sorting firms according to ‘anomaly’ characteristics documented in academic literature.

This approach to specifying factors is subject to what Lo and MacKinlay (1990) term “data-

instigated pretest biases discussed in Leamer (1978).”13 The overfitting problem is prominent

in many areas of data science. A standard approach to obtaining unbiased model assess-

ments is to validate model performance using a ‘holdout’ dataset that has not been used for

model selection or estimation. However, this certainly does not describe typical “in-sample”

estimates of Sharpe ratios for factor models in the literature and therefore these estimates

are subject to bias associated with data snooping.

Researchers cognizant of potential overfitting often report Sharpe ratios and other factor

model metrics using “out-of-sample” designs. Common OOS designs estimate tangency

portfolio weights at each point in time using a historical window of factor data that would

have been available to practitioners in real time. Tangency portfolio weights are typically re-

estimated each period using a specified window of historical data. The return associated with

the (estimated) tangency portfolio for the subsequent month is then recorded. Proceeding

over time in this fashion generates an OOS time series of tangency portfolio returns used to

estimate Sharpe ratios or other metrics associated with the model.

12For example, assuming Gaussian returns, Kan and Zhou (2007) derive an unbiased estimate of SR2, as
well as an alternative reduced bias estimator that is guaranteed to be positive. Explicit details appear in
the Internet Appendix.

13MacKinlay (1995) notes that “the Fama and French approach to building the extra factors will tend to
create a portfolio like the optimal orthogonal portfolio independent of the explanation for the CAPM devi-
ations.” In other words, constructing factors from identified anomaly characteristics will generate apparent
deviations from CAPM even if these result from data snooping.
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OOS research designs of the variety discussed above address optimistic bias related to

the use of ex post optimized tangency portfolio weights. However, in general they do not

address optimistic bias associated with selecting factors based on documented properties of

data analyzed in prior studies. This is because OOS Sharpe ratios are based on a time series

of tangency portfolio returns and it is common to analyze a relatively long time series of

such returns in order to obtain reasonably precise estimates. This implies that the ‘out-of-

sample’ analysis period overlaps considerably with sample periods analyzed in prior literature

establishing cross-sectional return anomalies. In the following sections, we provide empirical

evidence that the degree of overlap is significant for standard OOS designs, especially for

recently proposed models such as the Fama-French five- or six- factor models.

A third source of optimistic bias involves secular declines in average anomaly returns

driven by investor learning and related valuation effects. Investors who discover cross-

sectional return patterns believed to reflect mispricing have an incentive to trade against

this mispricing. One means by which investors might discover mispricing is via academic re-

search output. McLean and Pontiff (2016) test for decay in the average returns of long-short

hedge portfolios following the publication of academic articles documenting characteristics

associated with anomalous return patterns. They document a post-publication decay in av-

erage anomaly returns and attribute this to investors learning about signals from academic

literature and trading to exploit mispricing. In contrast to the data snooping case, large

historical average returns and Sharpe ratios under this scenario are not the result of fitting

noise. Instead, they reflect mispricing that has been reduced or eliminated after discovery

via the academic research process.14 Sharpe ratios estimated using pre-publication data are

optimistically biased in the sense that an investor who forms a portfolio from the factors

14In a related vein, Martin and Nagel consider the problem of testing for market efficiency in a setting in
which a high-dimensional set of characteristics potentially contain information concerning firm cash flows.
They show that a ‘factor zoo’ arises even in the absence of data mining. Although Martin and Nagel (2021)
focus on a rational pricing paradigm, whereas McLean and Pontiff (2016) focus on potential mispricing,
both studies emphasize that cross-sectional return patterns identified in historical data may be difficult or
impossible to exploit by current investors.
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would achieve a lower Sharpe ratio on a going-forward basis.15

2.3 Alternative approaches

In order to avoid biases related to data snooping or publication-induced learning, it is

natural to measure performance using factor returns that post-date the introduction of

the corresponding factor(s) in academic literature. Therefore, we undertake this exercise

for characteristics-based factors and factor models for which there exists sufficient post-

publication data in order to obtain reasonably precise Sharpe ratio estimates.

The rapidly evolving nature of the empirical literature makes it challenging to apply

this ‘gold standard’ approach comprehensively. Many currently popular models incorporate

characteristics from relatively recent empirical literature. As a concrete example, the five-

factor model of Fama and French (2015) analyzes a sample of data that ends in 2013,

and incorporates factors based on profitability and investment that were linked with cross-

sectional return patterns in papers appearing in the mid 2000s (see Table 1).

As an alternative approach that is more widely applicable, we evaluate the performance

of ‘adaptive’ versions of factor models. The concept is quite simple: the adaptive version of

a factor model begins as the CAPM, as virtually all return-based factor models include a

market factor, and subsequently evolves to incorporate additional factors as the characteris-

tics that underlie these factors are documented in the academic literature. By construction,

adaptive versions of models do not incorporate factors during periods that overlap with

the original sample periods that establish the anomaly characteristics underlying the (non-

market) factors. This feature mitigates optimistic bias.

The adaptive model approach mimics the real-time evolution of thought of an investor

who eventually adopts the ‘destination’ model, e.g., the Fama-French five-factor model. The

15Martin and Nagel (2021) assume that all potentially relevant variables are considered at all times by
investors, and thus under their assumptions a standard OOS research design provides unbiased inference.
Almost invariably in practice, only a subset of potentially relevant variables are actually examined and the
selection of these variables is motivated by prior research outcomes. In this case, a standard OOS design
will not generally be unbiased.
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Sharpe ratio produced under the adaptive version of a model is informative concerning good

deal bounds because it reflects the performance of an investor who is sophisticated in the

sense of rapidly incorporating factors into the model once they are proposed, but who is

not unnaturally prescient in the sense of investing in non-market factors well before there

is (academic) empirical evidence that the underlying characteristics predict returns in the

cross-section.

The discussion to this point focuses on ad-hoc characteristics-based models. However,

other approaches to estimating factors exist. In particular, statistical factor models extract

factors from a high-dimensional set of returns. Classic versions of this approach seek to

implement the arbitrage pricing theory of Ross (1976) by applying principal components

analysis or related methods to individual stock or portfolio returns (see, e.g., Connor and

Korajczyk (1993)). Recently, several studies aim to ‘tame the factor zoo’ by constructing

a factor model or SDF from a large set of anomaly characteristics or portfolios sorted with

respect to such characteristics using principal components or machine learning methods.

Machine learning approaches are designed to consider very large information sets in

which much information may be irrelevant. Thus, the second approach we consider permits

investors to consider the entire ‘zoo’ of characteristics at all points in time, but explores the

role of the composition of the zoo itself. From an ex ante perspective, there are many types

of characteristics or information that might plausibly relate to cross-sectional differences

in returns based on theoretical considerations. These include, e.g., industry membership

information, covariances or betas with respect to macroeconomic factors constructed as in

Chen et al. (1986), and a massive number of additional firm variables that might include, e.g.,

rich text information as well as standard price and accounting data. Our second approach

therefore explores how OOS Sharpe ratios for proposed machine learning approaches vary as

we increase the set of ex ante characteristics (or sorted portfolios) that are plausibly relevant

such that this set is no longer dominated by characteristics associated with return anomalies

ex post. We argue that Sharpe ratios obtained in such a setting more accurately reflect
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plausible real-time investment strategies that do not benefit from hindsight by tilting the

composition of the information set toward anomaly characteristics from the literature.

3 Data

We obtain monthly returns for the market factor, the size factor (SMB), the value factor

(HML), the profitability factor (RMW), the investment factor (CMA), the momentum factor

(UMD), and the short-term and long-term reversal factors (STR and LTR, respectively) from

Ken French’s website. Monthly returns for the ‘betting against beta’ (BAB) factor proposed

by Frazzini and Pedersen (2014) and the ‘quality minus junk’ (QMJ) factor constructed by

Asness et al. (2019) are obtained from AQR’s data library. We obtain data on the investment

and return on equity factors of Hou et al. (2015) from the Global-Q data library, for a total

of eleven characteristics-based factors.

In addition to the aforementioned characteristics-based factors, we construct sets of fac-

tors that are distilled from various supersets of ‘anomaly portfolios’ following several recent

papers. To this end, we obtain monthly returns for a set of 88 extreme decile portfolios

associated with 44 different anomalies from Serhiy Kozak’s website.

A key aspect of our analysis concerns the time at which anomalous return patterns were

“discovered” and made public. We assess this primarily via published academic research. We

obtain the year of publication for over 300 characteristics or “return signals” from the “Open

Source Asset Pricing” website maintained by Andrew Y. Chen and Tom Zimmermann and

related to Chen and Zimmermann (2022). We obtain the sample period used to establish the

main cross-sectional return relation documented in the original paper proposing each signal

from the “Open Source Asset Pricing” website as well.

Panel A of Table 1 lists the eleven prominent characteristics-based factors. The first two

columns identify the factor. The third column shows the original academic paper credited

with documenting the cross-sectional relevance of the characteristic underlying the factor,
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including the paper’s publication year. The fourth column lists the time period (in years)

spanned by the data sample from the original paper documenting the characteristic. The

difference between the sample end year and the publication year for the original studies

proposing the characteristics ranges from one year (value) to six years (size) and is around

three years on average. Panel B of Table 1 summarizes the 44 characteristics associated with

anomalies that are used to form sorted-portfolios analyzed in, e.g., Kozak et al. (2020).

The publication dates and sample periods listed in Table 1 reveal that, although a hand-

ful of characteristics are associated with papers published in the 1970s or early 1980s, most

anomaly characteristics have been discovered relatively recently. Figure 1 summarizes aca-

demic research activity associated with several alternative sets of anomaly characteristics.

For each set, Figure 1 shows the cumulative number of publicly available anomaly char-

acteristics over time, where public status is defined using the publication year (solid blue

line) and ending year of the data sample analyzed (dashed red line) in the original stud-

ies documenting the characteristics. Panel A presents results for characteristics underlying

the eleven popular pricing factors considered in Panel A of Table 1, Panel B covers the 44

characteristics from the Kozak dataset, and Panel C covers over 300 signals considered in

Chen and Zimmermann (2022).16 Results in Figure 1 illustrate the secular increase in the

number of published anomaly characteristics from the early 1980’s to the late 2010’s. Panels

A and B show a fairly steady growth rate in the number of characteristics over the prior

four decades, with a median publication year in the mid 1990s. The larger sample in Panel

C indicates that there was an inflection point in the 2000’s, with very high growth in the

number of published anomaly characteristics during this decade.

16Publication and sample period data regarding the 326 signals considered in Chen and Zimmermann
(2022) are also obtained from the “Open Source Asset Pricing” website.
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4 Factor Model Sharpe Ratios: Empirical Results

Table 2 shows benchmark estimates of annualized Sharpe ratios for several prominent factor

models and variations that add other selected factors. Columns (1)–(3) show alternative

estimates of Sharpe ratios based on monthly tangency portfolio returns over the period

1963–2020. The first column reports standard plug-in Sharpe ratio estimates. The MKT

factor annualized Sharpe ratio of around 0.44, similar to estimates reported elsewhere in

the literature. The estimated Sharpe ratio for the Fama-French three-factor model equals

around 0.62 and that for the Fama-French five-factor model equals 1.06. An eight-factor

model that augments the Fama-French five-factor model with the UMD, BAB, and QMJ

factors achieves a Sharpe ratio in excess of 1.5, as does a somewhat ad hoc model that

includes the STR and LTR factors, the BAB factor, and QMJ along with the market.

The plug-in, full sample Sharpe ratios are so large as to strain credulity. A possible

explanation is that these Sharpe ratios are in-sample optimized, in the sense of being based

on ex post estimates of the means and covariance matrix for each factor set over the sample

period. Column (2) shows alternative full sample results that assume tangency portfolio

weights are equal. This can be viewed as an extreme shrinkage estimator of the tangency

portfolio weights. Column (3) of Table 2 shows alternative Sharpe ratios computed using the

Kan and Zhou (2007) unbiased estimator for the squared Sharpe ratio. The Sharpe ratios

in the second and third columns fall relative to those in the first column, but not by very

much. Consequently, in-sample overfitting of tangency portfolio weights does not appear

to be the dominant explanation for excessively large Sharpe ratios associated with popular

multifactor models.

The final two columns of Table 2 report estimates using out-of-sample designs that esti-

mate tangency portfolio weights for each model with either an expanding or rolling window

of historical data (the initial window is set to 10 and 15 years, respectively). In each period,

given the current estimated tangency portfolio weights, the OOS return of the portfolio is

recorded. The Sharpe ratio is then computed as the plug-in estimate using the resulting
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time series of OOS returns. In Section 2, we argue that pseudo-OOS designs of this type

are unlikely to fully control for implicit look-ahead bias because the OOS evaluation pe-

riod overlaps with portions of the sample periods analyzed in the literature documenting the

anomalous return patterns. Columns (4) and (5) of Table 2 show that, although OOS Sharpe

ratio estimates tend to be lower than full-sample analogs, they exceed one in many cases,

especially for more recently proposed models such as the Fama-French five-factor model and

the Q4 model. In some cases, the OOS Sharpe ratio estimates are close to 1.5, which is

nearly three times the market Sharpe ratio measured over the OOS period.

4.1 Post-publication declines in factor Sharpe ratios

Given that classic finite-sample bias does not resolve the Sharpe ratio puzzle, we consider

the potential role of biases driven by data snooping and publication-induced learning about

mispricing. To emphasize the relevance of bias in factor model assessments associated with

academic research patterns, we first highlight several empirical features of the anomaly and

factor data.

In Table 3, we document the decay in average returns following publication for many

prominent characteristics-based factors and anomaly portfolios, in the spirit of, e.g., Schw-

ert (2003) and McLean and Pontiff (2016). All eleven characteristics-based factors exhibit

positive and statistically significant premia over the full sample period, although the signif-

icance of the size premium is somewhat marginal. The annualized market risk premium is

approximately 6.8% per year. Among the non-market factors, the momentum and betting

against beta factors exhibit the highest premiums and the long-term reversal factor has the

smallest estimated premium of approximately 2.3% per year. Columns (5) and (6) show that

virtually all of the non-market factors earn substantially higher premia prior to publication.

Among the individual factors, post-publication average returns are insignificantly different

from zero for all but the betting against beta, profitability, and momentum factors. The

final column shows that post-publication premium reductions are economically significant
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for all factors except the operating profitability factor (roughly 4.5% per year), and statisti-

cally significant at conventional levels for seven among the eleven factors. The bottom two

rows present pooled results for the eleven non-market factors and for an alternative set of 44

characteristics-based anomaly hedge portfolios. The pooled mean return pre-publication is

roughly 0.5% per month for both sets, falls to around 0.15% post-publication for both sets,

and the decrease is statistically significant in both cases. This reflects a substantial post-

publication reduction in average returns of approximately 70%, confirming the relevance of

optimistic bias in factor model assessments related to both data snooping and publication-

induced learning.17

Next, we provide evidence that popular out-of-sample research designs are not immune

from look-ahead bias. Figure 2 shows the fraction of in-sample factor return observations

that are included in OOS evaluation periods for a variety of models and anomaly portfolios.

Factor-month or anomaly-month return observations are defined as in-sample for all months

from the beginning of the sample until the publication year of the original paper documenting

the anomaly signal. Out-of-sample evaluation periods are defined as the periods over which

rolling or expanding window OOS tangency portfolio returns can be constructed, where the

rolling or expanding windows are defined using 10 or 20 years of data and the total sample

period extends from 1963–2020 (e.g., a 10-year window implies that the OOS evaluation

period extends from 1973–2020).18

The proportion of in-sample observations in ‘out-of-sample’ evaluation periods is large

for many multifactor models. For an OOS evaluation period that extends from 1983–2020,

over 30% of the observations for the Fama-French five-factor model overlap with samples

17In the Internet Appendix, we show that qualitatively similar results obtain when we use the end of
the sample period analyzed in the original paper documenting the characteristic rather than the publication
year.

18As a concrete example, the size and value factors are considered in-sample until 1981 and 1985, respec-
tively. Under a 10-year rolling or expanding window design where data begins in 1963, this implies that
tangency portfolio returns deemed ‘out-of-sample’ are not truly out-of-sample from 1973–1981 for the size
factor and 1973–1985 for the value factor. For a sample that ends in 2020, this implies that nearly 20% of
factor-month observations (excluding the market factor) for the Fama and French (1993) three-factor model
that appear in the out-of-sample period are not truly out-of-sample.
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examined in earlier studies documenting the underlying characteristics. For a 1973–2020

OOS evaluation period, 55–60% of the observations for models that incorporate the BAB and

QMJ factors are not truly out-of-sample. For the sample of 44 anomaly portfolios obtained

from Serhiy Kozak’s website, 45-55% of OOS observations are not truly out-of-sample.

Finally, in Figure 3, we report Sharpe ratios computed pre- and post-publication for many

popular factors and long-short portfolios. We focus on characteristics with a minimum of

20 years of post publication data so that we can obtain reasonably precise post-publication

Sharpe ratio estimates. For each of the factors or anomaly-based hedge portfolios, the figure

contrasts Sharpe ratios computed using pre-publication annualized monthly returns for a

long-short portfolio based on the corresponding characteristic (blue bars) with the analogous

Sharpe ratio computed using post-publication monthly returns (orange bars). Factors and

anomalies are ordered according to the magnitude of full sample Sharpe ratios and vertical

black bars indicate a 95% confidence interval. The figure indicates an economically significant

post-publication reduction in the Sharpe ratio for nearly all factors and anomaly hedge

portfolios. In the majority of cases, post-publication Sharpe ratios are less than half the

magnitude of pre-publication Sharpe ratios, and post-publication Sharpe ratios are typically

less than 0.25 on an annualized basis.19

4.2 Alternative factor model Sharpe ratios

The Fama-French three factor and Fama-French-Carhart four factor models represent classic

alternatives to the CAPM. Because both models were proposed in the 1990s, and the factors

in the models are associated with characteristics proposed between 1981 and 1993, it is

possible to construct a post-publication ‘validation’ dataset that encompasses a period over

which all factors in the model are publicly available and that is sufficiently long to permit

reasonably precise Sharpe ratio estimates. Table 4 presents estimates over various validation

samples for these two models. The validation samples begin in the year in which the final

19Pre- and Post-Publication and Pre- and Post-Sample End Sharpe ratios for all factors and long-short
portfolios are reported in Figure 1 in the Online Appendix. Results are qualitatively similar to Figure 3.
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characteristic (value in Panel A, and momentum in Panel B) was published, the sample end

year of the study documenting the final characteristic, or the sample end year of the paper

that proposed the factor model (Fama and French (1993) in Panel A, and Carhart (1997) in

Panel B). Sharpe ratios are then computed from January in the year following the ‘public’

year through December 2020, or December 2018 in cases where we drop COVID years.

The first column of Table 4 indicates the validation sample over which Sharpe ratios are

estimated. These samples range from 27 to 36 years in length. The second column presents

plug-in Sharpe ratios computed over each evaluation period with standard errors (assuming

i.i.d. returns) reported in parentheses. Z-scores for tests of differences between reported

Sharpe ratios and the market Sharpe ratio (reported in the final column) are calculated

following Jobson and Korkie (1981) and reported in brackets. Sharpe ratios computed using

ex post tangency portfolio weights for the validation sample period equal around 0.6 for the

Fama-French three-factor model, and around 0.8 for the Fama-French-Carhart four-factor

model. Five out of the six reported plug-in Sharpe ratio estimates are not statistically

significantly greater than the market Sharpe ratio. The third and fourth columns of Table

4 report Kan and Zhou (2007) bias-corrected Sharpe ratios and Sharpe ratios for equally-

weighted tangency portfolios, respectively. In Panel A, Sharpe ratio estimates fall to around

0.5-0.55. These estimates are just below the market Sharpe ratio computed over the same

period. In Panel B, Sharpe ratio estimates fall to around 0.65-0.73. These estimates exceed

the market Sharpe ratio measured over the same period but are not statistically significantly

greater than the market Sharpe ratio.

Although Sharpe ratio estimates in columns (2) and (3) are computed over validation

samples, the tangency portfolio weights are estimated using all data up to the end of 2020

and would thus not be feasible to investors in real-time. Columns (5) and (6) of Table 4

report Sharpe ratios for tangency portfolios where feasible portfolio weights are estimated

using rolling or expanding windows. Because rolling window tangency portfolio weights

become extremely erratic during the COVID crisis, we report rolling window Sharpe ratios
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for samples that exclude 2019 and 2020.20 In all cases, expanding and rolling window Sharpe

ratio estimates fall considerably relative to the infeasible, full sample estimates and either

fail to exceed, or only marginally exceed, the market Sharpe ratio. None of the feasible

Sharpe ratio estimates are statistically greater than the market Sharpe ratio.

Results in Table 4 focus on two prominent multifactor models, the Fama-French three-

factor model and the Fama-French-Carhart four-factor model. However, several other characteristics-

based factors and anomalies were proposed during the 1980s and 1990s that could reasonably

be considered as candidate factors for an asset pricing model (e.g., see Figure 1). We there-

fore consider the subset of 21 anomaly portfolios from the Kozak dataset with publication

years prior to the year 2000, and we evaluate the performance of four factor models based on

all possible combinations of three anomaly factors with the market factor. A total of 1,330

four-factor models can be generated in this fashion. We evaluate each four-factor model’s

performance over a validation period spanning January 2000 – December 2019, which is

out-of-sample with respect to the original studies proposing all 21 characteristics. Figure 4

presents the estimated Sharpe ratios (left-hand figures) for all 1,330 models as well z-scores

for tests of differences between each model’s Sharpe ratio and the value-weighted market

Sharpe ratio (right-hand figures). We focus on results for feasible tangency portfolios, and

report Sharpe ratios and z-scores for expanding window models in Panel A and for rolling

window models in Panel B. Models are ordered according to the magnitude of their estimated

Sharpe ratio or z-score.

Expanding window Sharpe ratios range from 0.3-0.8 for the majority of models, while

rolling window Sharpe ratios generally range from 0.2-0.6. Dashed-red horizontal lines in

the left-hand figures indicate the Sharpe ratio of the value-weighted market factor, which

is approximately 0.38 during this period. Around one-half of rolling window models have

estimated Sharpe ratios that exceed the market factor, while around two-thirds of expanding

20Alternatively, we can apply a covariance shrinkage estimator to obtain less erratic SDF weights during
the COVID crisis. In unreported results, we confirm that a covariance shrinkage estimator in the spirit of
Kozak et al. (2020) also leads to more stable SDF weights during the years 2019 and 2020. However, because
the factor variances are extremely large during this period, a very extreme degree of shrinkage is required.
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window models have Sharpe ratios that exceed the market factor. Z-scores reported in right-

hand figures indicate that almost none of the models have Sharpe ratios that are statistically

greater than the market Sharpe ratio. Dashed-orange lines correspond to the 95% confidence

critical values of 1.96 and -1.96. Among the expanding window models, less than 2% have

z-scores over 1.9, and the vast majority fall between 1 and -1. Among the rolling window

models, none have z-scores over 1.9 and approximately 2.3% have z-scores below -1.96.

As a point of comparison, we repeat this exercise where all models are evaluated over

the pre-validation period from 1964–1999. Models evaluated over this period, which overlaps

with samples examined in earlier studies documenting the underlying characteristics, produce

much larger Sharpe ratio estimates. Around one-third of these estimates exceed one on an

annualized basis and around 20% are statistically greater than the market Sharpe ratio

measured over the same period. Explicit results appear in the Internet Appendix.

The evidence in Table 4 and Figure 4 indicates that Sharpe ratios for a large variety of

multifactor models estimated using post-publication ‘validation samples’ that are relatively

free of pre-testing bias do not violate conventional good deal bounds. Collectively, this

indicates that pre-test biases associated with academic research patterns can be substantial

and that estimates of Sharpe ratios that correct for this bias frequently fall to a similar

magnitude as the market Sharpe ratio.

4.3 Adaptive model Sharpe Ratios

Many currently popular multifactor models involve characteristics that were only relatively

recently proposed. To address models that include such characteristics, we evaluate ‘adap-

tive’ versions of characteristics-based models that gradually incorporate new factors as the

underlying characteristics are discovered via the research process.21

21The conceptual standard we adopt in this regard is whether an investment professional might plausibly
be aware of the factor based on public academic research output. Importantly, our standard does not
preclude the possibility that certain investment professionals adopt portfolios or strategies based on signals
that have not been previously documented in academic research. But we consider such portfolios or ‘factors’
as non-public information.
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We consider several alternative specific procedures. A first method measures public

status via the publication year of the original paper establishing evidence of a cross-sectional

relation between expected returns and the firm characteristic that serves as the basis for

the factor. The second approach instead uses the ending year of the data sample that is

analyzed in the original paper documenting the characteristics. This typically occurs one or

more years prior to publication of the paper in an academic journal.

Focusing on the Fama-French three-factor model as an example, the cross-sectional rela-

tion between expected returns and size is typically attributed to Banz (1981), and the value

(market-book) anomaly to Rosenberg et al. (1985). Using publication years, the adaptive

variation of the three-factor model would therefore add the size factor starting in 1981 and

the value factor starting in 1985. The alternative approach adds the size factor starting in

1975 and the value factor starting in 1984, as these correspond to the sample ending years

in those papers. It is worth emphasizing that either approach results in an adaptive model

that includes the size and value factors well prior to the study of Fama and French (1993)

that formally proposes the model. Our approach is deliberately intended to be generous, in

the sense of permitting the inclusion of a factor as soon as a cross-sectional relation between

the underlying characteristic and expected returns appears in academic literature.

Table 5 reports ‘adaptive’ estimates of Sharpe ratios for many popular characteristics-

based models. Columns (1) and (2) show estimated Sharpe ratios for non-adaptive models

for reference. Columns (3)–(6) report estimated Sharpe ratios for adaptive versions of the

models. For comparability with standard in-sample methods, in columns (3) and (4) we set

the tangency portfolio weights in each period equal to the full-sample weights for the set of

factors included in the model at that time. This implies that, once the model has evolved

to completion (the last discovered factor is added), the tangency portfolio returns from that

point onward are identical to the conventional case. Column (3) uses the publication year of

the original paper documenting each characteristic as a measure of public status. Column (4)

is more conservative and instead uses the (earlier) ending year of the sample analyzed in the
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original paper. Plug-in estimates of optimal portfolio weights are known to be imprecise even

for portfolio decisions involving a relatively small number of assets (factors in our context).

Thus, in columns (2), (5), and (6) we consider a simple equal-weighted proxy for the tangency

portfolio applied to either the conventional or adaptive versions of factor models.

The decline in Sharpe ratios under the real-time approach is precipitous. Perhaps most

strikingly, none of the models achieve a Sharpe ratio greater than the market portfolio

under the real-time approach using publication year as a measure of public status. Under

the alternative sample year-end measure, even the best performing models achieve only

small Sharpe ratio increases relative to the market (on the order of 0.02–0.05). Columns

(5) and (6) show that similar reductions in Sharpe ratios occur when it is assumed that the

tangency portfolio is equal-weighted. Notably, the reduction in Sharpe ratios associated with

adopting a real-time evaluation approach is economically much larger than the reduction in

Sharpe ratios associated with moving from optimized in-sample tangency portfolio weights

to equal weights. This illustrates that, despite the well-known problem of estimation noise

in mean-variance optimal portfolio weights, the practice of requiring factors to be in the

public information set prior to incorporation in models has a much greater impact on the

magnitude of estimated Sharpe ratios for these models.

Table 6 reports Sharpe ratios estimated using OOS designs, where tangency portfolio

weights are updated over time using an expanding or rolling window of data. Column (1)

shows non-adaptive Sharpe ratio estimates based on this OOS approach using an expanding

window that begins with 10 years of data (the initial evaluation period occurs in 1973).

Column (2) shows similar results for a 15-year rolling window (the initial evaluation period

occurs in 1978). In these cases, the market Sharpe ratio estimate is around 0.47 and 0.54,

respectively. Columns (3) and (4) show that incorporating the adaptive real-time filter

within the expanding window OOS design produces very different results relative to the non-

adaptive model version. Using the publication year as the measure of public information,

no model generates an OOS Sharpe ratio greater than 0.5 and all multifactor models fail
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to outperform the Sharpe ratio of the value-weighted market portfolio. Using the more

conservative sample end year measure, some multifactor models do outperform the market,

but no model achieves a Sharpe ratio greater than around 0.6.

The final two columns of Table 6 show adaptive results when tangency portfolio weights

are updated using an alternative 15-year rolling window. This allows weights to be more

flexible over time and incorporates a longer initial window used to estimate weights.22 The

relatively sparse three- and four-factor models do very poorly in this OOS design even before

adopting the real-time filter. Columns (5) and (6) show that OOS Sharpe ratios generally

fall significantly for adaptive versions of models. Under the 15-year rolling window design,

there is more variation in the magnitude of reductions in Sharpe ratios for the adaptive

models, and with respect to the publication year versus sample end year measure of public

information. Two adaptive models achieve OOS Sharpe ratios in excess of 0.8. However,

the sixth row in the panel (FF5 − HML + UMD) shows that these higher Sharpe ratios

are largely attributable to the role of a single factor (HML) within the models as well as to

the inclusion of this factor in the year 1984, one year prior to the publication of the study

of Rosenberg et al. (1985). Thus, the favorable results are not particularly robust.

The Internet Appendix provides additional robustness checks and discussion. One im-

portant design choice involves the rolling window length or initial sample length used to form

tangency portfolio estimates. Qualitatively similar results obtain for window lengths ranging

from 10 to 20 years. Tangency portfolio estimates for relatively large factor models (e.g.,

the Fama-French five- and six-factor models) might suffer deleterious effects from the noise

associated with standard plug-in estimates of the factor covariance matrix and factor means.

However, we find qualitatively similar results upon using prominent shrinkage estimators for

the mean and covariance matrix of factor returns.

Adaptive versions of models add new factors over time. Under the null hypothesis that

22We also consider a 10-year rolling window design; however, in this case we find that the portfolio weights
become erratic for some models. Despite this, results are qualitatively similar to those in Table 6 and it
remains the case that the real-time evaluation approach produces substantially lower Sharpe ratios relative
to the conventional OOS values. The Internet Appendix provides further details and explicit results.
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the new factors are priced, and holding constant factor means and covariances, the Sharpe

ratio of the tangency portfolio for the adaptive model should increase over time relative to

the market Sharpe ratio as the model is augmented with additional priced factors. This

implies that the adaptive estimates of model Sharpe ratios presented in Tables 5 and 6 may

be downward biased relative to the ‘true’ out-of-sample model Sharpe ratio.

Figure 5 provides visual evidence concerning this hypothesis. The figure plots rolling

estimates of the difference between Sharpe ratios for the CAPM and for adaptive versions

of two benchmark multifactor models using a 10-year rolling window. Panel A contrasts the

CAPM Sharpe ratio with that of the Fama-French six-factor model, while Panel B contrasts

the CAPM with the Q4 model. SMB is the first factor added in the adaptive versions of

both multifactor models. There is little difference between the Sharpe ratio of the adaptive

Q4 model and the CAPM until just after the year 2000, when the Q4 model’s Sharpe ratio

increases significantly relative to the market Sharpe ratio. After this, however, the Sharpe

ratio difference begins to steadily fall, even as the final (investment) factor is added, and the

difference ultimately becomes negative, such that the rolling market Sharpe ratio exceeds

that of the Q4 model toward the end of the sample. The pattern for the Fama-French six-

factor model is qualitatively similar. During the 1990s, the Sharpe ratio of the adaptive

model increases significantly relative to the market Sharpe ratio, but again the difference

reverses after the early 2000s and is negative by the end of the sample.

Collectively, the evidence suggests that the Sharpe ratios associated with tangency portfo-

lios for ‘truly’ out-of-sample models either 1) do not increase over time relative to the market

Sharpe ratio, 2) increase only marginally, or 3) increase only temporarily and subsequently

fall below the market Sharpe ratio by the late 2010s. This suggests that adaptive Sharpe

ratio estimates are not substantially downward biased relative to the ‘true’ out-of-sample

Sharpe ratios.
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4.4 Alternative model performance metrics

We consider the impact of an adaptive approach on alternative prominent asset pricing

performance metrics based on the magnitude of pricing errors. Under this “left hand side”

(LHS) approach, models are assessed based on the size of intercepts (unexplained average

returns) in time series regressions of test asset returns on the model’s factors. We focus on

a large set of 275 quintile-sorted portfolios based on size and, independently, beta, book-to-

market, operating profitability, investment growth, momentum, long-term reversal, short-

term reversal, accruals, net issuance, stock return variance, and residual variance as test

assets. This is similar to the set of test assets considered in, e.g., Fama and French (2018).23

Explicit results appear in the Internet Appendix.

Consistent with prior literature, full sample, non-adaptive results indicate that popular

multifactor models substantially reduce pricing errors relative to the market model. The

Fama-French five-factor and further extended models perform best; however, model rank-

ings do not line up directly with Sharpe ratio comparisons, similar to findings in Fama and

French (2018). In contrast, under a real-time evaluation approach, multifactor models that

adaptively incorporate new factors as they are discovered generally only marginally reduce

average pricing errors, if they reduce them at all. Results are qualitatively similar for alter-

native pricing metrics, as well as under alternative rolling or expanding window approaches.

Multifactor models generally improve upon the market model, but the economic significance

of the improvements is much lower under the real-time adaptive evaluation approach.

5 Factor Models Extracted from the Anomaly Zoo

In the previous section, we focused on the performance of traditional ad-hoc characteristics-

based models in the spirit of Fama and French (1993). Kozak et al. (2020) term such models

23A drawback of this approach is that results are potentially sensitive to the specific choice of test assets.
Therefore, we also consider an alternative set of test assets that consists of the 48 Fama-French industry
portfolios, as well as portfolios sorted into deciles based on accruals, net issuance, stock return variance, and
residual variance (characteristics not used to form factors in the models we consider).
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as “characteristics-sparse,” in the sense that the non-market factors are constructed from a

relatively small number of firm characteristics, such as market capitalization and book-to-

market ratios. However, several recent studies distill factors from large sets of characteristics

or related portfolios by applying forms of regularization or related machine learning methods.

Examples of such approaches include Kelly et al. (2019), Freyberger et al. (2020), Kozak et al.

(2020), and Lettau and Pelger (2020). Estimates of Sharpe ratios reported in the literature

for these approaches are large, even using out-of-sample designs. These approaches typically

construct SDFs (or equivalently factors) using an underlying ‘basis set’ of a potentially large

set of firm characteristics or portfolios sorted with respect to these characteristics. The basis

characteristics are often selected to be those characteristics associated with cross-sectional

return patterns in prior literature, and it is this aspect of the research design that introduces

the potential of optimistically biased assessments of the performance of the resulting models.

As an illustration, we consider the performance of models based on principle components

analysis (PCA) applied to portfolios constructed as sorts on a large number of characteristics

from the anomaly literature. We present evidence that Sharpe ratios and related performance

metrics for PCA-based models are subject to optimistic biases similar to conventional ad hoc

characteristics-based models.

We begin by replicating large Sharpe ratios for statistical factor PCA models constructed

using sorts on a large number of characteristics from the anomaly literature. The first

and second set of models in Figure 6 summarize the Sharpe ratios associated with PCA

models extracted from the set of 88 extreme decile portfolios associated with 44 underlying

characteristics from the anomaly literature. Results are presented for models where the

number of factors, K, ranges from 1–6. The dashed-black, horizontal line corresponds to

the annualized Sharpe ratio of the value-weighted market factor. Consistent with many

prior studies, Sharpe ratios for multi-factor PCA models are large both in-sample and using

standard out-of-sample designs. The in-sample five-factor PCA model distilled from the set

of 88 anomaly portfolios generates an annualized Sharpe ratio of over 1.35, which is over
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three times the Sharpe ratio of the value-weighted market factor during this period. This

estimate falls only marginally to around 1.2 under a standard out-of-sample design.

The first two sets of models presented in Figure 6 are estimated by conditioning the

input set of test assets on a set of 88 anomaly portfolios from which factors are distilled.

From a real-time perspective, it does not seem realistic to pre-condition (only) on a set of

characteristics-based portfolios. Indeed, a subtle manifestation of look-ahead bias involves

omitting from the set of portfolios used to construct factors various portfolios that, from

an ex ante perspective, might reasonably capture variation in stock returns and/or priced

risks. In light of this, we augment the set of input tests assets to include not only portfolios

sorted on characteristics studied in the academic literature, but on other portfolios as well.

Industry-sorted portfolios seem a compelling candidate for inclusion in the set, especially

given attention to industry factors in earlier literature. Motivated by Chen et al. (1986)

and related studies that explore macroeconomic factors, we also consider portfolios sorted

according to estimated betas with respect to a set of macroeconomic factors. (See the

Appendix for details concerning the construction of these factors.) The expanded set of basis

portfolios thus consists of 48 Fama-French industry-sorted portfolios, 50 macro-risk-based

portfolios, and the original 88 extreme decile portfolios based on 44 anomaly characteristics.

The third, fourth, and fifth sets of models in Figure 6 summarize the Sharpe ratios

associated with PCA models extracted from the expanded set of portfolios. In-sample Sharpe

ratio estimates are even larger, and approach 1.5 for the five- and six-factor models. However,

out-of-sample estimates fall by nearly 50% for models with four–six factors and are well

under one on an annualized basis. This demonstrates that attributes of factors selected

using machine learning and related methods can be sensitive to the choice of included basis

portfolios or characteristics. Restricting attention only to a set of characteristics identified in

the anomaly literature optimistically biases Sharpe ratios associated with resulting models.

When additional, ex ante plausible characteristics such as industry membership dummies

and/or betas with respect to macroeconomic risk factors are included in the basis set, Sharpe
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ratios fall significantly in out-of-sample contexts.

The final set of models in Figure 6 reports Sharpe ratio estimates for PCA models that

impose real-time filtering with respect to included firm anomaly characteristics. Sharpe ra-

tio estimates for these models fall further relative to the non-adaptive, out-of-sample models

estimated using the expanded basis characteristics, but only by around 0.05-0.1. Conse-

quently, constructing the set of basis portfolios to better reflect ex ante agnosticism con-

cerning whether industry-based, macroeconomic, or characteristics-based factors will better

explain the cross-section of returns accounts for the majority of the optimistic bias associated

with estimates of Sharpe ratios for statistical factor models.

In the Online Appendix, we consider two alternative, recently proposed methods for

estimating statistical factor models. These include the ‘risk premium principal components

analysis’ (RP-PCA) approach proposed by Lettau and Pelger (2020) and the ‘shrinking the

cross-section’ approach proposed by Kozak et al. (2020). We replicate very large Sharpe

ratios associated with RP-PCA models distilled from the set of 88 anomaly portfolios. We

then show that model Sharpe ratios fall substantially under out-of-sample designs when the

basis set of portfolios is augmented to include both industry and macro-risk-based portfolios.

However, in contrast to the results presented in Figure 6, non-adaptive multifactor RP-PCA

models estimated using the expanded set of input test assets continue to produce out-of-

sample Sharpe ratios between 1 and 1.2. This is consistent with the notion that the RP-

PCA estimation procedure is better able to identify weak factors compared to standard PCA.

When RP-PCA factors are estimated using the expanded set of input test assets and the

adaptive filtering procedure, model Sharpe ratios fall further and are generally below 0.75.

Thus, inclusion of the characteristics-based anomaly portfolios prior to the publication of

the underlying characteristics is critical to the performance of the RP-PCA models.

The Kozak et al. (2020) method of estimating multifactor models shrinks SDF coefficients

(tangency portfolio weights) under a prior that implicitly imposes economically-motivated

beliefs regarding limitations to the maximum obtainable Sharpe ratio. Interestingly, we show
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that with a sufficient degree of shrinkage, this approach produces models that are relatively

resilient to look-ahead bias and do not violate conventional good deal bounds. Out-of-sample

Sharpe ratios are similar across models regardless of the set of input test assets as well as

with and without the adaptive filtering procedure.

6 Conclusion

In this paper, we examine the sources of excessively large Sharpe ratios associated with

popular multifactor asset pricing models. We show that Sharpe ratios that violate ‘good

deal bounds’ continue to obtain after applying simple, robust estimates of tangency portfolio

weights, as well as under conventional pseudo-out-of-sample research designs that rely only

on past data. We argue that the most compelling explanation behind excessive Sharpe

ratios involves a subtle form of look-ahead bias such that factors included in models, or

alternatively the characteristics and portfolios from which factors are extracted, are selected

based on prior research outcomes linking such characteristics with cross-sectional variation

in returns.

We introduce alternative methods of evaluating models that mitigate the underlying

look-ahead bias concerns. First, we consider adaptive versions of ad hoc models that intro-

duce additional factors only after the new factors are ‘discovered’ by academic researchers.

Sharpe ratios for adaptive versions of popular factor models fall dramatically relative to the

conventional versions of such models, and often no longer exceed the historical Sharpe ratio

associated with the market portfolio. Second, we re-examine the performance of recently

proposed methods of extracting factors from a large set of characteristics or portfolios. In

this case, we find that the Sharpe ratios associated with the resulting models fall dramati-

cally when the underlying set of characteristics is specified so as to include not only common

characteristics from the large stock return anomaly literature, but also ex ante plausible

characteristics such as industry membership, betas with respect to macroeconomic shocks,
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and so forth.

Our results have a variety of implications. Perhaps most importantly, we interpret the

much smaller Sharpe ratios associated with popular multifactor models that do not violate

standard notions of good deal bounds as good news. This is because real-time investors who

‘factor invest’ using these models after they are proposed do not achieve exorbitant Sharpe

ratios. Our results do, however, pose challenges. We find that the performance gap between

the CAPM and popular multifactor models becomes much smaller upon adopting evaluation

methods that mitigate the central look-ahead biases we highlight. This exacerbates the

already challenging problem of factor model specification, and leaves considerable room for

future research on this topic.
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Figure 1: Number of Publicly Available Anomaly Signals

This figure reports the number of publicly available factors and anomaly portfolios, where public
status is defined using publication dates (solid blue lines) and sample end dates (dashed red lines)
for each set of factors and anomaly portfolios. In Panel A, summary statistics are based on the 11
characteristics-based factors reported in Panel A of Table 1. In Panel B, summary statistics are
based on the 44 anomaly signals from Serhiy Kozak’s website and reported in Panel B of Table
1. In Panel C, summary statistics are based on the 326 anomaly signals documented by Chen and
Zimmermann (2022).

(a) Characteristics-Based Factors

(b) Anomaly Decile Portfolios from Serhiy Kozak Data

(c) Anomaly Signals Documented by Chen and Zimmermann (2022)
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Figure 2: In-Sample Observations in ‘Out-of-Sample’ Evaluation Periods

This figure reports the fraction of in-sample observations in ‘out-of-sample’ evaluation periods for
a variety of characteristics-based factor models and for the sample of 44 anomaly characteristics
described in Panel B of Table 1. Factor-month or anomaly-month observations are defined as in-
sample for all months from the beginning of the sample until the publication year of the original
paper documenting the anomaly signal. ‘Out-of-sample’ evaluation periods are defined as the
periods over which rolling or expanding window ‘out-of-sample’ (OOS) tangency portfolio returns
can be constructed, where the rolling or expanding windows are defined using 10 or 20 years and
the total sample period extends from 1963–2020 (e.g., a 10-year window implies that the OOS
evaluation period extends from 1973–2020). Data for the 44 anomaly portfolio returns extends
from 1964–2019, and therefore the Out-of-Sample Evaluation Periods are 1974–2019 (red bar) and
1984–2019 (blue bar) for this subset of characteristics.
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Figure 3: Pre- and Post-Publication Sharpe Ratios for Popular Characteristics-
Based Factors and Anomaly Decile Portfolios

This figure reports annual Sharpe Ratios pre- and post-publication for popular characteristics-based
factors and long-short anomaly decile portfolios with at least 20 years of post-publication data. The
total sample period from the characteristics-based factor returns is 07.1963 – 12.2020. The total
sample period from the anomaly decile portfolio returns is 07.1964 – 12.2019. Publication dates
are listed in Table 1. Blue bars indicate the pre-publication Sharpe Ratio. Orange bars indicate
the post-publication Sharpe Ratio. Vertical black lines indicate a 95% confidence interval. Factors
and long-short anomaly portfolios are sorted according to their full sample Sharpe ratios.

(a) Popular Characteristics-Based Factors

(b) Anomaly Decile Portfolios
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Figure 4: Validation Data Sharpe Ratios and Z-Scores for Differences Between
Model Sharpe Ratios and the Market Sharpe Ratio

This figure reports model performance statistics for all combinations of three-factor models that
can be constructed from the set of 21 anomalies in the Kozak dataset with post-publication data
spanning a minimum of 20 years (i.e., all anomalies that were published before the year 2000). This
implies a total of 1,330 unique models. Factors in the models are constructed as long-short decile
portfolios. Each three-factor model is augmented with the value-weighted Market factor, and is
evaluated over a validation period spanning January 2000 – December 2019, which is out-of-sample
with respect to the original studies proposing all 21 characteristics. Left-hand figures report the
maximum Sharpe ratio associated with each model, in descending order. Dashed-red lines corre-
spond to the Sharpe ratio of the value-weighted market factor measured over the evaluation period,
2000–2019. Right-hand figures report the z-score for a test of the difference between each model’s
Sharpe ratio and the market Sharpe ratio, in descending order. Dashed-orange lines correspond to
the 95% confidence critical value of 1.96. In Panel A, tangency portfolio weights are constructed
using an expanding window, where mean and covariance estimates for all factors measured over an
expanding window from July 1964 though month m−1. In Panel B, tangency portfolio weights are
computed using a rolling window, where mean and covariance estimates for all factors measured
over a 15-year rolling window from months m− 180 : m− 1. For both rolling and expanding win-
dows, OOS month m portfolio returns begin in January 2000. Sharpe ratios are estimated using
monthly factor returns, and are then annualized by multiplying by

√
12.

(a) Expanding Window

(b) Rolling Window
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Figure 5: Differences Between Maximum Sharpe Ratios Associated with Adaptive
Versions of Characteristics-Based Factor Models and the Market Sharpe Ratio

This figure reports differences between rolling estimates of annual maximum Sharpe Ratios for
adaptive factor models and a rolling estimate of the market Sharpe ratio. Panel A compares the
FF5 + UMD model Sharpe ratio to the market Sharpe ratio. Panel B compares the Q4 model
Sharpe ratio to the market Sharpe ratio. The time-varying Sharpe ratio for the market model is
computed using 10-year rolling mean and covariance estimates of the value-weighted market return.
The ‘Matched Weight’ tangency portfolios are constructed using mean and covariance estimates for
all factors in the model measured over the full sample period. Weights for the available factors in
each month m are estimated to maximize the Sharpe Ratio using the full-sample measures of the
means and covariances, and are applied to available factor returns in m. The time-varying Sharpe
ratios for the ‘Matched Weight’ are then computed using 10-year rolling mean and covariance
estimates of this tangency portfolio. Dashed red lines report the difference between the time-
varying Sharpe ratio for the ‘Matched Weight’ tangency portfolio that incorporates each factor
beginning in its publication year and the time-varying market Sharpe ratio. Solid blue lines report
the difference between the time-varying Sharpe ratio for the ‘Matched Weight’ tangency portfolio
that incorporates each factor beginning in its sample end year and the time-varying market Sharpe
ratio. Vertical black lines indicate the publication year for each factor in the model.

(a) FF5 + UMD

(b) Q4
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Figure 6: Annual Maximum Sharpe Ratios for Statistical Factor Models

This figure reports annual maximum Sharpe ratios for various non-adpative and adaptive PCA
models, where the number of factors K varies from 1-6. The input set of tests assets for the
‘Anomaly Portfolios Only’ models includes the 88 anomaly extreme decile portfolios. The input set
of tests assets for the ‘Anomaly, Industry, and Macro Portfolios’ models includes the 88 anomaly
extreme decile portfolios, the 48 Fama-French industry portfolios, and the 50 macro portfolios.
The sample period in all cases extends from 07.1964 – 12.2019. All factors are estimated using
standard PCA. SDF portfolio weights are equal to their mean-variance values. All out-of-sample
results are estimated using 15-year rolling windows. X-axis labels indicate whether models are
estimated using the full sample of data or a 15-year rolling window, whether rolling window models
are non-adaptive or adaptive, and whether adaptive models use the publication date filter or the
sample end date filter. The dashed horizontal black line indicates the annualized Sharpe ratio for
the value-weighted market factor estimated over the same period.
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Table 1: Factor Sources

This table reports citations and descriptions for all factors and anomaly signals. Original citations
and sample periods are obtained from Chen and Zimmerman’s Open Source Asset Pricing. In
Panel A, the ‘Source’ column indicates where we obtain the (monthly) factor returns. ‘KFD’ refers
to the Ken French Data library. ‘G-q’ refers to Global-q data library. ‘AQR’ refers to AQR’s data
library. In Panel B, all decile portfolio returns are obtained from Serhiy Kozak’s website.

Panel A: Characteristics-Based Factors
Factor Original
Acronym Characteristic Description Original Citation Sample Source

BAB Betting Against Beta, defined as the daily beta
from rolling regressions of excess returns on mar-
ket excess returns

Frazzini and Pedersen (2014) 1929–2012 AQR

CMA Investment, defined as the annual change in to-
tal assets divided by one-year-lagged total assets.
Factor constructed from a 2-by-3 sort on size and
investment.

Cooper, Gulen and Schill (2008) 1968–2003 KFD

HML Book-to-Market, defined as the book value of eq-
uity from the t-1 fiscal year end divided by market
equity es of the end of December in year t-1.

Rosenberg, Reid and Lanstein (1985) 1973–1984 KFD

IA Investment, defined as the annual change in to-
tal assets divided by one-year-lagged total assets.
Factor constructed from a triple 2-by-3-by-3 sort
on size, I/A, and ROE.

Cooper, Gulen and Schill (2008) 1968–2003 G-q

LTR Long-Term Reversal, defined as the prior return
measured over months -60:-13.

De Bondt and Thaler (1985) 1929–1982 KFD

QMJ Quality, defined as the average of profitability,
safety, and growth scores.

Asness, Frazzini and Pedersen (2019) 1957–2016 AQR

RMW Operating Profitability, defined as annual revenues
minus cost of goods sold, interest expense, and
selling, general, and administrative expenses di-
vided by book equity for the last fiscal year end in
t-1.

Fama and French (2006) 1977–2003 KFD

ROE Return on Equity, defined as quarterly income be-
fore extraordinary items divided by one-quarter-
lagged book equity.

Haugen and Baker (1996) 1979–1993 G-q

SMB Size, defined as market equity as of the end of
June.

Banz (1981) 1926–1975 KFD

STR Short-Term Reversal, defined as the prior return
measured over month -1.

Jegadeesh (1990) 1934–1987 KFD

UMD Momentum, defined as the prior return measured
over months -12:-2.

Jegadeesh and Titman (1993) 1964–1989 KFD
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Table 1 cont.

Panel B: Anomaly Decile Portfolios from Serhiy Kozak Data

Acronym Characteristic Original Citation Original Sample

1. accruals Accruals Sloan (1996) 1962–1991
2. age Firm Age Barry and Brown (1984) 1931–1980
3. aturnover Asset Turnover Soliman (2008) 1984–2002
4. betaarb Beta Arbitrage Fama and MacBeth (1973) 1929–1968
5. cfp Cash Flow / Market Equity Lakonishok, Shleifer and Vishny (1994) 1968–1990
6. ciss Composite Issuance Daniel and Titman (2006) 1968–2003
7. divp Dividend Yield Litzenberger and Ramaswamy (1979) 1936–1977
8. dur Cash Flow Duration Dechow, Sloan and Soliman (2004) 1962–1998
9. ep Earnings / Price Basu (1977) 1957–1971
10. fscore Piotroski’s F-score Piotroski (2000) 1976–1996
11. gltnoa Growth in Long-term NOA Fairfield, Whisenant and Yohn (2003) 1964–1993
12. gmargins Gross Margins Novy-Marx (2013) 1963–2010
13. growth Asset Growth Cooper et al. (2008) 1968–2003
14. igrowth Investment Growth Xing (2008) 1964–2003
15. indmom Industry Momentum Moskowitz and Grinblatt (1999) 1963–1995
16. indmomrev Industry Momentum-Reversal Moskowitz and Grinblatt (1999) 1963–1995
17. indrrev Industry Relative Reversal Da, Liu and Schaumurg (2014) 1982–2009
18. indrrevlv Ind. Rel. Reversal (Low Volatility) Da, Liu and Schaumurg (2014) 1982–2009
19. inv Investment Lyandres et al. (2008) 1970–2005
20. invcap Investment-to-Capital Xing (2008) 1964–2003
21. ivol Idiosyncratic Volatility Ang, Hodrick, Xing and Zhang (2006) 1963–2000
22. lev Leverage Bhandari (1988) 1952–1981
23. lrrev Long-term Reversal De Bondt and Thaler (1985) 1929–1982
24. mom Momentum (6-month) Jegadeesh and Titman (1993) 1964–1989
25. momrev Momentum-Reversal Jegadeesh and Titman (1993) 1964–1989
26. mom12 Momentum (1-year) Jegadeesh and Titman (1993) 1964–1989
27. nissa Share Issuance (annual) Pontiff and Woodgate (2008) 1970–2003
28. nissm Share Issuance (monthly) Pontiff and Woodgate (2008) 1970–2003
29. noa Net Op. Assets Hirshleifer (2004) 1964–2002
30. price Price Blume and Husic (1973) 1932–1971
31. prof Gross Profitability Novy-Marx (2013) 1963–2010
32. roaa Return on Assets (annual) Chen, Novy-Marx and Zhang (2010) 1972–2010
33. roea Return on Equity (annual) Haugen and Baker (1996) 1979–1993
34. season Seasonality Heston and Sadka (2008) 1965–2002
35. sgrowth Sales Growth Lakonishok, Shleifer and Vishny (1994) 1968–1990
36. shvol Share Volume Datar, Naik and Radcliffe (1998) 1962–1991
37. size Size Banz (1981) 1926–1975
38. sp Sales-to-Price Barbee et al. (1996) 1979–1991
39. strev Short-term Reversal Jegadeesh (1990) 1934–1987
40. valmom Value-Momentum Novy-Marx (2014) 1963–2013
41. valmomprof Value-Momentum-Profitability Novy-Marx (2014) 1963–2013
42. valprof Value-Profitability Novy-Marx (2014) 1963–2013
43. value Value (annual) Rosenberg, Reid and Lanstein (1985) 1973–1984
44. valuem Value (monthly) Asness and Frazzini (2013) 1950–2011
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Table 2: Maximum Sharpe Ratios for Characteristics-Based Factor Models

This table reports maximum Sharpe Ratios for various full-sample and alternative ‘out-of-sample’
factor models. Plug-In tangency portfolio weights are computed using the full sample (1963–
2020) mean and covariance estimates for all factors in the row labels. Equally Weighted tangency
portfolios are constructed by equally weighting all factors in the row labels. KZ Bias Corrected
Sharpe ratios are estimated using the Kan and Zhou (2007) biased-corrected estimator and the
plug-in mean-variance tangency portfolio returns. Rolling Window tangency portfolio weights are
computed using mean and covariance estimates for all factors measured over a 15-year rolling
window from months m − 180 : m − 1. Optimal portfolio weights are calculated to maximize the
Sharpe Ratio, and applied to returns in month m to form the ‘out-of-sample’ optimal portfolio.
Expanding Window tangency portfolio weights are constructed using mean and covariance estimates
for all factors measured over an expanding window up to month m− 1. Optimal portfolio weights
are computed to maximize the Sharpe Ratio, and applied to returns in month m to form the ‘out-
of-sample’ optimal portfolio. A minimum of 10 years is required. The reported Sharpe Ratios
for the rolling (expanding) windows are computed from the month m portfolio returns, which are
available over the 1978–2020 (1973–2020) sample. The sample period begins in 1967, instead of
1963, for all models denoted with a *. Sharpe ratios are estimated using monthly factor returns,
and are then annualized by multiplying by

√
12.

Equally KZ Bias Expanding Rolling
Plug-In Weighted Correction Window Window

MKT 0.4406 0.4406 0.4194 0.4776 0.5447

FF3 0.6189 0.5802 0.5728 0.5513 0.2082

FF3 + UMD 0.9550 0.8746 0.9136 0.8321 0.3008

FF5 1.0598 0.8775 1.0123 0.9451 1.0254

FF5 + UMD 1.2230 1.1328 1.1722 1.0553 1.0770

FF5−HML+ UMD 1.2218 1.0438 1.1793 1.1130 1.0354

FF5 + UMD +BAB +QMJ 1.5786 1.3433 1.5220 1.3817 1.4926

Q4* 1.3611 1.0686 1.3271 1.2269 1.1443

Q4 +BAB +QMJ* 1.6140 1.4782 1.5690 1.5171 1.5883

MKT + LTR+ STR+BAB +QMJ 1.4558 1.2399 1.4181 1.3262 1.4070
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Table 3: Post-Publication Reduction in Factor and Anomaly Portfolio Returns

This table reports summary statistics for all long-short characteristics-based factors. Both Global-
q factors (IA and ROE, denoted with a *) are available from 01.1967 – 12.2020. The sample
period for all other characteristics-based factors extends from 07.1963 – 12.2020. The final row (‘44
Anomaly Long-Short Decile Portfolios’) reports summary statistics for the 44 long-short anomaly
decile portfolios. The sample period for the 44 anomaly returns extends from 07.1964 – 12.2019.
All average monthly returns are expressed in percentage points, and standard errors are reported
in parentheses. ***, **, and * represent statistical significance at the 1%, 5%, and 10% levels,
respectively.

Factor Publication Mean Pre-Publication Post-Publication
Acronym Characteristic Year Return Return Return Difference

MKT Market 0.5679 ***
(0.170)

BAB Betting Against Beta 2014 0.8040 *** 0.8282 *** 0.6290 ** -0.1992
(0.125) (0.137) (0.272) (0.305)

CMA Investment 2008 0.2563 *** 0.3359 *** -0.0165 -0.3524 **
(0.076) (0.091) (0.120) (0.150)

HML Book-to-Market 1985 0.2510 ** 0.5484 *** 0.0734 -0.4749 **
(0.109) (0.165) (0.143) (0.218)

IA* Investment 2008 0.3356 *** 0.4622 *** -0.0635 -0.5257 ***
(0.074) (0.088) (0.129) (0.156)

LTR Long-Term Reversal 1985 0.1963 ** 0.4609 *** 0.0383 -0.4226 **
(0.096) (0.156) (0.121) (0.197)

QMJ Quality Minus Junk 2019 0.3579 *** 0.3917 *** -0.5792 -0.9709 *
(0.086) (0.087) (0.564) (0.570)

RMW Operating Profitability 2006 0.2487 *** 0.2517 ** 0.2403 ** 0.0114
(0.082) (0.104) (0.117) (0.157)

ROE* Return on Equity 1996 0.5059 *** 0.6785 *** 0.3056 * -0.3729 *
(0.101) (0.115) (0.170) (0.206)

SMB Size 1981 0.2020 * 0.4677 ** 0.0858 -0.3819
(0.116) (0.218) (0.136) (0.257)

STR Short-Term Reversal 1990 0.4802 *** 0.7681 *** 0.2341 -0.5340 **
(0.120) (0.144) (0.184) (0.234)

UMD Momentum 1993 0.6370 *** 0.8227 *** 0.4414 * -0.3813
(0.160) (0.183) (0.267) (0.323)

All Characteristics-Based Factors 0.3883 *** 0.5332 *** 0.1647 *** -0.3685 ***
(Excluding MKT ) (0.032) (0.039) (0.057) (0.069)

44 Anomaly Long-Short Decile Portfolios 0.4038 *** 0.5488 *** 0.1588 *** -0.3900 ***
(0.027) (0.031) (0.049) (0.058)
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Table 4: Validation Data Sharpe Ratios for Early Fama-French Factor Models

This table reports maximum Sharpe Ratios for the Fama-French three-factor model and the Fama-French-
Carhart four-factor model. All models are evaluated over a validation period that is out-of-sample with
respect to the original studies proposing the characteristics or factor models. The ‘Evaluation Period’
column reports the validation data period. Model public status is defined as: the year in which the final
characteristic (value in Panel A, and momentum in Panel B) was published, the sample end year of the
study documenting the final characteristic, or the sample end year of the paper that proposed the model
(Fama and French (1993) in Panel A, and Carhart (1997) in Panel B). Sharpe ratios are evaluated from
January in the year following the ‘public’ year through December 2020, or December 2018 in cases where
we drop COVID years. Plug-in tangency portfolio weights are computed using the full evaluation period
mean and covariance estimates. KZ Bias Corrected Sharpe ratios are estimated using the Kan and Zhou
(2007) biased-corrected estimator and the plug-in tangency portfolio weights. Equally Weighted tangency
portfolios are constructed by equally weighting all factors. Rolling Window tangency portfolio weights are
computed using mean and covariance estimates for all factors measured over a 15-year rolling window from
months m − 180 : m − 1. Expanding Window tangency portfolio weights are constructed using mean and
covariance estimates for all factors measured over an expanding window from July 1963 though month m−1.
For both rolling and expanding windows, OOS month m portfolio returns begin in January in the first year
of the evaluation period. Plug-In weights are ‘infeasible’ because they are estimated using data through the
end of 2020, and therefore an investor could not have obtained them in real-time. Rolling and expanding
window weights are ‘feasible’ because they are estimated using only historical data, and therefore an investor
could have obtained them in real-time. The ‘Market’ column reports the market Sharpe ratio measured over
the evaluation period. Sharpe ratios are estimated using monthly factor returns, and are then annualized
by multiplying by

√
12. I.I.D. standard errors are reported in parentheses. Z-scores for tests of differences

between reported Sharpe ratios and the market Sharpe ratio are reported in brackets.

Panel A: Fama-French Three-Factor Model Sharpe Ratios

Infeasible Weights Feasible Weights
Evaluation KZ Bias Equally Expanding Rolling Window
Period Plug-In Correction Weighted Window (Drop COVID) Market

Final Characteristic 1986–2020 0.5883 0.5063 0.4896 0.3975 0.2532 0.5604
Publication Date (0.1702) (0.1699) (0.1699) (0.1696) (0.1743) (0.1869)

[0.5285] [-0.6328] [-0.9546] [-1.4627]

Final Characteristic 1985–2020 0.6162 0.5403 0.5114 0.4014 0.2605 0.5864
Sample End Date (0.1680) (0.1677) (0.1676) (0.1672) (0.1717) (0.1870)

[0.5659] [-0.6773] [-1.0844] [-1.5951]

Factor Model 1992–2020 0.6109 0.5142 0.5504 0.4705 0.2804 0.5788
Sample End Date (0.1871) (0.1867) (0.1869) (0.1865) (0.1928) (0.1870)

[0.5247] [-0.2263] [-0.5996] [-1.2674]

Panel B: Fama-French-Carhart Four-Factor Model Sharpe Ratios

Infeasible Weights Feasible Weights
Evaluation KZ Bias Equally Expanding Rolling Window
Period Plug-In Correction Weighted Window (Drop COVID) Market

Final Characteristic 1994–2020 0.7704 0.6591 0.6541 0.5472 0.4990 0.5706
Publication Date (0.1948) (0.1942) (0.1942) (0.1936) (0.2010) (0.1870)

[1.4149] [0.4382] [-0.0933] [-0.0239]

Final Characteristic 1990–2020 0.8232 0.7333 0.7293 0.6339 0.5757 0.5641
Sample End Date (0.1821) (0.1816) (0.1816) (0.1811) (0.1870) (0.1869)

[1.7833] [0.9399] [0.3097] [0.3309]

Factor Model 1994–2020 0.7704 0.6591 0.6541 0.5472 0.4990 0.5706
Sample End Date (0.1948) (0.1942) (0.1942) (0.1936) (0.2010) (0.1870)

[1.4149] [0.4382] [-0.0933] [-0.0239]
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Table 5: Full Sample Maximum Sharpe Ratios for Adaptive Versions of
Characteristics-Based Factor Models

This table reports full sample maximum Sharpe Ratios for adaptive and non-adaptive versions
of factor models. Plug-In tangency portfolio weights are computed using the full sample (1963–
2020) mean and covariance estimates for all factors in the row labels. Equally Weighted tangency
portfolios are constructed by equally weighting all factors in the row labels. Matched Weight
tangency portfolio weights are computed using full sample plug-in mean and covariance estimates
for all factors in the row labels. Weights for the available factors in each month m are estimated to
maximize the Sharpe Ratio using the full-sample measures of the means and covariances, and are
applied to available factor returns in m. The sample period begins in 1967, instead of 1963, for all
models denoted with a *. In the ‘Non-Adaptive’ columns, all factors in the row labels are included
at all time periods. In the Adaptive ‘Pub Date’ (‘Sample End’) columns, factors in the row labels
do not enter the sample until their publication year (their original sample end year). Sharpe ratios
are estimated using monthly factor returns, and are then annualized by multiplying by

√
12.

Non-Adaptive Adaptive

Equally Matched Weight Equally Weighted
Plug-In Weighted

Pub Date Sample End Pub Date Sample End

MKT 0.4406 0.4406 0.4406 0.4406 0.4406 0.4406

FF3 0.6189 0.5802 0.3317 0.3721 0.3336 0.3798

FF3 + UMD 0.9550 0.8746 0.3702 0.4435 0.3686 0.4468

FF5 1.0598 0.8775 0.3933 0.4086 0.3436 0.3738

FF5 + UMD 1.2230 1.1328 0.4142 0.4763 0.3739 0.4411

FF5−HML+ UMD 1.2218 1.0438 0.4172 0.4533 0.3802 0.4248

FF5 + UMD +BAB +QMJ 1.5786 1.3433 0.4172 0.4998 0.3833 0.4611

Q4* 1.3611 1.0686 0.3745 0.3982 0.3844 0.4159

Q4 +BAB +QMJ* 1.6140 1.4782 0.3887 0.4275 0.3945 0.4368

MKT + LTR+ STR+BAB +QMJ 1.4558 1.2399 0.3184 0.3534 0.3332 0.3605
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Table 6: Out-of-Sample Maximum Sharpe Ratios for Adaptive Versions of
Characteristics-Based Factor Models

This table reports out-of-sample maximum Sharpe Ratios for adaptive and non-adaptive versions of
factor models. Rolling Window tangency portfolio weights are computed using mean and covariance
estimates for all factors measured over a 15-year rolling window from months m − 180 : m − 1.
Expanding Window tangency portfolio weights are constructed using mean and covariance estimates
for all factors measured over an expanding window up to month m − 1. A minimum of 10 years
is required. Rolling and expanding window optimal portfolio weights are applied to returns in
month m to form the ‘out-of-sample’ optimal portfolio. The reported Sharpe Ratios for the rolling
(expanding) windows are computed from the month m portfolio returns, which are available over
the 1978–2020 (1973–2020) sample. The sample period begins in 1967, instead of 1963, for all
models denoted with a *. In the ‘Non-Adaptive’ columns, all factors in the row labels are included
at all time periods. In the Adaptive ‘Pub Date’ (‘Sample End’) columns, factors in the row labels
do not enter the sample until their publication year (their original sample end year). Sharpe ratios
are estimated using monthly factor returns, and are then annualized by multiplying by

√
12.

Non-Adaptive Adaptive

10-Year 15-Year 10-Year Expanding Window 15-Year Rolling Window
Expanding Rolling
Window Window Pub Date Sample End Pub Date Sample End

MKT 0.4776 0.5447 0.4776 0.4776 0.5447 0.5447

FF3 0.5513 0.2082 0.3161 0.3859 0.2083 0.2083

FF3 + UMD 0.8321 0.3008 0.3789 0.5099 0.3007 0.3008

FF5 0.9451 1.0254 0.4109 0.4755 0.6200 0.6702

FF5 + UMD 1.0553 1.0770 0.4433 0.5765 0.6972 0.8407

FF5−HML+ UMD 1.1130 1.0354 0.3483 0.4328 0.4345 0.4840

FF5 + UMD +BAB +QMJ 1.3817 1.4926 0.4432 0.6023 0.6817 0.8560

Q4* 1.2269 1.1443 0.3972 0.5556 0.5259 0.4805

Q4 +BAB +QMJ* 1.5171 1.5883 0.4155 0.5970 0.5445 0.5263

MKT + LTR+ STR+BAB +QMJ 1.3262 1.4070 0.3155 0.3943 0.3932 0.4608
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