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Predictability of Equity Returns over Di¤erent Time
Horizons: A Nonparametric Approach

Abstract: This paper aims to test whether equity returns are predictable over various horizons.

We propose a reliable and powerful nonparametric test to examine the predictability of equity

returns, which can be interpreted as a signal-to-noise ratio test. Our comprehensive in-sample

and out-of-sample analysis shows that the commonly used predictive variables such as short

rate, dividend yields and earnings yields have good predictability power at both short and long

horizons, di¤erent from both the conventional wisdom and Ang and Bekaert (2007). Contrary

to Goyal and Welch (2007), an out-of-sample nonparametric forecast outperforms the historical

mean model and linear predictive models.
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1. INTRODUCTION

There is a long tradition to study the predictability of equity returns in �nance. Despite an

enormous amount of past e¤orts, whether equity returns can be meaningfully predicted over dif-

ferent time horizons remains a subject of ongoing debates and intensive empirical research. Long-

horizon asset returns are more informative than their shorter-horizon counterparts. Thus random

walk models, and martingale models based on past asset returns are statistically weak to explain

the real data. The widely used present value model assumes that the expected stock return is

constant over time. It makes no assumption about equity repurchases by �rms which a¤ect the

time pattern of expected future dividends (Roze¤ (1984), Campbell and Shiller (1987), Campbell

and Shiller (1988a, 1988b), and West (1988)). While stock prices and dividends appear to grow

exponentially over time rather than linearly, the linear model is less appropriate than a nonlinear

model which can better capture the properties of asset returns across time.Thereafter, researchers

have proposed several nonlinear models to predict asset returns. One is the dividend model with

rational bubble in which the bubble is a nonlinear function of the stock�s dividends (Froot and

Obstfeld (1991)). This model has its limitation in explaining the observed predictability of stock

returns. Another nonlinear model is a loglinear present-value model (Campbell (1991), Ang and

Bekaert (2007)), which suggests a nonlinear relation among equity returns, dividend ratio, and

interest rates.

The existing literature has showed that there exists strong nonlinearity in the models of pre-

dicting asset returns, and that expected asset returns and dividend ratios are highly persistent

and time-varying (Froot and Obstfeld (1991), Campbell (1991), Ang and Bekaert (2007)). How-

ever, there is no consensus in the literature where the nonlinearities come from. Nonlinearities

can arise for several reasons: structural breaks in the mean of the dividend price ratio (Lettau

and Van Nieuwerburgh (2008)), time-varing dividend growth rates (Cochrane, 2008; Binsbergen

and Koijen, 2010; Golez, 2014), a log-linear approximation of present value model (Campbell
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and Shiller (1988), Binsbergen and Koijen (2011)), and the correlation of the expected returns

and business conditions (Henkel et al. (2011)). Therefore it is important to propose a better

method to predict the equity returns incorporating the unknown nonlinearities and the predictive

relationship between asset returns and time horizons.

Empirical studies increasingly cast doubt on the forecasting power of price-based predictors

of equity returns. There are two recent debates on the predictability of equity returns in the

literature. The �rst debate is to question whether the predictability of equity returns exists at

short horizons or longer horizons.1 The conventional wisdom in the literature is that aggregate

dividend yields strongly predict excess returns, and the predictability is stronger at longer hori-

zons (Fama and French (1988),2 Campbell (1991), and Cochrane (1992)). If daily returns can be

predicted by a slow-moving or persistent variable, then the predictability adds up over the long

horizons. In contrast, Ang and Bekaert (2007) �nd that dividend yields, together with the short

rate, predict excess returns only at short horizons and do not have any long-horizon predictive

power. The second debate is whether the existing price-based predictors have better predictive

power than the historical average model of equity returns. Goyal and Welch (2007) argue that

the historical average excess stock return forecasts future excess stock returns better than the

regressions of excess returns on predictive variables. In response to their arguments, Campbell

and Thompson (2007) show that many predictive regressions beat historical average returns by

imposing restrictions on the signs of coe¢ cients and return forecasts, or the coe¢ cients relating

valuation ratios to future returns based on steady-state models. The conclusions of the two

debates are controversial and inconclusive.

In this paper, we undertake an analysis of both in-sample and out-of-sample tests in an

1Fama and French (1988), Campbell and Shiller (1988a,b), Goetzmann and Jorion (1993, 1995), Hodrick
(1992), Stambaugh (1999), Wolf (2000), Goyal and Welch (2003, 2007), Valkanov (2003), Lewellen (2004), Camp-
bell and Yogo (2006), Campbell and Thompson(2007), and Ang and Bekaert (2007)

2Fama and French (1988) provide the strongest evidence in support of the dividend yield e¤ect by using
overlapping multiple-year horizon returns. They observe that the explanatory power of the dividend yield increases
with the time horizon of the returns; over 4-year horizons, the R2�s reach an astonishing high value of 64%.
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e¤ort to better understand the empirical evidence on return predictability. We are particularly

interested in investigating the following problems: (i) Does the predictability of valuation ratios

such as dividend yields exist at various horizons? (ii) Do the linear predictive models su¤er from

neglected nonlinear predictability? In particular, is the poor out-of-sample performance of most

linear predictive models due to the limitation of linear models or due to the nonexistence of

predictability of equity returns? (iii) Do the predictive models beat the historical average excess

stock return (historical mean model)?

The existing economic theory and literature has suggested the linear predictive model is not

optimal to predict equity returns due to the strong existing nonlinearities. However, there is

no evidence or support for the deterministic functional form of nonlinearities in the literature.

Therefore, we �rst develop a reliable out-of-sample nonparametric model-free predictability test,

which has several appealing features. First, the nonparametric method can capture a wide variety

of linearities and nonlinearities without assuming any parametric forms. Thus, it can directly

assess the predictability of equity return data itself rather than the predictability of a speci�c

model for equity return. Second, the nonparametric predictability test can be interpreted as a

signal-to-noise ratio, because it is based on the average of the squared predictable components

over the sample variance of pricing errors. Third, we propose to use a conditional bootstrap

procedure which maintain the original dynamics of predictive variables and serial dependence

structure of the multi-step-ahead forecast errors. Such a bootstrap procedure provides reliable

statistical inference for di¤erent sample sizes typically used in the literature. Simulation studies

show that it has reasonable size and power in �nite samples even when the regressors are highly

persistent and the forecast horizon is relatively long.

We apply the proposed test to examine the predictability of equity returns at short or longer

horizons. Our empirical results show that the short rate, dividend yields and earnings yields

have good predictability power at both short and long horizons, which is di¤erent from both
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the conventional wisdom and Ang and Bekaert (2007). Second, the comprehensive in-sample

and out-of-sample analysis suggests that the variables such as dividend yields, earnings yields,

dividend payout ratio, short rate, in�ation, book-to-market ratio, investment to capital ratio,

corporate issuing activity, and consumption, wealth, and income ratio have predictability power

for equity returns, but it cannot be fully captured by the prevailing linear predictive models. Our

conclusion is in contrast to Goyal and Welch (2007) and consistent with Campbell and Thompson

(2007). Campbell and Thompson (2007) �nd that predictive variables have better out-of-sample

performance than the historical average return forecasts when imposing the restrictions on the

coe¢ cients. In fact, the restriction on coe¢ cients is a form of nonlinearity. Our nonparametric

test shows that the prevailing predictive model beats the historical mean model without any

restriction because there is a higher neglected signal-to-noise ratio from the historical mean

model.

Most of the existing empirical studies use linear regressions to forecast asset returns. There are

a number of pitfalls applying those models to predict asset returns or evaluate the predictability

power. First, the apparent predictability of stock returns might be spurious since many predictive

variables, such as valuation ratios, are highly persistent (Nelson and Kim (1993), Stambaugh

(1999), and Sarkissian, and Simin (2003)). An active recent literature discusses alternative

econometric methods or proposes new statistical tests for correcting the bias and conducting valid

inference on estimation of long-horizon predictive regression models with persistent variables

and errors.3 These studies have emphasized the bias toward rejection of the null hypothesis

of no predictability. In particular, the usual corrections to the standard errors are only valid

asymptotically, and there is some question as to whether "asymptotic" should be measured in

terms of years, decades, or even centuries, especially for long-horizon forecasts.

3See Cavanagh et al., 1995; Goetzmann and Jorion, 1993; Mark, 1995; Kilian, 1999; Wolf, 2000; Lewellen,
2004; Campbell and Yogo, 2006; Polk et al., 2006; Ang and Bekaert, 2007; Valkanov, 2003; Maynard, Shimotsu,
and Wang, 2011
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Second, there exists an "errors-in-variables" problem that the explanatory variable like the

dividend yield is not properly exogenous, but rather contains a price level variable that also

appears in the regression (Stambaugh (1986)). The regression coe¢ cient in the dividend yield

regression may be downward biased because the yields contain forecasts of future returns and

dividend growth (Fama and French (1988), Fama (1990), and Kothari and Shanken (1992)).

Therefore there exists serial correlation in the forecast error particularly when the time horizon

h is large relative to the sample size. As a result, there also exist some �nite sample problems

for reliable statistical inference (Hodrick (1992), Nelson and Kim (1993), Mankiw and Shapiro

(1986)). Under the same conditions, the standard t-test for predictability has incorrect sizes in

�nite samples (Cavanagh et al. (1995), Campbell and Yogo (2006)). These problems become

more serious if applied econometricians are data mining, considering large numbers of variables,

and reporting only those results that are apparently statistically signi�cant (Foster et al. (1997),

Ferson, Sarkissian, and Simin (2003)).

Third, some empirical studies use a �nite-order VAR system to model returns and dividend

yields (Hodrick (1992), Campbell and Shiller (1988a,b), Stambaugh (1999)). The VAR model

cannot fully capture the nonlinear dynamics of dividend yields implied by the present value model.

For a linear predictive regression model, when a price-based estimator or regressor appeals to

be statistically insigni�cant, one cannot conclude that the null hypothesis of no predictability

holds, because there may exist neglected nonlinear predictability.

Fourth, a di¤erent critique4 emphasizes that most linear predictive regressions have often per-

formed poorly out-of-sample (Goyal and Welch (2003, 2007), Campbell and Thompson (2007)).

It is well-known that it may cause over�tting and capture spurious predictability even though

in-sample diagnostic analysis is signi�cant and can reveal useful information on possible sources

4This critique had a particular force during the bull market of the late 1990s, when low valuation ratios
predicted extraordinarily low stock returns that did not materialize until the early 2000s (Campbell and Shiller,
1998).
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of model misspeci�cation. Out-of-sample evaluation can capture the true predictability of a

model or the data generating process.5 The disparities between in-sample and out-of-sample

results of return predictability documented in the literature make an overall assessment of return

predictability di¢ cult. In particular, it is unclear whether the poor out-of-sample performance

of linear prediction models is due to the limitation of linear models or due to the nonexistence

of predictability of equity returns. Many earlier out-of-sample tests have focused on the divi-

dend ratios. Fama and French (1988) interpret the out-of-sample performance of dividend ratios

to have been a success. Bossaerts and Hillion (1999) interpret the out-of-sample performance

of the dividend yield to be a failure. Torous and Valkanov (2000) �nd that a low signal-noise

ratio of many predictive variables makes a spurious relation between returns and persistent pre-

dictive variables unlikely and would lead to a low out-of-sample forecasting power. Rapach and

Wohar (2006) �nd that certain �nancial variables display signi�cant in-sample and out-of-sample

predictive ability for stock returns. Neely, Rapach, Tu, and Zhou (2011) shows that utilizing

information from both technical indicators and macroeconomic variables substantially increases

the out-of-sample gains relative to using either macroeconomic variables or technical indicators

alone. Goyal and Welch (2007) argue that the poor out-of-sample performance of predictive

regressions is a systemic problem. They compare predictive regressions with historical average

returns and �nd that historical average returns almost always generate superior return forecasts.

They conclude that �the profession has yet to �nd some variable that has meaningful and robust

empirical equity premium forecasting power.�

The use of model-based predictors facilitates a better understanding of speci�c aspects of the

5Here are several important reasons why out-of-sample predictability check is important. First, the usual
practice of extensive search for more complicated models using the same or similar data set may su¤er from the
so-called data snooping bias, as pointed out by Lo and MacKinlay (1989) and White (2000). A more complicated
model may over�t idiosyncratic features of the data without capturing the true data generating process. Out-of-
sample prediction evaluation will alleviate, if not eliminate completely, such data snooping bias. Second, a model
that �ts in-sample data well may not predict the future well because of unforeseen structural changes or regime
shifts in the data generating process.
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economic mechanism, however, these predetermined variables may not be enough to capture all

information required in decision making. Forecast combination has recently received renewed

attention in the forecasting literature. Stock and Watson (1999, 2003, 2004) use the combination

forecast for in�ation and real output growth. Rapach, Strauss, and Zhou (2010) propose a com-

bination approach to improve the out-of-sample equity premium forecasting problem. Tae-Hwy

Lee, Yundong Tu, and Aman Ullah (2014) shows imposing the positive constraint and bag-

ging method can help reduce the asymptotic variance and improve the out-of-time performance.

Ferreira and Santa-Clara (2011) develop an intriguing �sum-of-the-parts� (SOP) approach to

forecast the market return as the sum of a 20-year moving average of earnings growth rates and

the current dividend price ratio (minus the risk-free rate). Speci�cally, they decompose the log

market return into the sum of the growth in the price-earnings ratio, growth in earnings, and

the dividend-price ratio. Previous studies suggest that there exists strong nonlinearity in the

predictive models, and that expected asset returns and dividend ratios are highly persistent and

time-varying. The poor out-of-sample performance of most linear predictive models is due to the

limitation of linear models. The lack of consistent out-of-sample evidence in Goyal and Welch

(2008) indicates the need for improved forecasting methods to better establish the empirical

reliability of equity return predictability.

In order to shed light on the recent debate, we evaluate the out-of-sample forecast of di¤erent

models used in the literature. We propose nonparametric estimators to forecast the equity returns

using both individual and combined forecast. We choose the same 15 economic variables in Goyal

and Welch (2008) to predict the equity returns. The benchmark model is historical mean model.

The alternative models are linear predictive model and two nonparametric predictive models. We

�nd that the combined forecast methods outperform the individual forecast methods. Fama and

French (1989) and others show that these variables can detect changes in economic conditions

that potentially signal �uctuations in the equity risk premium. But the dividend yield or term
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spread alone could capture di¤erent components of business conditions, and a given individual

economic variable may give a number of �false signals�and/or imply an implausible equity risk

premium during certain periods. Rapach, Strauss, and Zhou (2010) argue that if individual

forecasts based on the predictors are weakly correlated, combined forecast should be less volatile

and more reliable to track movements in the equity risk premium. Our results are consistent with

their �ndings. Combining forecast incorporates information from a host of economic variables

and it helps to reduce forecast variability. Since the historical average ignores economic variables,

combined forecasts have a substantially smaller bias than the historical average.

Our nonparametric predictive models have lower RMSE than the historical mean model at

both short-horizon and long-horizon and signi�cantly improve the out-of-sample performance

without any restrictions. To evaluate the economic signi�cance, we calculate realized utility

gains for a mean-variance investor on a real-time basis, following Marquering and Verbeek (2004),

Campbell and Thompson (2008), Welch and Goyal (2008), Rapach, Strauss, and Zhou (2010),

and Wachter and Warusawitharana (2009). The nonparametric forecast successfully produces

a positive utility gain for all the predictors. Using our nonparametric methods, both combined

and individual forecast outperform the historical average. It holds across a number of historical

periods using both statistical and economic criteria, even for the more recent periods when the

out-of-sample predictive ability of many individual variables is relatively poor. One reasonable

explanation is that the historical mean estimator is a simple average of past equity returns while

our kernel estimator is a weighted average of past equity returns, with the weights depending on

the values of predictive variables. The predictive variable indeed provides useful information for

out-of-sample forecasts. It is not restricted to the parametric forms. It can �t the data better

than simply the linear or nonlinear parametric model. Nonparametric prediction generates a

forecast with a variance near that of the smooth real equity return data, thereby reducing the

noise in the individual predictive model.
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Section 2 proposes a nonparametric predictability test. Section 3 describes the data. Section 4

discusses the empirical results. Section 5 reports the out-of-sample performance of the individual

and combined forecasts and its economic implications. Section 6 concludes the paper.

2. NONPARAMETRIC TEST FOR PREDICTABILITY

2.1 Hypotheses of Interests and Nonparametric Test

We are interested in whether the predictability of excess returns depends on time horizons.

If future excess returns cannot be predicted by the past dividend yield or other variables over

any time horizon, then the null hypothesis holds.

Speci�cally, suppose fYt; X 0
tg0 is a stationary time series process where Yt is a scalar, and Xt

is a d-dimensional vector. We are interested in testing the predictability of Yt+h using Xt; where

the integer h is the time horizon index for a multi-step ahead prediction. In our applications

below, Xt is, for example, the dividend yield in period t, and Yt+h is the asset return h periods

ahead. Di¤erent h�s will allow us to examine the relationship between asset return predictability

and time horizons. Formally, the null and alternative hypothesis can be written respectively as

H0 : E(Yt+hjXt) = E(Yt+h) (2.1)

HA : E(Yt+hjXt) 6= E(Yt+h): (2.2)

The null hypothesis H0 is characterized by the horizon index h: It is possible that H0 holds

for a relatively long horizon but it does not hold for a relatively short horizon: This is one of

our focuses in this paper, namely we will investigate the relationship between predictability of

excess asset returns and the time horizon h; which has been a long-standing problem in empirical

�nance.

In empirical �nance, a linear predictive regression model

Yt+h = X
0
t� + "t+h; (2.3)

is used to check predictability of excess asset returns. When an estimator for � is statistically
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insigni�cant, one does not �nd evidence for predictability power of Xt for Yt+h: Strictly speaking,

one cannot conclude that H0 holds. This is because a zero parameter value for � is a necessary

condition for H0 but it is not a su¢ cient condition. A zero � implies that there is no linear

predictive power of Xt for Yt+h; but there may exist a nonlinear predictive power of Xt for Yt+h:

For example, suppose Yt+h = X2
t + "t+h; where Xt is normally distributed with zero mean and

the disturbance "t+h is independent of Xt. Then a linear regression coe¢ cient � will be exactly

zero although E(Yt+hjXt) = X
2
t :

When an estimator for � is statistically signi�cant, there exists evidence of the predictive

power of Xt for Yt+h: In this case, one may be interested in testing whether the linear regression

model has the optimal predictive power for Yt+h: Put it di¤erently, one may be interested in

testing whether there exists any nonlinear predictive power of Xt for Yt+h; in addition to the

documented linear predictability. In this case, the null and alternative hypothesis are written

respectively as

H0 : E("t+hjXt) = 0 (2.4)

HA : E("t+hjXt) 6= 0; (2.5)

where "t+h is the prediction error from the linear regression model in (2:3). The null hypothesis

H0 in (2:4) implies that the linear regression model in (2:3) has optimal predictive power. When

HA in (2.5) holds, there exists a nonlinear predictive relationship between Xt and Yt+h, and a

suitbale nonlinear predictive model will outperform the linear regression model in (2.3). Becasue

"t+h is unobservable, we need to use an estimated residual "̂t+h = Yt+h � X 0
t�̂, where �̂ is an

estimator for �. Note that when H0 holds, f"t+hg may not be a martingale di¤erence sequence

unless h = 1. In general, H0 allows f"t+hg to follow a MA(h) dependence. This has important

implication on inference, particularly when h is relatively large.

In this section, we develop a uni�ed nonparametric testing framework which is applicable

to test hypotheses in (2:1) and (2:4). The basic idea is to use a nonparametric estimator for

E(Yt+hjXt) or E("t+hjXt) and check if the estimator is close to constant or zero. As is well-
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known, the nonparametric method has an advantage that it does not require an ex ante model

speci�cation and can capture any predictive relationship no matter whether it is linear or non-

linear (c.f. Härdle (1993), Pagan and Ullah (1999)). Thus, it is quite suitable for our purpose

here.

To avoid capturing spurious predictability due to in-sample over�tting, we consider out-of-

sample predictability check. There are several reasons why out-of-sample predictability check

is important. First, the usual practice of extensive search for more complicated models using

the same or similar data set may su¤er from the so-called data snooping bias, as pointed out

by Lo and MacKinlay (1989) and White (2000). A more complicated model may over�t some

idiosyncratic features of the data without capturing the true data generating process. Out-

of-sample prediction evaluation will alleviate, if not eliminate completely, such data snooping

bias. Second, a model that �ts in-sample data well may not predict the future well because

of unforeseen structural changes or regime shifts in the data generating process. Therefore, in-

sample analysis is not adequate and it is important to examine out-of-sample prediction. Third,

out-of-sample prediction is more relevant to most economic applications in practice.

Speci�cally, suppose we have an observed sample fYt; X 0
tgTt=1 of size T:We �rst split the sample

into two parts: the �rst subsample contains R observations, and the second subsample contains

n = T �R observations. We will use the �rst subsample or a modi�cation of it to estimate model

parameter � and use the second subsample to check predictability. There are various methods to

estimate parameter �: One simple method is to use the �rst subsample fYt+h; X 0
tgRt=1 to estimate

�: Another method is to use fYt+h; XtgR+it=i+1 to estimate � when predicting YR+h+1+i, for 0 � i �

n�h�1. This is called the rolling estimation. One can also use the recursive estimation method,

which uses the subsample fYt+h; XtgR+it=1 to estimate � when predicting YR+h+1+i. Generally, we

use the notation �̂t to denote an estimator for � when predicting Yt+h in an out-of-sample context.

The resulting estimated out-of-sample residual from a linear model (2:3) is

"̂t+h = Yt+h �X 0
t�̂t; t = R + 1; � � �T � h
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To capture potentially neglected nonlinear predictable component in "t+h, we use a smoothed

kernel method to estimate E("t+hjXt). Put

bmh(x) =
1

n� h

T�hX
s=R+1

"̂s+hKb(x�Xs);

bgh(x) =
1

n� h

T�hX
s=R+1

Kb(x�Xs);

where x = (x1; x2; � � � ; xd)0, y = (y1; y2; � � � ; yd)0, and Kb(x � y) = �di=1b
�1K[(xi � yi)=b]. The

kernel functionK(�) is is a prespeci�ed symmetric probability density function. Examples include

a Gaussian kernel K(u) = (2�)�1=2 exp(�u2=2) and a quatic kernel K(u) = 3
4
(1� u2)1(juj � 1),

where 1(�) is the indicator function, giving value 1 if juj � 1 and value 0 otherwise. The

bandwidth b = b(n) vanishes to zero as the sample size n ! 1; but at a slower rate. For

simplicity, we use the same bandwidth for each components of Xt. In practice, one can �rst

standardize each component of the vector Xt by its sample standard deviation. The regression

estimator for E("t+hjXt) is then de�ned as follows:

brh(x) = bmh(x)bgh(x) :
This is called the Nadaraya-Watson regression estimator. The estimator bgh(x) in the denominator
is a kernel estimator for the marginal density gh(x) of fXtg. Under regularity conditions,

brh(x)! rh(x) = E("t+hjXt = x) in probability as both R; n!1.

Under H0, brh(x) is close to zero for all x. Under the alternative hypothesis HA; r̂h(x) is not
a zero function but is a nontrivial function of x subject to sampling variation. To measure the

departure of r̂h(x) from zero over all x, we use the following global measure

bQ(h) = 1

n� h

T�hX
t=R+1

br2h(Xt)w(Xt);

where the positive weighting function w(�) can be chosen to trim the extreme observations where

the estimation of r̂(x) is not reliable due to sparse observations (we allow the distribution of Xt

has unbounded support). It can also be used to direct power of the proposed test to the region of
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interest, such as predictability when Xt is negative (in this case, we choose w(x) = 1(x � 0). The

statistic bQ(h) can be viewed as a measure of the magnitude of the "signal" that can be extracted
to predict asset returns if (and only if) it contains no systematic predictable component in

E("t+hjXt), the estimator brh(Xt) and therefore bQ(h) will be close to zero.
Alternatively, we can directly use an integrated global measure eQ(h) = R br2h(x)bg(x)w(x)dx;

where the integral is over the support of w(x), and it can be computed using either a numerical

integration method (e.g. the Gauss-Newton method) or a Monte Carlo simulation method.6

The asymptotic behaviors of bQ(h) and eQ(h) are similar, so we can focus on eQ(h). To gain
insight, we consider the heuristic decomposition

eQ(h) = Z bm2
h(x)a(x)dx+ bR;

where a(x) = w(x)=g(x), and bR is a reminder term dominated by the �rst (leading) term under

suitable regularity conditions. Thus, we can focus on the �rst term, which will determine the

asymptotic distribution of the statistic bQ(h): For the �rst term, we have
Z bm2

h(x)a(x)dx =
1

(n� h)2
X

jt�sj>h

"̂t+h"̂s+h

Z
Kb(x�Xt)Kb(x�Xs)a(x)dx

+
1

(n� h)2
X

jt�sj�h

"̂t+h"̂s+h

Z
Kb(x�Xt)Kb(x�Xs)a(x)dx

= bA(h) + bB(h);
where the term Â(h) is a sum over (t; s) with jt� sj > h; and the term B̂(h) is a sum over (t; s)

with jt� sj � h: For the term B̂(h), we have

bB(h) = 1

(n� h)b�
2
"

Z
w(x)dx

Z
K2(u)du+

2

(n� h)

hX
j=1


(j)E[a(Xt)fj(Xt; Xt)] +Op((nb)
�1);

where �2" = var("t+h), 
(j) = cov("t; "t�j), and fj(�; �) is the joint probability density of (Xt; Xt�j).

6The Monte Carlo method can be implemented as follows. Without loss of generality assume that w(�) is a
prespeci�ed probability density function.Then we can generate a large i:i:d: sample fX�

i gNi=1 from the probability
distribution w(�). Then the average bQ�(h) = N�1�Ni=1br2h(X�

i ) will be arbitrarily close to bQ(h) if N is su¢ ciently
large (much larger than the sample size n) by the law of large numbers.
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Note that generally 
(j) 6= 0 for 0 � j � h in a h-step ahead prediction model (2:3), even when

H0 holds. As noted earlier, f"t+hg generally displays a MA(h� 1) structure under H0.

Thus, B̂(h) depends on the serial dependence of f"t+hg due to the existence of the second

term. The e¤ect of serial dependence in f"t+hg on bB(h) is generally larger when the horizon h is
larger. In our construction of a test statistic, we could subtract the original form of B̂(h) directly

from the global measure bQ(h); rather than use the asymptotic approximation of B̂(h). This will
make the proposed test robust to the e¤ect of serial dependence contained in B̂(h). The term

Â(h) can be written as

bA(h) = 2

(n� h)2
n�hX
t=R+2

t�h�1X
s=R+1

"̂t+h"̂s+h

Z
Kb(x�Xt)Kb(x�Xs)a(x)dx:

Under H0; bA(h) has an approximately zero mean. Its variance var( bA(h)) depends on serial
dependence in f"t+hg: However, when f"t+hg has a MA(h � 1) structure where h is a �xed

integer, the e¤ect of serial dependence in f"tg on var[ bA(h)] is an asymptotically negligible higher
order term, and it can be shown that the asymptotic variance of bd=2(n� h)Â(h)=�2" is given by

V = 8

Z
w2(x)dx

Z �Z
K(u)K(u+ v)du

�2
dv:

Using the central limit theorem for degenerate U -statistics, we can show b
d
2 (n � h) bA(h)=�2" d!

N(0; V ) as n!1, as stated below:

Theorem 1 Suppose Assumptions A.1�A.6 in the Appendix hold. Then as n!1,

(i) under H0; we have

Q̂h =

p
bd(n� h)Q̂(h)=b�2" � C=pbdp

V

d! N(0; 1)

where C =
Z
w(x)dx

Z
K2(u)du, b�2" = (n� h)�1 T�hX

t=R+1

e2t+h, and et+h = b"t+h � brh(Xt).

(ii) under HA;
Q̂hp

bd(n� h)
! V �1=2

R
r2h(x)g(x)w(x)dx

�2"
:

The proof of this theorem is given in the Appendix. Among other things, the Q̂h test allows
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the serial correlation of f"t+hg: The Q̂h test statistic has an appealing interpretation. Ignoring

the centering and scaling factors, the Q̂h test statistic is essentially based on the ratio Q̂(h)=b�2".
Here, the denominator b�2" is the sample variance of pricing errors, and the numerator Q̂(h) is the
average of the squared predictable components neglected by the linear regression model (2:3).

Therefore, the ratio Q̂(h)=b�2" can be viewed as an estimator for the neglected signal-to-noise
ratio of the linear model. If the neglected pricing signal Q̂(h) is weak relative to the pricing

noise b�2", the Q̂h test will not reject the null hypothesis H0. If the neglected pricing signal Q̂(h)

is su¢ ciently large relative to the pricing noise b�2", the Q̂h test will reject the null hypothesis

H0. How large the signal-to-noise ratio should be in order to be considered as su¢ ciently large

is determined by the critical value of the test statistic.

Theorem 1(ii) shows that under HA, the Q̂h statistic diverges to in�nity at rate
p
bd(n� h).

Thus, as long as rh(x) is not zero over the support of the weighting function w(x) under HA ,

the Q̂h test will be able to reject H0 at any given level with probability approaching one as the

sample sizes R; n!1:

In computing the neglected pricing signal-to-noise ratio, we have used a nonparametric esti-

mator for �2". The variance estimator b�2" is based on the nonparametric residual et+h which is
always consistent for the true pricing error "ot � Yt+h�E(Yt+hjXt) under both H0 and HA. One

could also use the parametric variance estimator e�2" = 1=(n�h)PT�h
t=R+1b"2t+h using the estimated

residuals from the linear regression model. This estimator is simpler than b�2", and may give better
sizes in �nite samples, because it is a better estimator for �2" than b�2" under H0. However, e�2" is
not consistent for the true error variance V ar("ot ) under HA, because it contains the neglected

signals. Consequently, it may give a lower power in �nite samples.

The test statistic Q̂h is constructed to check the out-of-sample predictability of the residual

"̂t+h usingXt: It can also be used to test the null hypothesisH0 in (2:1), namely the predictability

of Xt for Yt+h. This can be done by replacing the sample size n with T , and replacing the
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estimated residual "̂t+h with Yt+h � �Y ; where �Y = (T � h)�1
PT�h

t=1 Yt+h is the sample mean of

fYt+hgT�ht=1 . The resulting test statistic is still asymptotically N(0,1) under H0 in (2:1).

Theorem 1(i) implies that approximately 
(n � h)Q̂(h)=�̂2" � �2�n as R; n ! 1 where the

constant 
 = 2C=V and the degree of freedom �n = 2C
2=bV . Here, both constants 
 and �n do

not depend on any nuisance parameters or nuisance functions, such as the error distribution and

density function of Xt. In fact, they are independent of the data generating process. Therefore,

the asymptotic null distribution of the scaled signal-to-noise ratio statistic 
(n � h)Q̂(h)=�̂2" is

independent of nuisance parameters or nuisance functions, and approximately 
(n� h)Q̂(h)=�̂2"

is distribulted as N(�n; 2�n) where �n is known. This is the so-called Wilks� phenomena in

statistics. One important implication of Wilks�phenomena is that one can simply simulate the

null distributions by setting the nuisance parameters under the null hypothesis at reasonable

values or estimates.

The asymptotic normality is quite convenient to use in practice. However, several reasons

suggest that the asymptotic normal approximation may not work well in �nite samples. First,

the nonparametric estimator brh(x) converges slowly to the true function rh(x) particularly when
the dimension d of Xt is relatively large. As it turns out, the neglected reminder terms in the

asymptotic expansion of Q̂(h)=b�2" are quite close to in order of magnitude to the dominating term
which determines the asymptotic normal distribution of Q̂h. Evidence in related literature shows

that the size of nonparametric test statistics is generally very poor in �nite samples. Second, in

the present framework, f"t+hg is not an i.i.d. or martingale di¤erence sequence under the null

hypothesis. Instead, it follows an MA(h�1) structure in "t+h under the null hypothesisH0 due to

the h-step ahead prediction. Asymptotic analysis shows that the serial dependence in f"t+hg has

no impact on the asymptotic mean C=
p
bdand the asymptotic variance V , but it may substantially

a¤ect the �nite sample mean and variance of the test statistic Q̂(h)=b�2", particularly when h is
relatively large. Third, our asymptotic analysis shows that parameter estimation uncertainty in
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�̂t has an asymptotically negligible impact on the asymptotic distribution of the proposed test,

but the impact depends on the relative magnitude between two sample sizes R; n:When the ratio

n=R is large (i.e., when n is large relative to R) , the impact of parameter estimation uncertainty

of �̂t may be substantial in �nite samples.
7

2.2 Simulation Design and Monte Carlo Evidence

It is well-known that there exist two well-documented sources of size distortion that may arise

in long-horizon regressions if the inference procedures are based on linear prediction models.

First, many predictors, such as dividends and earning price ratios, interest rates are highly

persistent and only predetermined, rather than fully exogenous. Second, standard test-statistics

based on prediction regressions do not have their usual limiting distribution (Cavanagh et al.,

1995). The use of standard critical values is known to generate severe size distortion. These

problems may carry over to the proposed nonparametric predictability test, particularly when h

is large. In order to check the reliability of the proposed test, we investigate the �nite performance

(both size and power) of the proposed test using data-generating processes that could potentially

be employed to capture the persistent behavior commonly observed in predictive regressors. To

obtain a reliable reference based on the proposed test in �nite samples, we propose the following

conditional bootstrap procedure which preserves the MA(h) structure in "t+h among other things:

Step 1: Use the �rst subsample fYt+h; X 0
tgRt=1 to estimate the linear regression model Yt+h =

X 0
t� + "t+h; t = 1; :::; R:Obtain the parameter estimator �̂. Alternatively, rolling estimation or

recursive estimation could also be used.

Step 2: Use �̂ to compute the out-of-sample residual "̂t+h = Yt �X 0
t�̂ for t = R + 1; :::; T � h:

Step 3: Compute the nonparametric estimates brh(Xt) and the nonparametric residual bet+h =
b"t+h � brh(Xt) for t = R + 1; :::; T � h:

Step 4: Compute the signal-to-noise ratio Q̂(h)=b�2" using a prespeci�ed kernel k(�) and bandwidth
7One implication of this result is that one should use a large R relative to n in practice to alleviate the impact

of parameter estimation in b�.
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b = (n� h)1=5. In practice, data-driven methods can be used to choose the bandwidth b.

Step 5: Estimate an MA(h� 1) model for the nonparametric residual

bet+h = h�1X
j=1

�jvt+h�j + vt+h; t = R + 1; :::; T � h:

This can be done by the conditional quasi-maximum likelihood estimation. Save the moving

average parameter estimates f�̂jghj=1 and estimated residual fv̂t+hgT�ht=R+1 in the MA(h�1)model.

Step 6: Draw a bootstrap residual sample fv̂�t+hgT�ht=R+1 from the centered empirical distribution

of fv̂t+hgT�ht=R+1. Then obtain a bootstrap residual sample f"̂�t+hgT�ht=R+1 by the MA(h� 1) model

"̂�t+h =
h�1X
j=1

�̂j v̂
�
t+h�j + v̂

�
t+h; t = R + 1; :::; T � h;

where the parameter estimates f�̂jghj=1 are obtained in step 5. The bootstrap residual f"̂�t+hgT�ht=R+1

approximately preserves the MA(h� 1) structure of f"t+hg under H0.

Step 7: Use the bootstrap sample f"�t+h; XtgT�ht=R+1 to compute the bootstrap signal-to-noise ratio

Q̂�(h)=b��2" using the same kernel k(�) and bandwidth b as in Step 4.

Step 8: Repeat Steps 6 and 7 for a total of B times where B is a large number. Denote the

obtained B bootstrap test statistics as fQ̂�l (h)=b��2"l gBl=1:
Step 9: Compute the bootstrap p-value of the Q̂h:

p� =
1

B

BX
l=1

1

"
Q̂(h)b�2" <

Q̂�l (h)b��2"l
#
;

where 1(�) is the indicator function. Reject the null hypothesis H0 at level � if and only if p� < �:

The above resampling approximation is a wild bootstrap. Here, one only need to calculate

the signal-to-noise ratio Q̂(h)=b�2" using the observed sample and bootstrap samples. There is no
need to compute the original test statistic Q̂h which involves calculation of centering and scaling

parameters. This follows because computing the bootstrap p-value involves ranking Q̂h and Q̂�
h,

which is equivalent to ranking the pricing signal-to-noise ratios Q̂(h)=b�2" and Q̂�(h)=b��2" , given
18



the fact that the centering and scaling factors do not depend on nuisance parameters and the

data generating process. This greatly simpli�es the computation of the test statistic.

When testing predictability of Xt for Yt+h (i.e., testing H0 in (2:1)), Steps 1 and 2 are not

needed, the nonparametric residual in step 3 is replaced with bet+h = Yt+h� �Y , and the MA(h�1)
models in Steps 6 should be changed to the following:

Y �t+h = Y +

h�1X
j=1

�̂jv
�
t+h�j + v

�
t+h; t = 1; :::; T � h:

where �Y is the sample mean of fYt+hgT�ht=1 .

We will examine the �nite sample performance of the above conditional bootstrap proce-

dure via simulation studies. Table 2.0 summarizes the �ve data generating processes we use to

investigate the empirical size of the tests for both linear and nonlinear predictability check.

Under A:0(h); Xt has no predictive power for Yt+h: This allows us to examine the size of the

nonparametric test under H1 : E(Yt+hjXt) = E(Yt+h). Under A:1(h) and A:2(h); there exist

linear and nonlinear predictability of Xt for Yt+h:This allows us to examine the power of the test

under the alternatives. Next, underB:0(h); there is no neglected nonlinear predictability ofXt for

Yt+h: This allows us to examine the size of the test for the null hypothesis H2 : E("t+hjXt) = 0:

Under B:1(h), there exists neglected nonlinear predictability, which allows us to examine the

power of the test.

Tables 2.1a and 2.1b report empirical rejection rates of the test at the 1%, 5%, and 10%

nominal levels, for sample sizes of T = 250; 500; 1000 and time horizons of h = 1; 4; 12; 20. The

nonparametric test with the bootstrap procedure has reasonable sizes in �nite samples under

both the null hypotheses H1 and H2; which are robust to the time horizon h and the persistence

of regressor Xt (as measured by the large value of the autoregressive coe¢ cient �). Moreover,

the proposed test has power under various alternatives to H1 and H2 respectively.

There is an upward bias in the predictive coe¢ cient on the regressors due to both long-horizon
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returns and persistence of the regressors(Stambaugh 1999, Amihud and Hurvich 2004, Lewellen

2004). The existing long-horizon tests with robust Newey-West standard errors su¤er from

substantial overrejection.8 Our proposed test has reasonable sizes and robust power performance

to investigate the predictability and neglected nonlinear components over di¤erent time horizons.

3. DATA AND LONG-HORIZON PREDICTABILITY

3.1 The Long-horizon Framework and Predictability Regression

We now use the proposed test to investigate the predictability of equity returns over di¤erent

horizons. Denote the gross return on equity by Gt+1 = (Pt+1 +Dt+1)=Pt+1 and the continuously

compounded return by eyt+1 = log(Gt+1). The long-horizon predictability regression considered
is

Yt+h = �h + �
0
hXt + "h;t+h (3.1)

where Yt+h = (�=h)[(eyt+1 � rt) + � � � + ( eyt+h � rt+h�1) is the annualized h-period excess return
for the aggregate stock market, rt is the risk-free rate from t to t + 1, and eyt+1 � rt is the one
period excess return from time t to t+1. The constant � is di¤erent, depending on the frequency

of the data, i.e., � = 1 (annually), � = 4 (quarterly), and � = 12 (monthly). All returns are

continuously compounded. The error term "h;t+h follows a MA(h � 1) process under the null

hypothesis of no predictability H0 : E(Yt+hjXt) = E(Yt+h) and H0 : E("t+hjXt) = 0. We will use

di¤erent predictors as instruments in Xt and estimate the regression (3.1) by OLS and compute

standard errors of the parameters using the Newey and West(1987) and Hodrick (1992) standard

error formula.9 We use the test proposed in section 2.2 to check the predictability of di¤erent

variables using the regression framework in (3.1).

3.2 Data
8Ang and Bekaert (2007) point out that the univariate dividend yield regression displays negligible size dis-

tortions in the shortest sample for the one-quarter horizon, but for the bivariate regressions, all tests slightly
over-reject at asymptotic critical values with longer horizons.

9Using generalized method of moments, (GMM) has an asymptotic distribution
p
T (b� � �) a� N(0;
) where


 = Z�10 S0Z
�1
0 , Z0 = E(x0txt), and xt = (1 z

0
t)
0. Hodrick(1992) sums x0txt�j into the past and estimates S0 bybS0 = 1

T

PT
t=h whtwh

0
t, wht = "1;t+1

Ph�1
i=0 xt�i.
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Following Goyal and Welch (2008), we choose �fteen economic variables to examine pre-

dictability of the equity returns using annual, quarterly, and monthly data.

Stock Returns: Stock returns are continuously compounded returns on the S&P 500 index,

including dividends. Our quarterly data consist of price return (capital gain only), total returns

(capital gain plus dividend), and dividends on the Standard & Poor�s Composite Index from

March 1936 to December 2001. This data is obtained from the Security Price Index Record,

published by Standard & Poor�s Statistical Service. For monthly data, we use S&P 500 index

returns from January 1970 to December 2006 from CRSP�s monthend values. Monthly dividends

on the S&P 500 index are from Standard & Poor�s Statistical Service. For annual data, we get

data from 1872 to 2005 provided in Robert Shiller�s personal website.

Risk-free Rate: The risk-free rate is the T-bill rate from 1920 to 2005. We follow the methods

by Goyal and Welch (2007) to estimate T-bill rate prior to the 1920�s.10 For quarterly and

monthly data, T-bill rates from 1934 to 2005 are the 3-Month Treasury Bill: the Secondary

Market Rate from the economic research data base at the Federal Reserve Bank at St. Louis

(FRED).

Dividend Yields, Earnings Yields, and Dividend Payout Ratio: Dividends and Earnings are

the twelve-month moving sums of dividends and earnings paid on the S&P 500 index. The

data from 1871 to 1970 are available from Robert Shiller�s website. Quarterly dividends and

earnings from 1936 to 2005 and monthly dividends and earnings from 1970 to 2006 are from

the S&P Corporation. Dividends and Earnings are summed up over the past year. Monthly or

quarterly dividends and earnings are impossible to use because they are dominated by seasonal

components. The dividend yield (d=y) is de�ned as D4
t = Pt with the superscript 4 to denote

10Commercial paper rates for New York City are from the NBER�s Macrohistory data base. These are available
from 1871 to 1970. We estimated a regression from 1920 to 1971, which yielded T � billRate = �0:004+
0:886 � CommercialPaperRate , with an R2 of 95.7% according to Goyal and Welch (2007). Therefore, we
instrumented the risk-free rate from 1871 to 1919 with the predicted regression equation. The correlation for the
period 1920 to 1971 between the equity premium computed using the actual T-bill rate and that computed using
the predicted T-bill rate (using the commercial paper rate) is 99.8%.
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that it is constructed using dividends summed up over the past year (four quarters), where

D4
t = Dt + Dt+1 + Dt+2 + Dt+3 represents dividends summed over the past year and Pt is the

price level on S&P 500.11 We also de�ne the monthly dividend yield with a superscript of 12 to

indicate that dividends have been summed over the past 12 months using the same method. We

also denote log dividend yields as dy4t = log(D
4
t = Pt) for quarterly data and dy

12
t = log(D12

t = Pt)

for monthly data. We use the similar de�nitions for log earnings yields for both quarterly and

monthly. The Dividend Payout Ratio (d=e) is the di¤erence between the log of dividends and

the log of earnings.

Stock Variance (svar): Stock Variance is computed as sum of squared daily returns on the

S&P 500. G. William Schwert provided daily returns from 1871 to 1926; data from 1926 to 2005

are from CRSP.

Book to Market Ratio: The Book to Market Ratio (b=m) is the ratio of book value to mar-

ket value for the Dow Jones Industrial Average.12 Book values from 1920 to 2005 are from

Value Line�s website, speci�cally their Long-Term Perspective Chart of the Dow Jones Industrial

Average.

Corporate Issuing Activity: We follow the two measures of corporate issuing activity in Goyal

and Welch (2007). Net Equity Expansion (ntis) is the ratio of twelve-month moving sums of net

issues by S&P listed stocks divided by the total end-of-year market capitalization of S&P stocks.

This dollar amount of net equity issuing activity (IPOs, SEOs, stock repurchases, less dividends)

for NYSE listed stocks is computed from the CRSP data as NetIssuet =Mcapt�Mcapt�1 � (1+

vwretxt), whereMcap is the total market capitalization, and vwretx is the value weighted return

(excluding dividends) on the S&P 500 index. These data are available from 1926 to 2005. The

second measure, Percent Equity Issuing (eqis), is the ratio of equity issuing activity as a fraction

11See, e.g., Ball (1978), Campbell (1987), Campbell and Shiller (1988a, 1988b), Campbell and Viceira (2002),
Campbell and Yogo (2006), the survey in Cochrane (1997), Fama and French (1988), Hodrick (1992), Lewellen
(2004), Menzly, Santos, and Veronesi (2004), and Ang and Bekaert(2007).
12See Kothari and Shanken (1997) and Ponti and Schall (1998).
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of total issuing activity. This is the variable proposed in Baker and Wurgler (2000).13 The �rst

equity issuing measure is relative to the aggregate market cap, while the second is relative to the

aggregate corporate issuing.

Long Term Yield (lty): The data is from Goyal and Welch (2008). The long-term government

bond yield data from 1919 to 1925 is the U.S. Yield On Long-Term United States Bonds series in

the NBER�s Macrohistory data base. Yields from 1926 to 2005 are from Ibbotson�s Stocks, Bonds,

Bills and In�ation Yearbook, the same source that provided the Long Term Rate of Returns (ltr).

The Term Spread (tms) is the di¤erence between the long term yield on government bonds and

the T-bill. (See, e.g., Campbell (1987) and Fama and French (1989).)

Corporate Bond Returns: Long-term corporate bond returns from 1926 to 2005 are again

from Ibbotson�s Stocks, Bonds, Bills and In�ation Yearbook. Corporate Bond Yields on AAA

and BAA-rated bonds from 1919 to 2005 are from FRED. The Default Yield Spread (dfy) is

the di¤erence between BAA and AAA-rated corporate bond yields. The Default Return Spread

(dfr) is the di¤erence between long-term corporate bond and long-term government bond returns.

(See, e.g., Fama and French (1989) and Keim and Stambaugh (1986).)

In�ation (infl): In�ation is the Consumer Price Index (All Urban Consumers) from 1919 to

2005 from the Bureau of Labor Statistics.

Investment to Capital Ratio (i=k): The investment to capital ratio is the ratio of aggregate

(private nonresidential �xed) investment to aggregate capital for the whole economy.

Consumption, wealth, income ratio (cay): The variable cay is proposed by Lettau and Lud-

vigson (2001). Data for cay�s construction at quarterly frequency from the second quarter of

1952 to the fourth quarter of 2005 are available from Martin Lettau�s website. The annual data

from 1948 to 2001 is available from Martin Lettau�s website.

Table 3.1 summarizes the descriptive statistics of the predictors. Panels (a), (b), and (c)

13We get the data from http://pages.stern.nyu.edu/ jwurgler/.
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report the results for quarterly, monthly, and annual data respectively. We summarize the

test statistics of the predictors under the null hypothesis of a unit root. Short rates, dividend

and earnings yields, book-to-market ratio, and in�ation are all highly persistent at di¤erent

frequencies.

4. IS THE PREDICTABILITY THERE?

In this section, we �rst apply the nonparametric test to examine whether there exists the

predictability of equity returns in both short and long horizons. Then we test the predictability

power of the conventional predictive models and the historical mean model.

4.1 Short-Horizon and Long-Horizon Predictability

In this section, we use the linear predictive regression Yt+h = �h + �
0
hXt + "h;t+h in (3.1)

to check the predictability of equity returns by using quarterly, monthly, and annual data. For

quarterly and monthly data, we report the results of four sample periods (1936-2001, 1952-2001,

1936-1990, and 1952-1990), which are the same sample periods used in Ang and Bekaert (2007).14

Table 4.1 summarizes the results of the 1-quarter, 1-year, 3-year, and 5-year-ahead predictabil-

ity of excess return predictability. Table 4.1a focuses on the univariate regression with dividend

yields and earnings yields as the regressor. The t-statistics in parentheses are computed using

the Newey and West (1987) and Hodrick (1992) standard error respectively. The parameter

estimates have similar patterns over the four periods, but the estimated coe¢ cients are twice

as large as for the period omitting the 1990s from the sample. The Hodrick standard errors

are smaller than the Newey-West standard errors. During the 1936-2001 and 1952-2001 periods,

there is no evidence of predictability for dividend yields for both short and long horizons. For the

14Interest rate data are hard to interpret before the 1951 Treasury Accord, as the Federal Reserve pegged
interest rates during the 1930s and the 1940s. Hence, we examine the post-Accord period, starting in 1952.
Second, the majority of studies establishing strong evidence of predictability use data before or up to the early
1990s. Studies by Lettau and Ludvigson (2001) and Goyal and Welch (2003) point out that predictability by
the dividend yield is not robust to the addition of the 1990s decade. Hence, we separately consider the e¤ect of
adding the 1990s to the sample.
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1936-1990 periods, there is strong predictability for dividend yields over the 1-quarter, 1-year,

3-year, and 5-year ahead time horizons respectively. For the 1952-1990 period, there exists only

the predictability for 1-quarter and 1-year shorter horizons.

Table 4.1a also reports the bootstrap p-value for the predictability test under two hypotheses

H1 and H2. Hypothesis H1 is H0 : E(Yt+hjXt) = E(Yt+h); namely that Xt has no predictive

power for Yt+h. HypothesisH2 isH0 : E("t+hjXt) = 0; namely thatXt has no neglected nonlinear

predictive power for Yt+h beyond the linear model (3.1). As mentioned in Section 2.1, the Q̂h

test has an appealing interpretation: it is essentially based on the ratio Q̂(h)=b�2"; where the
denominator b�2" is the sample variance of pricing errors, and the numerator Q̂(h) is the average
of the squared predictable components neglected by the linear regression model. Therefore, the

ratio Q̂(h)=b�2" can be viewed as an estimator for the neglected signal-to-noise ratio of the linear
prediction model (3.1). If the neglected pricing signal Q̂(h) is weak relative to the pricing noise

b�2", the Q̂h test will not reject the null hypothesis H0. If the neglected pricing signal Q̂(h)

is strong relative to the pricing noise b�2", the Q̂h test will reject the null hypothesis H0. The

results for testing H1 show that the Q̂h test strongly rejects the null hypothesis H1 for dividend

yields over the four sample periods. This implies that dividend yield is a signi�cant predictor

of excess returns at all time horizon h, which is consistent with Campbell and Shiller (1988a,b).

We also examine whether there exists neglected nonlinear predictability of dividend yield for

equity returns. Table 4.1a show that the Q̂h test strongly rejects the null hypothesis H2 for

all four sample periods. It implies that there exists a nonlinear predictive relationship between

Xt and Yt+h. The right four columns of Table 4.1a also report a univariate regression with the

earnings yield as regressor. The t-statistics suggest that there is no strong evidence for linear

predictability of earnings yields over the four sample periods. However, the nonparametric tests

for hypothesis H1 and H2 show that earnings yield is a good predictor for equity returns over

all the di¤erent time horizons h.
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Table 4.1b summarizes the bivariate regression with log dividend yields and short rate together

as regressors. It reports the bootstrap p-value of the predictability test for six various hypotheses

H1�H6, whereX1 represents the short rate r andX2 the dividend yield. The six hypotheses are,

respectively, H1 : E(Yt+hjX1t) = E(Yt+h), H2 : E("t+hjX1t) = 0; H3 : E(Yt+hjX2t) = E(Yt+h),

H4 : E("t+hjX2t) = 0, H5 : E(Yt+hjX1t; X2t) = E(Yt+h), and H6 : E("t+hjX1t; X2t) = 0:

HypothesesH1 andH3 are to test the predictability of the short rate or dividend yield separately

and Hypothesis H5 is to test the joint predictability of the short rate and dividend yield together.

The short rate has strong predictability over the four periods based on the Newey-West standard

errors but the predictability only exists at short horizons when using the Hodrick (1992) standard

errors. In the bivariate regression, there is evidence of predictability of dividend yields for equity

returns when the sample period excludes the 1990s. The coe¢ cient on the dividend yield is

larger using bivariate regression than the univariate regression. This suggests that the univariate

regression su¤ers from an omitted variable bias that lowers the marginal impact of dividend

yields on expected excess returns.15 It is consistent with Ang and Bekaert (2007). They �nd

that dividend yields predict excess returns only at short horizons together with the short rate

and do not have any long-horizon predictive power. At short horizons, the short rate strongly

negatively predicts returns. However, our Q̂h test signi�cantly rejects the hypotheses H1�H4

for all the four sample periods. It indicates that short rate and dividend yield are two good

predictors for equity returns but it cannot be fully captured by linear predictive regressions.

The Q̂h test rejects the hypothesis H5 only at the 1-quarter-ahead time horizon and fails to

reject at the 1-year, 3-year, and 5-year-ahead time horizon of the 1936-2001 period. The Q̂h test

rejects hypothesis H5 for the 1952-2001, 1936-1990, and 1952-1990 periods. There is evidence

of joint predictability for the short rate and dividend yield together for the three sample period

of 1952-2001, 1936-1990, and 1952-1990. The predictability of the short rate and dividend yield

15Engstrom (2003), Menzly, Santos, and Veronesi (2004), and Lettau and Ludvigson (2005) also note that a
univariate dividend yield regression may understate the dividend yield�s ability to forecast returns.
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for equity returns is only identi�ed at the 1-quarter-ahead short horizon of the 1936-2001 period.

The Q̂h test rejects hypothesis H6 for the four time periods except for the 5-year-ahead time

horizon of the 1936-2001 and 1952-1990 periods. The bivariate linear regression does not have the

optimal predictive power for equity returns and there are neglected nonlinear components that

are not captured by the linear regression models. Nevertheless, there may exist the long-horizon

predictability for the 5-year time horizon in the 1936-2001 and 1952-1990 periods which can be

captured in the linear regression model since there is no strong evidence to reject hypothesis H6.

To compare with Lamont (1998) and Ang and Bekaert (2007), we report a bivariate regression

of excess returns on log dividend and log earnings yields. Lamont (1998) �nds a positive coe¢ -

cient on the dividend yield and a negative coe¢ cient on the earnings yield. He argues that the

predictive power of the dividend yield stems from the role of dividends in capturing permanent

components of prices, whereas the negative coe¢ cient on the earnings yield is due to earnings

being a good measure of business conditions. Ang and Bekaert (2007) �nds that dividend and

earnings yields do not have a strong predictive power and only when the 1990s are excluded

they �nd signi�cant coe¢ cients for dividend and earnings yields. Table 4.1c summarizes the

bivariate regression with the log dividend yields and log earnings yields together as regressors.

The dividend yields and earnings yields have a strong predictive power for equity returns over

the four time periods when using the Newey-West (1987) standard errors. The results using the

Hodrick (1992) standard errors are similar to Ang and Bekaert (2007). The Q̂h test rejects the

six hypotheses over all the time horizons and for all 4 time periods. It supports Lamont (1998)�s

arguments. Dividend yields and earnings yields have the predictability power for equity returns

but the bivariate linear regression model cannot fully capture such predictability.

Table 4.1d summarize the test results of the trivariate regression with the short rate, log

dividend yields, and log earnings yields together as regressors. When we add the short rate as

a predictor in a trivariate regression of excess returns on risk-free rates, dividend and earnings
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yields, the coe¢ cients on dividend and earnings yields remain insigni�cantly di¤erent from zero,

and the sign on the earnings yield is fragile. For the post-1952 samples, the short rate, and

dividend yields have predictive power in the presence of the earnings yield. The results for the

Q̂h test show that the three variables short rate, dividend yields, and earnings yields do have

the predictability power for the equity returns. The Q̂h test for the joint predictability of the

three variables rejects the hypothesis H7(H0 : E(Yt+hjX1t; X2t; X3t) = E(Yt+h)) for most of the

cases except the 1-year and 3-year ahead forecasts in the 1936-2001 and 1936-1990 periods and

the 5-year ahead forecast in the 1952-2001 period. The trivariate regression does not capture the

true equity returns and it needs a better nonlinear model to capture it.

We also use the monthly data from January 1970 to December 2006 to test the predictability

of the short rate, dividend yields, and earnings yields in univariate, bivariate, and trivariate

regressions respectively.16 We get similar results using monthly data. Using the Hodrick (1992)

standard errors, our results suggest that the short rate has strong predictability. The nonpara-

metric predictability tests show that the three variables are good candidates to predict equity

returns but it cannot be fully captured by the linear predictive models.

4.2 Does the prevailing models beat the historical mean?

Goyal and Welch (2007) reexamine the performance of predictive variables commonly used

in the academic literature. They �nd that the historical mean model outperforms the predictor-

based models in terms of both in-sample and out-of-sample performance. We consider both

In-Sample (IS) and Out-of-Sample (OOS) tests. Following Goyal and Welch (2007), the OOS

forecasts use only the data available up to the time at which the forecast is made. Let eN denote

the vector of rolling OOS errors from the historical mean model and eA denote the vector of

rolling OOS errors from the OLS model. The OOS statistics are computed as R2 = 1 � MSEA
MSEN

,

R
2
= R2 � (1� R2) �

��T�k
T�1

�� , �RMSE = pMSEN �pMSEA. It is important but di¢ cult for
16The results for the regressions and predictability tests are summarized in Table 4.2. Please check the supple-

mentary document for details.
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OOS tests to choose the periods over which a regression model is estimated and subsequently

evaluated. In this section we consider the annual prediction with similar data used in Goyal and

Welch (2007). For the OOS test, we use the time period twenty years after data are available

as the out-of-sample validation period.

We estimate the predictive regressions Yt+h = �h + �
0
hXt + "h;t+h in (3.1). The predictive

variables Xt are log dividend yields, log earnings yields, dividend payout ratio, short rate, in-

�ation, book-to-market ratio(b/m), investment to capital ratio(i/k), corporate issuing activity

(Eqis and Ntis), and consumption, wealth, and income ratio(cay). The results are summarized

in Table 4.3. The t-statistics in parentheses are computed using the Newey and West (1987)

and Hodrick (1992) standard errors. We report the bootstrap p-value for the predictability test

under two hypotheses H1 and H2. Hypothesis H1 is E(Yt+hjXt) = E(Yt+h) and Hypothesis

H2 is E("t+hjXt) = 0: Table 4.3 summarizes both in-sample and out-of-sample results. We use

the di¤erence of the signal-to-noise ratios as a criterion to evaluate the predictability power:

�(Qh
�2
) = Q̂N(h)=b�2" � Q̂A(h)=b�2", where Q̂N(h)=b�2" and Q̂A(h)=b�2" are the signa-to-noise ratios of

the historical mean model and the prevailing predictive model respectively. If �(Qh
�2
) > 0, there

is more neglected signal which cannot be explained by the historical mean model and thus the

prevailing predictive model performs better. If �(Qh
�2
) < 0, there is more neglected signal which

cannot be captured by the prevail predictive model and so the historical mean model performs

better.

Table 4.3 shows that with a linear predictive model, all variables considered are insigni�cant

and only several variables (dividend yield, short rate, eqis, and cay) are signi�cant for 1-year

ahead forecast using the Newey-West standard errors. However, the results for both in-sample

and out-of-sample nonparametric tests show that all variables(i.e., log dividend yields, log earn-

ings yields, dividend payout ratio, short rate, in�ation, book-to-market ratio(b/m), investment

to capital ratio (i/k), corporate issuing activity (Eqis and Ntis), and consumption, wealth and
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income ratio(cay)) have predictability power for equity returns. The historical meam model has

a higher signal-to-noise ratio than the prevailing predictive models for both in-sample and out-

of-sample tests. There exists more neglected signals which cannot be explained by the historical

mean model and the prevailing predictive model performs better. This conclusion di¤ers from

Goyal and Welch (2007) and supports Campbell and Thompson (2007).

5. OUT-OF-SAMPLE FORECASTING OF EQUITY RETURNS

As mentioned in the previous sections, Goyal and Welch (2008) create enough of a controversy

within the profession and argue that the historical average equity return model produces better

forecasts than regressions of excess returns on predictive variables. However, Campbell and

Thompson (2008) argue that the empirical models can have a better out-of-sample forecast if

one restricts their parameters in the economically justi�ed ways. Cochrane (2008) argues that

the out-of-sample tests performed by Goyal and Welch are relatively weak, and have a better

in-sample predictability power. The literature emphasizes that most of the linear predictive

regressions have poor out-of-sample performance (Goyal and Welch (2003, 2007); Campbell and

Thompson (2007)). The lack of consistent out-of-sample performance in Goyal and Welch (2008)

indicates the need for improved forecasting methods to better establish the empirical reliability

of equity premium predictability. Rapach, Strauss, and Zhou (2010) propose a combination

approach to improve the out-of-sample equity premium forecasting problem. In this section, we

propose nonparametric estimators to forecast the equity returns and compare the out-of-sample

performance of the di¤erent models.

5.1 Nonparametric forecast, linear predictive model, and Historical Mean Model

In the previous sections, our nonparametric test has showed that there exists the predictability

of equity returns at the short and long horizons. The predictors such as dividend yields, earnings

yields, dividend payout ratio, short rate, in�ation, book-to-market ratio, investment to capital
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ratio, corporate issuing activity, and consumption, wealth, and income ratio have predictability

power for equity returns, but this cannot be fully captured by popular linear regression models.

We �nd that the poor out-of-sample performance of most linear prediction models is due to the

limitation of linear models. To �nd the better �t of the equity returns, we use two nonparametric

estimators to forecast the equity returns following the section 2.1.

The �rst estimator is to use a kernel method to estimate E("t+hjXt) and capture potentially

neglected nonlinear predictable component in "t+h. The expected equity returns can be estimated

by:

bE(Yt+hjXt) = X 0
t
b� + bE("t+hjXt) = X

0
t
b� + brh(x):

= X 0
t
b� + bmh(x)bg(x)

bmh(x) =
1

t� h

t�hX
s=1

"̂s+hKb(x�Xs);

bgh(x) =
1

t� h

t�hX
s=1

Kb(x�Xs)

where x = (x1; x2; � � � ; xd)0, y = (y1; y2; � � � ; yd)0, and Kb(x � y) = �di=1b
�1K[(xi � yi)=b]. The

kernel function K(�) is is a prespeci�ed symmetric probability density function. The second

estimator is to use a kernel method to estimate E(Yt+hjXt) directly. We can predict the equity

returns by

bE(Yt+hjXt) =

1
t�h

t�hX
s=1

Ys+hKb(x�Xs)

bgh(x)
Our out-of-time kernel estimator here is a weighted average of the past equity returns, where

the weights depend on the values of the predictive variable. For comparison, the historical mean

estimator used by Goyal and Welch (2008) is a simple average of the past equity returns. The

weights in our methods can provide more useful information in out-of-sample forecasts then the

historical mean model. In our paper, we choose the bandwith which is correlated with the size of

the out-of-sample forecasting period. There are several reasons that we use nonparametric models
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to detect the nonlinear predictive components other than nonlinear models. First, the existing

economic theory in the literature can not give a concrete form of the nonlinear predictive model

because we don�t know where the nonlinearity exactly comes from. Second, nonlinear models,

such as cubic or quadratic functions, may misspecify the nonlinearity of the true data. There

may exist outliers and it will cause the spurious identi�cation for the predictability. Third,

nonparametric model can capture both the linear and nonlinear component without the model

speci�cation. It is not restricted to the parametric forms. It can �t the data better than simply

the linear or nonlinear parametric model.

We want to compare the out-of-sample forecast results of four models: historical mean model,

linear predictive model, and two nonlinear predictive models. The three measures we use are

MSE (Mean squared error), MAE (Mean absolute error), and RMSE (Root mean squared error)

de�ned as below.

MSE =
1

n� h

T�hX
s=R+1

(Ys+h � bYs+h)2;
MAE =

1

n� h

T�hX
s=R+1

���Ys+h � bYs+h��� ;
RMSE =

vuut 1

n� h

T�hX
s=R+1

(Ys+h � bYs+h)2:
Table 5.1 show the out-of-sample results of the univariate linear predictive models. Table 5.1a

summarize the MSE, MAE, and RMSE of univariate linear predictive regression for dividend yield

during the period 1936-2001, 1952-2001, 1936-1990, and 1952-1990. The benchmark model is the

historical average equity returns. The alternative models are linear predictive model and two

nonparametric predictive models. Both the �rst and second nonparametric predictive models

have the lower RMSE than the historical mean model for the period 1936-1990, and 1952-1990.

The second nonparametric predicitve model can do a better job than historical mean model in

both short horizon and long horizon across the di¤erent time periods. The linear predictive
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model has a higher RMSE than the historical mean model which is consistent with the results

in Goyal and Welch (2007). The results show that the two nonparametric predicitve models

can improve the out-of-sample performance at both short horizon and long horizon compared to

the linear predictive model and the historical mean model. We also get the similar results for

earning yield by comparing the MSE, MAE, and RMSE of the four models across the di¤erent

time periods.17

Table 5.2 reports out-of-sample bivariate regression results with short rate as an additional

regressor using quarterly data. Table 5.2a summarize the MSE, MAE, and RMSE of the bivariate

predictive regression using dividend yield and short rate during the period 1936-2001, 1952-

2001, 1936-1990, and 1952-1990. The benchmark model is historical average equity returns.

The alternative models are linear predictive model and two nonparametric predictive models.

For the period of 1936-2001, 1952-2001, 1936-1990, and 1952-1990, the second nonparametric

predictive regression model has the smallest RMSE. The second nonparametric predicitve model

can do better job than historical mean model in both short horizon and long horizon. The �rst

nonparametric predictive model has a lower RMSE than the historical mean model except for the

period of 1952-2001. For the post-Treasury Accord 1952�2001 sample, linear predictive model

and the �rst nonparametric predictive model has higher RMSE than the historical mean model.

In the bivariate regression with earning yield and short rate, the second nonparametric predictive

regression model is superior to the other three models across the di¤erent time periods.18 Ang

and Bekaert (2007) �nd that dividend yields, together with the short rate, predict excess returns

only at short horizons. Our nonparametric predictive models shows higher prediction power for

equity returns and the short rate, dividend yields, and earnings yields have good predictability

power at both short and long horizons. The results of our nonparametric predictive models are

17The results for the regressions and predictability tests are summarized in Table 5.1b. Please check the
supplementary document for details.
18The results for the regressions and predictability tests are summarized in Table 5.2b. Please check the

supplementary document for details.
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robust for the four subsamples.

Goyal and Welch (2007) argue that the historical average excess stock return forecasts future

excess stock returns better than the predictive regressions. In this paper we choose �fteen

variables used in Goyal and Welch (2008). They are dividend-price ratio (D=P ), dividend yield

(D=Y ), earnings-price ratio (E=P ), dividend-payout ratio (D=E), stock variance (SV AR), book-

to-market ratio (B=M), net equity expansion (NTIS), treasure bill rate (TBL), long-term yield

(LTY ), long-term return (LTR), term spread (TMS), default yield spread (DFY ), default return

yield (DFR), in�ation (INFL), and investment-to-capital ratio (I=K). The benchmark model

is historical average equity returns. The alternative models are linear predictive model and two

nonparametric predictive models. Table 5.3 report the out-of-sample forecasting results of equity

premium using the annual data from 1872 to 2005. Consistent with the previous results, the

second nonparametric predicitve model can do better job than historical mean model and linear

predictive model at both short horizon and longer horizon. Table 5.5 report the out-of-sample

forecasting results of equity returns using the quarterly data from 1947:1 to 2007:4. We consider

the out-of-sample forecast evaluation periods covering from 1965:1 to 2007:4 consistent with

Goyal and Welch (2008). The statistical results show that the second nonparametric predicitve

model outperform the historical mean model and linear predictive model at both short horizon

and long horizon. For most predictors except dividend-price ratio (D=P ), dividend yield (D=Y ),

earnings-price ratio (E=P ), and book-to-market ratio (B=M), the two nonparametric models

outperform the historical mean model and linear regression model.

The out-of-sample forecasting results show that linear predictive model has higher RMSE than

historical mean model, and apparently it is consistent with Goyal and Welch (2008). However,

from our nonparametric test results it shows that the linear predictive regression models have

a lower signal-to-noise ratio and can beat the historical mean model without any restrictions.

Our nonparametric test can detect the nonlinear predictive component of the equity returns
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which contains more information that the historical mean model can not provide. Campbell and

Thompson (2008) show the similar results when imposing some restrictions on the predictors.

Following the same logic, our nonparametric predictive model can directly capture both the

linear and nonlinear predictive components of the equity returns and it has a better out-of-

sample forecasting performance. It is consistent with our nonparametric results in the previous

sections.

The out-of-sample forecasting performance shows that the predictability power of equity

returns increases with lower RMSEs when the forecasting horizon h increases. Ang and Bekaert

(2007) �nd that dividend yields, together with the short rate, predict excess returns only at

short horizons and do not have any long-horizon predictive power. Goyal and Welch (2008), and

Campbell and Thomason (2008) do not �nd the relationship between the predictability and time

horizons. However, Fama and French (1987a) show that the autocorrelations of portfolio returns

imply that time-varying expected returns explain 25-40% of 3- to 5-year return variances. Poterba

and Summers (1987) �nd that long-horizon stock returns have large predictable components

using variance-ratio tests. Economic theory has shown that there exists nonlinear relationship

between equity returns and the predictors such as dividend yield. If expected returns have

strong autocorrelation, the 1- to 4-year ahead forecast of equity returns are highly correlated.

As a consequence, the variance of expected returns grows faster with the time horizon than the

variance of unexpected returns. The variation of expected returns becomes a larger fraction of the

variation of returns. In the short run, the nonlineariy is relatively weak. When time accumulates,

the nonlinear relationship becomes stronger in the long run. Our nonparametric method has its

advantage to detect the nonlinearity. That explains why the RMSE becomes smaller when the

time horizon h becomes larger. In other words, the predictability of the linear predictive models

performs better in the short run than in the long run. The di¤erence of the RMSE between

nonparametric model and linear predictive model is relatively small when forecasting horizon h
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is small and it becomes bigger when the forecasting horizon h increases.

5.2 Individual Forecast and Combined Forecast

In the literature, most papers focus on a set of predictors based on theoretical models. From

an academic viewpoint, the use of model-based predictors facilitates an understanding of speci�c

aspects of the economic mechanism. From an investor�s viewpoint, however, these predetermined

variables may not be enough to capture all information required in decision making. Forecast

combination has recently received renewed attention in the forecasting literature (Stock and

Watson (1999, 2003, 2004), Rapach, Strauss, and Zhou (2010)). In this section, we use both the

individual forecast and the combined forecast to examine the out-of-sample forecasting perfor-

mance of equity returns.

We follow the de�nition of the combined forecast by Rapach, Strauss, and Zhou (2010). The

combination forecasts of Yt+1 made at time t are weighted averages of theM individual forecasts

based on bYc;t+h = MX
i=1

!i;tbYi;t+h where f!i;tgMi=1 are the ex ante combining weights formed at time t,
and bYi;t+h is the out-of-sample forecast of the equity premium based on the individual predictive
models19. For the individual predictors, we choose the 15 predictors used in the previous sections.

We calculate �ve di¤erent combining methods based on the de�nition of the weights. The �rst

three methods use the simple averaging schemes: mean, median, and trimmed mean. The mean

combination forecast sets wi;t = 1=M for i = 1; � � � ;M . The median combination forecast is the

median of fbYi;t+hgMi=1, and the trimmed mean combination forecast sets wi;t = 0 for the individual
forecasts with the smallest and largest values and wi;t = 1=(M � 2) for the remaining individual

forecasts. The other two combining methods are based on Stock and Watson (2004) and Rapach,

Strauss, and Zhou (2010), where the combining weights formed at time t are functions of the

historical forecasting performance of the individual models over the holdout out-of-sample period.

Their discount mean square prediction error (DMSPE) combining method employs the following

19Yt+h = �h + �
0
hXt + "h;t+h:
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weights: wi;t = �
�1
i;t =

PM
j=1 �

�1
j;t ; �i;t =

Pt�1
s=R �

t�1�s(Yi;t+h� bYi;t+h)2 and � is a discount factor. The
DMSPE method thus assigns greater weights to individual predictive regression model forecasts

that have lower MSPE values (better forecasting performance) over the holdout out-of-sample

period. We consider the two values of 1:0 and 0:9 for �.

Table 5.4 report the out-of-sample combined forecasting results of equity returns using the

annual data. Consistent with the previous results, the two nonparametric predicitve models

have lower RMSE and can do a better job than historical mean model and linear predictive

model in both short horizon and long horizon. Furthermore, the linear predictive model can

outperform the historical mean model by using combined method. Table 5.6 report the out-of-

sample combined forecasting results of equity premium using the quarterly data from 1947:1 to

2007:4. We choose the out-of-sample forecasting periods from 1965:1 to 2007:4 consistent with

Goyal and Welch (2008). The statistical results show that the two nonparametric predicitve

models outperform the historical mean model and linear predictive model at both short horizon

and long horizon. Rapach, Strauss, and Zhou (2010) �nd that forecast combination outperforms

the historical mean model by statistically and economically meaningful margins for out-of-sample

period. Our results are consistent with their conclusion. Using our nonparametric methods,

both combined and individual forecast outperform the historical average. The combined forecast

methods outperform the individual forecast methods with lower RMSE.

Figure 5.1 and 5.3 illustrate the out-of-sample forecasting performance for individual predictor-

based methods using annual data over 1-year and 5-year rolling windows. The black dotted line

is realized equity returns and the red dotted line is the unconditional historical average. The red

and green solid line are the forecasted returns by the �rst and second nonparametric models re-

spectively. For individual predictor-based models, the second nonparametric prediction is below

the unconditional historical average line for most of the cases. Figure 5.2 and 5.4 illustrate the

out-of-sample forecasting performance for combined methods using annual data over 1-year and
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5-year rolling windows. For combined predictor-based models, the two nonparametric predic-

tion models are below the unconditional historical average line. On average the nonparametric

method outperforms the historical average. Campbell and Thompson (2008) show that imposing

theoretically motivated restrictions on individual predictive regression models can improve their

out-of-sample performance. Our nonparametric prediction can improve the out-of-sample per-

formance without restrictions. We also get the similar results using the quarterly data. Figure

5.5, 5.7 and 5.9 illustrate the out-of-sample performance for individual methods using quarterly

data over 1-quarter, 1-year, and 3-year rolling windows.20 Figure 5.6, 5.8 and 5.10 illustrate the

out-of-sample performance for combined methods using quarterly data over 1-quarter, 1-year,

and 3-year rolling windows.

Compared the individual forecast with the combined forecast, we �nd that combined predic-

tive models have lower RMSE than individual predictive models for the same forecasting horizon

h. Fama and French (1989) and others show that the existing predictor variables can detect

changes in economic conditions that potentially signal �uctuations in the equity risk premium.

But the dividend yield or term spread alone could capture di¤erent components of business con-

ditions, and a given individual economic variable may give a number of �false signals�and/or

imply an implausible equity risk premium during certain periods. Rapach, Strauss, and Zhou

(2010) argue that if individual forecasts based on the predictors are weakly correlated, forecast

combinatio should be less volatile and more reliably track movements in the equity risk premium.

This is one explanation why the combined forecast methods outperform the individual forecast

methods.

On the other hand, the nonparametric predictive model can �t the equity return better based

on the predictors. First, nonparametric prediction generates a forecast with a variance near that

of the smooth real equity return data, thereby reducing the noise in the individual predictive

20Figure 5.5, 5.7 and 5.9 can be found in the supplementary document for details.
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regression model forecasts. Second, combining forecast incorporates information from a host of

economic variables while the historical average ignores economic variables. Combined forecasts

have a substantially smaller bias than the historical average. Combining individual forecasts

helps to reduce forecast variability.

5.3 Economic Implication

In this section, we investigate how well our nonparametric predictive models capture true

expected returns implied by the models. Campbell and Thompson (2008) argue that even very

small positive R2OS values, such as 0.5% for monthly data and 1% for quarterly data, can signal

an economically meaningful degree of return predictability in terms of increased annual portfolio

returns for a mean-variance investor. This provides a simple assessment of forecastability in

practice. To evaluate the economic signi�cance, we calculate realized utility gains for a mean-

variance investor on a real-time basis, following Marquering and Verbeek (2004), Campbell and

Thompson (2008), Welch and Goyal (2008), Rapach, Strauss, and Zhou (2010), and Wachter

and Warusawitharana (2009). More speci�cally, we �rst compute the average utility for a mean-

variance investor with relative risk aversion parameter 
 who allocates her portfolio monthly

between stocks and risk-free bonds using forecasts of the equity premium based on the historical

average21. A mean-variance investor who forecasts the equity premium using the historical

average will decide how to allocate the share of her portfolio to equities w0;t = ( 1


)( rt+1b�2t+1 ) in

period t+ 1 at the end of period t, where b�2t+1 is the rolling-window estimate of the variance of
stock returns. Over the out-of-sample period, the investor realizes an average utility level of:

bv0 = b�0 � (12)
b�20 (5.1)

where b�0 and b�20 are the sample mean and variance, respectively, over the out-of-sample period for
the return on the benchmark portfolio formed using forecasts of the equity premium based on the

historical average. We then compute the average utility for the same investor when she forecasts

the equity premium using an individual predictive regression model or combining method. She

will choose an equity share of wj;t = (1=
)(rt+1=b�2t+1) and realizes an average utility level of:
bvj = b�j � (12)
b�2j (5.2)

21We assume that the investor estimates the variance using a ten-year rolling window of quarterly returns.
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where b�j and b�2j are the sample mean and variance, respectively, over the out-of-sample period for
the return on the portfolio formed using forecasts of the equity premium based on an individual

predictive regression model or combining method indexed by j. We measure the utility gain �

as the di¤erence between (5.2) and (5.1), and the utility gain (or certainty equivalent return)

can be interpreted as the portfolio management fee that an investor would be willing to pay

to access the additional information available in a predictive regression model or combination

forecast relative to the information in the historical equity premium alone. We report results

for 
= 3; the results are qualitatively similar for other reasonable 
 values. Table 5.5 report the

average utility gains for individual predictive models by using di¤erent methods. 13 of the 15

predictors produce positive utility gains relative to the historical average for all three forecast

models except for LTY and Book-to-Market ratio. The average utility gains shows that our

nonparametric forecast successfully produces a positive utility gain for all the predictors. Table

5.6 report the average utility gains for combined forecast. The utility gains associated with the

combined forecasts are sizable and positive and greater than the utility gains using the individual

methods. The key �nding is that our nonparametric predictive models outperform the historical

average with statistically and economically meaningful margins for the out-of-sample periods.

6. CONCLUSION

The predictability of equity returns has been a long-standing problem in �nance over decades.

In this paper, we develop a reliable and powerful nonparametric predictability test to examine

whether there exists the predictability of equity returns at short and long horizons. The prevailing

predictive variables, such as log dividend yields, log earnings yields, dividend payout ratio, short

rate, in�ation, book-to-market ratio, investment to capital ratio, corporate issuing activity, and

consumption, wealth, and income ratio, have predictability power for equity returns at both

short and long horizons. The popular linear predictive regression models cannot fully capture
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the predictability due to the neglected nonlinear predictable components. We also compare

the in-sample and out-of-sample forecast performance of the conventional predictive regression

models with the historical mean model. We �nd that the prevailing predictive model outperforms

the historical mean model because it yields a smaller neglected signal-to-noise ratio based on our

test, which is di¤erent from the conclusion of Goyal and Welch (2007).

The poor out-of-sample performance of most linear predictive models is due to the limita-

tion of linear models. We propose two nonparametric estimators to forecast the equity returns.

Our nonparametric predictive models have lower RMSE than the historical mean model at both

short-horizon and long-horizon. Our nonparametric prediction can improve the out-of-sample

performance without restrictions. Using our nonparametric methods, both combined and indi-

vidual forecast outperform the historical average statistically and economically. The combined

forecast methods outperform the individual forecast methods for the out-of-sample periods.

Although motivated by investigating the predictability of equity returns, our econometric test

is applicable to examine predictability of other asset returns over the di¤erent time horizons. For

example, there are subjects of futher research such as bond returns and in�ation rates.
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APPENDIX

Proof of Theorem 1: To prove theorem 1(i), we impose the following assumptions:

Assumption A.1: fYt+h; Xtg is a stationary time series process with mixing condition. The
marginal density function g(x) of Xt is twice continuous di¤erentiable with bounded second

derivatives and g(x) is strictly positive over the support of weighting function w(�) given in
Assumption A.5. The dimension of Xt is d.

Assumption A.2: "t+h is a h-dependent process and "t+h is independent of Xs; s � t:(a)

0 < E("2t+hjXt) = �
2
" a:s:; (b)0 < E("

4
t+h) = D

Assumption A.3:
p
R(�̂ � �) = OP (1); where � = p lim �̂:

Assumption A.4: The kernel function k : R ! [0; 1] is a symmetic, and twice continuously

di¤erentiable probability density with bounded second derivatives.

Assumption A.5: w(�) is a positive continuous function over its support with
Z
w(x)dx < 1

and
Z
w2(x)dx <1.

Assumption A.6: (i)b = b(n) = n�� ! 1;where � 2 (0; 1=d) and n = T � R. (ii)n�=R ! 0,

where � < maxf1� �d; 1
2
(1 + �d)g.

Assumption A.1 and A.2 are regularity conditions on the data generating process (DGP).

Given E(Y 2t+h) < 1, there exists a measurable function rh(x) = E("t+hjXt = x) which is

twice continuously di¤erentiable with bounded second derivatives. Assumption A.3 allows for

any in-sample
p
R-consistent estimator for �, which need not be asymptotically most e¢ cient.

Assumption A.4 is a standard regularity condition on kernel function k(�). Assumption A.5 is the
regularity condition on the positive weighting function w(�). Assumption A.6 provides conditions
on the bandwidth b and the relative speed between R and n, the sizes of the estimation sample

and the prediction sample, respectively. Moreover, we allow the size of the prediction sample,

n, to be larger or smaller than or the same as the size of the estimation sample, R. This o¤ers

a wide scope of applicability of our procedure, particularly when the whole sample fYtgTt=1 is
relatively small.

Under the above regularity conditions, we have the following asymptotic results for the Q̂h

statistics.

To measure the departure of r̂h(x) from zero over all x, we use the following global measure

Q̂(h) = 1
n�h

PT�h
t=R+1 br2h(Xt)w(Xt). De�ne Q̂�(h) =

R br2h(x)g(x)w(x)dx. We �rst show that Q̂(h)
and Q̂�(h) are asymptotically equivalent under H0:
Lemma 1.1: Under the conditions of Theorem 1, (n�h)Q̂(h)� (n�h)Q̂�(h) = op(b�d=2) under
H0:
Proof of Lemma 1.1: Because Ĝ(x)�G(x) = Op(n�1=2 (lnn)2) where Ĝ(x) is the empirical
distribution function of Xt; and (n � h)

R br2h(x)w(x)g(x)dx = Op(b�d). Here we have made use
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of the well-known fact that

sup
x2G

���Ĝ(x)�G(x)��� = Op(n�1=2 (lnn)2)
(see, e.g., Bentkus, Gotse and Tikhomirov (1997)) under Assumption A.1 and

R br2h(x)w(x)g(x)dx =
Op(n

�1b�d) by Markov�s inequality. We have

(n� h)Q̂(h) =
T�hX
t=R+1

br2h(Xt)w(Xt)

= (n� h)
Z br2h(x)w(x)dG(x) + (n� h)Z br2h(x)w(x)d[Ĝ(x)�G(x)]

= (n� h)
Z br2h(x)g(x)w(x)dx+Op(sup

x2G
jĜ(x)�G(x)j)

= (n� h)
Z br2h(x)g(x)w(x)dx+Op(n�1=2 (lnn)2)Op(b�d)

= (n� h)
Z br2h(x)g(x)w(x)dx+ op(b�d=2)

given b / n�� for � 2 (0; 1=d):This completes the proof of Lemma 1.1.

Next we show that Q̂�(h) and eQ(h) are asymptotically equivalent under H0, where eQ(h) =R er2h(x)g(x)w(x)dx and er2h(x) is de�ned in the same way as br2h(x), with "s replacing b"s.
Lemma 1.2: Under the conditions of Theorem 1, (n�h)Q̂�(h)�(n�h) eQ(h) = (n�h) R br2h(x)g(x)w(x)dx�
(n� h)

R er2h(x)g(x)w(x)dx = op(b�d=2);under H0:
Proof of Lemma 1.2: We decompose

(n� h)
Z br2h(x)w(x)dG(x)� (n� h)Z er2h(x)w(x)dG(x)

= (n� h)
Z
[brh(x)� erh(x)]2w(x)dG(x) + 2(n� h)Z erh(x) [brh(x)� erh(x)]w(x)dG(x)

= Ĵ1 + 2Ĵ2; say. (A.1)
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For Ĵ1; we further decompose

Ĵ1 = (n� h)
Z "

(n� h)�1
PT�h

s=R+1("̂s+h � "s+h)Kb(x�Xs)

(n� h)�1
PT�h

s=R+1Kb(x�Xs)

#2
dG(x)

= (n� h)
Z "

(n� h)�1
PT�h

s=R+1("̂s+h � "s+h)Kb(x�Xs)

ĝ(x)

#2
dG(x)

= (n� h)
Z h

(n� h)�1
PT�h

s=R+1("̂s+h � "s+h)Kb(x�Xs)
i2

g(x)
dx

+(n� h)
Z "

(n� h)�1
T�hX
s=R+1

("̂s+h � "s+h)Kb(x�Xs)

#2 �
1

ĝ2(x)
� 1

g2(x)

�
g(x)dx

= Ĵ11 + Ĵ12; say: (A.2)

It su¢ ces to consider the �rst term Ĵ11 in (A.2), since the second term Ĵ12 is a smaller

order given supx2G jĝ(x) � g(x)j
p! 0:Under the null hypothesis E("t+hjXt) = 0, noting that

"̂s+h � "s+h = Yt+h �X 0
t
b� � (Yt+h �X 0

t�) = X
0
t(� � b�), we have

Ĵ11 = (n� h)
Z h

(n� h)�1
PT�h

s=R+1Xt(� � b�)Kb(x�Xs)
i2

g(x)
dx

� jjb� � �jj2(n� h)Z
h
(n� h)�1

PT�h
s=R+1 jjXtjj2Kb(x�Xs)

i2
g(x)

dx

= jjb� � �jj2(n� h) = Op(R�1=2)2n (A.3)

And
���Ĵ12��� � Ĵ11 jg2(x)=ĝ2(x)� 1j = Op(Ĵ11 �Supx2G jbg(x)� g(x)j) = op(Ĵ11) = op(n=R) given

Supx2G jbg(x)� g(x)j = op(1).
Next, we consider Ĵ2 in (A.1). By the second order Taylor series expansion, we have

Ĵ2 = (n� h)
Z erh(x) [brh(x)� erh(x)]w(x)dG(x)

= (n� h)
Z erh(x)(n� h)�1PT�h

s=R+1("̂s+h � "s+h)Kb(x�Xs)

ĝ(x)
w(x)dG(x)

= (b� � �)0(n� h)Z erh(x)(n� h)�1PT�h
s=R+1Xs+hKb(x�Xs)

ĝ(x)
w(x)dG(x)

= Op(R
�1=2)nOp(n

�1=2) = Op(R
�1=2n1=2) (A.4)

This, together with (A.1) and (A.4), yields the desired result. The proof of Lemma 1.2 is

completed.

Lemma 1.3: Under the conditions of Theorem 1, b�2� = �2� +Op(n�1=2) under H0:
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Proof of Lemma 1.3: Since �̂2" = (n � h)�1
PT�h

s=R+1 ê
2
t+h, and êt+h = "̂t+h � r̂h(Xt), and the

same de�nition for e�2� = (n� h)�1PT�h
t=R+1 ~e

2
t+h and ~et+h = "t+h � ~rh(Xt). Put Ât = "̂t+h � "t+h

= Xt(� � b�) and B̂t = r̂h(Xt)� ~rh(Xt); where ~rh(Xt) is de�ned in the same way as r̂h(Xt) with

"t+h replacing "̂t+h: Then we have

�̂2� = (n� h)�1
T�hX
t=R+1

["̂t+h � r̂h(Xt)]
2

= (n� h)�1
T�hX
t=R+1

f("̂t+h � "t+h)� [r̂h(Xt)� ~rh(Xt)] + ["t+h � ~rh(Xt)]g2

and we can write

�̂2� = ~�
2
� + (n� h)�1

T�hX
t=R+1

(Ât � B̂t)2 + 2(n� h)�1
T�hX
t=R+1

["t+h � ~rh(Xt)](Ât � B̂t); (A.5)

For the second term in (A.5), we �rst put

mst =
Kb(x�Xs)PT�h

s=R+1Kh(x�Xs)
:

Then
PT�h

s=R+1mst = 1 for all s and B̂t =
PT�h

s=R+1mstÂs: Under H0; we have

Ât = X
0
t(� � b�) (A.6)

It follows that

(n� h)�1
T�hX
t=R+1

(Ât � B̂t)2 = (n� h)�1
T�hX
t=R+1

 
Ât �

nX
s=1

mstÂs

!2

� 4(n� h)�1
T�hX
t=R+1

Â2t

� 4(n� h)�1
nX
t=1

h
X 0
t(� � b�)i2

� 4jjb� � �jj2(n� h)�1 nX
t=1

jjXtjj2 = Op(R�1) (A.7)

where the �rst term is Op(R�1) by the mean-value theorem, and Assumptions A.2 and A.3.
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For the third term in (A.5), we have

(n� h)�1
T�hX
t=R+1

["t+h � ~rh(Xt)](Ât � B̂t)

= (n� h)�1
T�hX
t=R+1

"t+h(Ât � B̂t)� (n� h)�1
T�hX
t=R+1

~rh(Xt)(Ât � B̂t)

= T̂1 � T̂2: (A.8)

For the T̂2 term, by the Cauchy-Schwarz inequality, we have

jT̂2j �
"
(n� h)�1

T�hX
t=R+1

~r2h(Xt)

# 1
2
"
(n� h)�1

T�hX
t=R+1

(Ât � B̂t)2
# 1
2

= Op(n
�1=2b�d=2)Op(R

�1=2)

= Op(n
�1=2b�d=2R�1=2) = op(n

�1=2); (A.9)

given Rbd !1 and (A.13); where (n�h)�1
PT�h

t=R+1 ~r
2
h(Xt) = Op(n

�1b�d) by Markov�s inequality,

E("t+hjXt) = 0 a.s. and Assumption A.1.

For the T̂1 term, we decompose

T̂1 = (n� h)�1
T�hX
t=R+1

"t+h(Ât � B̂t)

= (n� h)�1
T�hX
t=R+1

"t+hÂt � (n� h)�1
T�hX
t=R+1

"t+hB̂t

= T̂11 � T̂12; say. (A.10)

Here, using (A.6), we have

T̂11 = (n� h)�1
T�hX
t=R+1

"t+hX
0
t(� � b�) = Op(n�1=2R�1=2) (A.11)

where the �rst term is Op(n�1=2R�1=2) by a second order Taylor series expansion, Chebyshev�s

inequality, the Cauchy-Schwarz inequality, and Assumptions A.2 and A.3; the second term is 0.
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For the T̂12 term in (A.10), recalling B̂t =
PT�h

s=R+1mstÂs and using (A.2), we have

T̂12 = (n� h)�1
T�hX
t=R+1

"t+h

"
(n� h)�1

T�hX
s=R+1

mstÂs

#

= (n� h)�1
T�hX
t=R+1

"t+h

(
(n� h)�1

T�hX
s=R+1

mst

h
X 0
t(� � b�)i

)
= Op(n

�1=2R�1=2) (A.12)

Finally, for the �rst term ~�2� in (A.5), we have

~�2� = (n� h)�1
T�hX
t=R+1

"2t+h � (n� h)�12
T�hX
t=R+1

"t+h~rh(Xt) + (n� h)�1
T�hX
t=R+1

~r2h(Xt)

= [�2� +Op(n
�1=2)] +Op(n

�1b�d=2) +Op(n
�1b�d)

= �2� +Op(n
�1=2);

given
PT�h

t=R+1 ~r
2
h(Xt) = Op(n

�1b�d) byMarkov�s inequality and
PT�h

t=R+1 "t+h~rh(Xt) = Op(n
�1b�d):

Collecting (A.5) and (A.7)�(A.12) yields the desired result of this lemma.

With Lemma 1.3, we have (n�h) eQ(h)=�̂2"� (n�h) eQ(h)=�2" = (n�h) eQ(h)=�2"(�2"=�̂2"� 1) =
Op(b

�d)Op(n
�1=2) = op(b

�d=2) given (n � h) eQ(h) = Op(b
�d) and nbd ! 1. Therefore, we can

focus on (n� h) eQ(h)=�2".
We need to prove Q̂h =

p
bd(n�h) eQ(h)=b�2"�C=pbdp

V

d! N(0; 1).

Proof of Theorem 1: The proof follows from Theorem 3.4 (Hong and Lee (2013)) with suitable
modi�cations with �t replaced by �t+h:
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