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Predictability of Equity Returns over Different Time
Horizons: A Nonparametric Approach

Abstract: This paper aims to test whether equity returns are predictable over various horizons.
We propose a reliable and powerful nonparametric test to examine the predictability of equity
returns, which can be interpreted as a signal-to-noise ratio test. Our comprehensive in-sample
and out-of-sample analysis shows that the commonly used predictive variables such as short
rate, dividend yields and earnings yields have good predictability power at both short and long
horizons, different from both the conventional wisdom and Ang and Bekaert (2007). Contrary
to Goyal and Welch (2007), an out-of-sample nonparametric forecast outperforms the historical
mean model and linear predictive models.
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1. INTRODUCTION

There is a long tradition to study the predictability of equity returns in finance. Despite an
enormous amount of past efforts, whether equity returns can be meaningfully predicted over dif-
ferent time horizons remains a subject of ongoing debates and intensive empirical research. Long-
horizon asset returns are more informative than their shorter-horizon counterparts. Thus random
walk models, and martingale models based on past asset returns are statistically weak to explain
the real data. The widely used present value model assumes that the expected stock return is
constant over time. It makes no assumption about equity repurchases by firms which affect the
time pattern of expected future dividends (Rozeff (1984), Campbell and Shiller (1987), Campbell
and Shiller (1988a, 1988b), and West (1988)). While stock prices and dividends appear to grow
exponentially over time rather than linearly, the linear model is less appropriate than a nonlinear
model which can better capture the properties of asset returns across time.Thereafter, researchers
have proposed several nonlinear models to predict asset returns. One is the dividend model with
rational bubble in which the bubble is a nonlinear function of the stock’s dividends (Froot and
Obstfeld (1991)). This model has its limitation in explaining the observed predictability of stock
returns. Another nonlinear model is a loglinear present-value model (Campbell (1991), Ang and
Bekaert (2007)), which suggests a nonlinear relation among equity returns, dividend ratio, and
interest rates.

The existing literature has showed that there exists strong nonlinearity in the models of pre-
dicting asset returns, and that expected asset returns and dividend ratios are highly persistent
and time-varying (Froot and Obstfeld (1991), Campbell (1991), Ang and Bekaert (2007)). How-
ever, there is no consensus in the literature where the nonlinearities come from. Nonlinearities
can arise for several reasons: structural breaks in the mean of the dividend price ratio (Lettau
and Van Nieuwerburgh (2008)), time-varing dividend growth rates (Cochrane, 2008; Binsbergen

and Koijen, 2010; Golez, 2014), a log-linear approximation of present value model (Campbell
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and Shiller (1988), Binsbergen and Koijen (2011)), and the correlation of the expected returns
and business conditions (Henkel et al. (2011)). Therefore it is important to propose a better
method to predict the equity returns incorporating the unknown nonlinearities and the predictive
relationship between asset returns and time horizons.

Empirical studies increasingly cast doubt on the forecasting power of price-based predictors
of equity returns. There are two recent debates on the predictability of equity returns in the
literature. The first debate is to question whether the predictability of equity returns exists at
short horizons or longer horizons.! The conventional wisdom in the literature is that aggregate
dividend yields strongly predict excess returns, and the predictability is stronger at longer hori-
zons (Fama and French (1988),> Campbell (1991), and Cochrane (1992)). If daily returns can be
predicted by a slow-moving or persistent variable, then the predictability adds up over the long
horizons. In contrast, Ang and Bekaert (2007) find that dividend yields, together with the short
rate, predict excess returns only at short horizons and do not have any long-horizon predictive
power. The second debate is whether the existing price-based predictors have better predictive
power than the historical average model of equity returns. Goyal and Welch (2007) argue that
the historical average excess stock return forecasts future excess stock returns better than the
regressions of excess returns on predictive variables. In response to their arguments, Campbell
and Thompson (2007) show that many predictive regressions beat historical average returns by
imposing restrictions on the signs of coefficients and return forecasts, or the coefficients relating
valuation ratios to future returns based on steady-state models. The conclusions of the two
debates are controversial and inconclusive.

In this paper, we undertake an analysis of both in-sample and out-of-sample tests in an

Fama and French (1988), Campbell and Shiller (1988a,b), Goetzmann and Jorion (1993, 1995), Hodrick
(1992), Stambaugh (1999), Wolf (2000), Goyal and Welch (2003, 2007), Valkanov (2003), Lewellen (2004), Camp-
bell and Yogo (2006), Campbell and Thompson(2007), and Ang and Bekaert (2007)

2Fama and French (1988) provide the strongest evidence in support of the dividend yield effect by using
overlapping multiple-year horizon returns. They observe that the explanatory power of the dividend yield increases
with the time horizon of the returns; over 4-year horizons, the R?’s reach an astonishing high value of 64%.



effort to better understand the empirical evidence on return predictability. We are particularly
interested in investigating the following problems: (i) Does the predictability of valuation ratios
such as dividend yields exist at various horizons? (ii) Do the linear predictive models suffer from
neglected nonlinear predictability? In particular, is the poor out-of-sample performance of most
linear predictive models due to the limitation of linear models or due to the nonexistence of
predictability of equity returns? (iii) Do the predictive models beat the historical average excess
stock return (historical mean model)?

The existing economic theory and literature has suggested the linear predictive model is not
optimal to predict equity returns due to the strong existing nonlinearities. However, there is
no evidence or support for the deterministic functional form of nonlinearities in the literature.
Therefore, we first develop a reliable out-of-sample nonparametric model-free predictability test,
which has several appealing features. First, the nonparametric method can capture a wide variety
of linearities and nonlinearities without assuming any parametric forms. Thus, it can directly
assess the predictability of equity return data itself rather than the predictability of a specific
model for equity return. Second, the nonparametric predictability test can be interpreted as a
signal-to-noise ratio, because it is based on the average of the squared predictable components
over the sample variance of pricing errors. Third, we propose to use a conditional bootstrap
procedure which maintain the original dynamics of predictive variables and serial dependence
structure of the multi-step-ahead forecast errors. Such a bootstrap procedure provides reliable
statistical inference for different sample sizes typically used in the literature. Simulation studies
show that it has reasonable size and power in finite samples even when the regressors are highly
persistent and the forecast horizon is relatively long.

We apply the proposed test to examine the predictability of equity returns at short or longer
horizons. Our empirical results show that the short rate, dividend yields and earnings yields

have good predictability power at both short and long horizons, which is different from both



the conventional wisdom and Ang and Bekaert (2007). Second, the comprehensive in-sample
and out-of-sample analysis suggests that the variables such as dividend yields, earnings yields,
dividend payout ratio, short rate, inflation, book-to-market ratio, investment to capital ratio,
corporate issuing activity, and consumption, wealth, and income ratio have predictability power
for equity returns, but it cannot be fully captured by the prevailing linear predictive models. Our
conclusion is in contrast to Goyal and Welch (2007) and consistent with Campbell and Thompson
(2007). Campbell and Thompson (2007) find that predictive variables have better out-of-sample
performance than the historical average return forecasts when imposing the restrictions on the
coefficients. In fact, the restriction on coefficients is a form of nonlinearity. Our nonparametric
test shows that the prevailing predictive model beats the historical mean model without any
restriction because there is a higher neglected signal-to-noise ratio from the historical mean
model.

Most of the existing empirical studies use linear regressions to forecast asset returns. There are
a number of pitfalls applying those models to predict asset returns or evaluate the predictability
power. First, the apparent predictability of stock returns might be spurious since many predictive
variables, such as valuation ratios, are highly persistent (Nelson and Kim (1993), Stambaugh
(1999), and Sarkissian, and Simin (2003)). An active recent literature discusses alternative
econometric methods or proposes new statistical tests for correcting the bias and conducting valid
inference on estimation of long-horizon predictive regression models with persistent variables

3 These studies have emphasized the bias toward rejection of the null hypothesis

and errors.
of no predictability. In particular, the usual corrections to the standard errors are only valid

asymptotically, and there is some question as to whether "asymptotic" should be measured in

terms of years, decades, or even centuries, especially for long-horizon forecasts.

3See Cavanagh et al., 1995; Goetzmann and Jorion, 1993; Mark, 1995; Kilian, 1999; Wolf, 2000; Lewellen,
2004; Campbell and Yogo, 2006; Polk et al., 2006; Ang and Bekaert, 2007; Valkanov, 2003; Maynard, Shimotsu,
and Wang, 2011



Second, there exists an "errors-in-variables" problem that the explanatory variable like the
dividend yield is not properly exogenous, but rather contains a price level variable that also
appears in the regression (Stambaugh (1986)). The regression coefficient in the dividend yield
regression may be downward biased because the yields contain forecasts of future returns and
dividend growth (Fama and French (1988), Fama (1990), and Kothari and Shanken (1992)).
Therefore there exists serial correlation in the forecast error particularly when the time horizon
h is large relative to the sample size. As a result, there also exist some finite sample problems
for reliable statistical inference (Hodrick (1992), Nelson and Kim (1993), Mankiw and Shapiro
(1986)). Under the same conditions, the standard t-test for predictability has incorrect sizes in
finite samples (Cavanagh et al. (1995), Campbell and Yogo (2006)). These problems become
more serious if applied econometricians are data mining, considering large numbers of variables,
and reporting only those results that are apparently statistically significant (Foster et al. (1997),
Ferson, Sarkissian, and Simin (2003)).

Third, some empirical studies use a finite-order VAR system to model returns and dividend
yields (Hodrick (1992), Campbell and Shiller (1988a,b), Stambaugh (1999)). The VAR model
cannot fully capture the nonlinear dynamics of dividend yields implied by the present value model.
For a linear predictive regression model, when a price-based estimator or regressor appeals to
be statistically insignificant, one cannot conclude that the null hypothesis of no predictability
holds, because there may exist neglected nonlinear predictability.

Fourth, a different critique! emphasizes that most linear predictive regressions have often per-
formed poorly out-of-sample (Goyal and Welch (2003, 2007), Campbell and Thompson (2007)).
It is well-known that it may cause overfitting and capture spurious predictability even though

in-sample diagnostic analysis is significant and can reveal useful information on possible sources

4This critique had a particular force during the bull market of the late 1990s, when low valuation ratios
predicted extraordinarily low stock returns that did not materialize until the early 2000s (Campbell and Shiller,
1998).



of model misspecification. Out-of-sample evaluation can capture the true predictability of a
model or the data generating process.” The disparities between in-sample and out-of-sample
results of return predictability documented in the literature make an overall assessment of return
predictability difficult. In particular, it is unclear whether the poor out-of-sample performance
of linear prediction models is due to the limitation of linear models or due to the nonexistence
of predictability of equity returns. Many earlier out-of-sample tests have focused on the divi-
dend ratios. Fama and French (1988) interpret the out-of-sample performance of dividend ratios
to have been a success. Bossaerts and Hillion (1999) interpret the out-of-sample performance
of the dividend yield to be a failure. Torous and Valkanov (2000) find that a low signal-noise
ratio of many predictive variables makes a spurious relation between returns and persistent pre-
dictive variables unlikely and would lead to a low out-of-sample forecasting power. Rapach and
Wohar (2006) find that certain financial variables display significant in-sample and out-of-sample
predictive ability for stock returns. Neely, Rapach, Tu, and Zhou (2011) shows that utilizing
information from both technical indicators and macroeconomic variables substantially increases
the out-of-sample gains relative to using either macroeconomic variables or technical indicators
alone. Goyal and Welch (2007) argue that the poor out-of-sample performance of predictive
regressions is a systemic problem. They compare predictive regressions with historical average
returns and find that historical average returns almost always generate superior return forecasts.
They conclude that “the profession has yet to find some variable that has meaningful and robust
empirical equity premium forecasting power.”

The use of model-based predictors facilitates a better understanding of specific aspects of the

"Here are several important reasons why out-of-sample predictability check is important. First, the usual
practice of extensive search for more complicated models using the same or similar data set may suffer from the
so-called data snooping bias, as pointed out by Lo and MacKinlay (1989) and White (2000). A more complicated
model may overfit idiosyncratic features of the data without capturing the true data generating process. Out-of-
sample prediction evaluation will alleviate, if not eliminate completely, such data snooping bias. Second, a model
that fits in-sample data well may not predict the future well because of unforeseen structural changes or regime
shifts in the data generating process.



economic mechanism, however, these predetermined variables may not be enough to capture all
information required in decision making. Forecast combination has recently received renewed
attention in the forecasting literature. Stock and Watson (1999, 2003, 2004) use the combination
forecast for inflation and real output growth. Rapach, Strauss, and Zhou (2010) propose a com-
bination approach to improve the out-of-sample equity premium forecasting problem. Tae-Hwy
Lee, Yundong Tu, and Aman Ullah (2014) shows imposing the positive constraint and bag-
ging method can help reduce the asymptotic variance and improve the out-of-time performance.
Ferreira and Santa-Clara (2011) develop an intriguing “sum-of-the-parts” (SOP) approach to
forecast the market return as the sum of a 20-year moving average of earnings growth rates and
the current dividend price ratio (minus the risk-free rate). Specifically, they decompose the log
market return into the sum of the growth in the price-earnings ratio, growth in earnings, and
the dividend-price ratio. Previous studies suggest that there exists strong nonlinearity in the
predictive models, and that expected asset returns and dividend ratios are highly persistent and
time-varying. The poor out-of-sample performance of most linear predictive models is due to the
limitation of linear models. The lack of consistent out-of-sample evidence in Goyal and Welch
(2008) indicates the need for improved forecasting methods to better establish the empirical
reliability of equity return predictability.

In order to shed light on the recent debate, we evaluate the out-of-sample forecast of different
models used in the literature. We propose nonparametric estimators to forecast the equity returns
using both individual and combined forecast. We choose the same 15 economic variables in Goyal
and Welch (2008) to predict the equity returns. The benchmark model is historical mean model.
The alternative models are linear predictive model and two nonparametric predictive models. We
find that the combined forecast methods outperform the individual forecast methods. Fama and
French (1989) and others show that these variables can detect changes in economic conditions

that potentially signal fluctuations in the equity risk premium. But the dividend yield or term



spread alone could capture different components of business conditions, and a given individual
economic variable may give a number of “false signals” and/or imply an implausible equity risk
premium during certain periods. Rapach, Strauss, and Zhou (2010) argue that if individual
forecasts based on the predictors are weakly correlated, combined forecast should be less volatile
and more reliable to track movements in the equity risk premium. Our results are consistent with
their findings. Combining forecast incorporates information from a host of economic variables
and it helps to reduce forecast variability. Since the historical average ignores economic variables,
combined forecasts have a substantially smaller bias than the historical average.

Our nonparametric predictive models have lower RMSE than the historical mean model at
both short-horizon and long-horizon and significantly improve the out-of-sample performance
without any restrictions. To evaluate the economic significance, we calculate realized utility
gains for a mean-variance investor on a real-time basis, following Marquering and Verbeek (2004),
Campbell and Thompson (2008), Welch and Goyal (2008), Rapach, Strauss, and Zhou (2010),
and Wachter and Warusawitharana (2009). The nonparametric forecast successfully produces
a positive utility gain for all the predictors. Using our nonparametric methods, both combined
and individual forecast outperform the historical average. It holds across a number of historical
periods using both statistical and economic criteria, even for the more recent periods when the
out-of-sample predictive ability of many individual variables is relatively poor. One reasonable
explanation is that the historical mean estimator is a simple average of past equity returns while
our kernel estimator is a weighted average of past equity returns, with the weights depending on
the values of predictive variables. The predictive variable indeed provides useful information for
out-of-sample forecasts. It is not restricted to the parametric forms. It can fit the data better
than simply the linear or nonlinear parametric model. Nonparametric prediction generates a
forecast with a variance near that of the smooth real equity return data, thereby reducing the

noise in the individual predictive model.



Section 2 proposes a nonparametric predictability test. Section 3 describes the data. Section 4
discusses the empirical results. Section 5 reports the out-of-sample performance of the individual

and combined forecasts and its economic implications. Section 6 concludes the paper.
2. NONPARAMETRIC TEST FOR PREDICTABILITY

2.1 Hypotheses of Interests and Nonparametric Test
We are interested in whether the predictability of excess returns depends on time horizons.
If future excess returns cannot be predicted by the past dividend yield or other variables over

any time horizon, then the null hypothesis holds.

Specifically, suppose {Y;, X}’ is a stationary time series process where Y; is a scalar, and X;
is a d-dimensional vector. We are interested in testing the predictability of Y;,; using X;, where
the integer h is the time horizon index for a multi-step ahead prediction. In our applications
below, X; is, for example, the dividend yield in period ¢, and Y;,, is the asset return h periods
ahead. Different h’s will allow us to examine the relationship between asset return predictability

and time horizons. Formally, the null and alternative hypothesis can be written respectively as

Ho : E(Yn|Xi) = E(Yiin) (2.1)

Ha: E(YinlXe) # E(Yirn)- (2.2)

The null hypothesis Hj is characterized by the horizon index h. It is possible that Hy holds
for a relatively long horizon but it does not hold for a relatively short horizon. This is one of
our focuses in this paper, namely we will investigate the relationship between predictability of
excess asset returns and the time horizon h, which has been a long-standing problem in empirical

finance.

In empirical finance, a linear predictive regression model

Yipn = X;ﬂ + Etth, (2-3)

is used to check predictability of excess asset returns. When an estimator for ( is statistically
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insignificant, one does not find evidence for predictability power of X, for Y; ;. Strictly speaking,
one cannot conclude that Hy holds. This is because a zero parameter value for [ is a necessary
condition for Hy but it is not a sufficient condition. A zero [ implies that there is no linear
predictive power of X, for Y;,;, but there may exist a nonlinear predictive power of X; for Y, .
For example, suppose Y;,, = X2 + &5, where X; is normally distributed with zero mean and
the disturbance ;. is independent of X;. Then a linear regression coefficient § will be exactly

zero although E(Yi 4| X;) = X?.

When an estimator for 3 is statistically significant, there exists evidence of the predictive
power of X; for Y, ;. In this case, one may be interested in testing whether the linear regression
model has the optimal predictive power for Y;,,. Put it differently, one may be interested in
testing whether there exists any nonlinear predictive power of X; for Y;,,, in addition to the
documented linear predictability. In this case, the null and alternative hypothesis are written

respectively as

HO : E(5t+h|Xt) =0 (24)

Hy: E(eiin| X)) # 0, (2.5)

where £,,, is the prediction error from the linear regression model in (2.3). The null hypothesis
Hj in (2.4) implies that the linear regression model in (2.3) has optimal predictive power. When
H, in (2.5) holds, there exists a nonlinear predictive relationship between X; and Y;,;, and a
suitbale nonlinear predictive model will outperform the linear regression model in (2.3). Becasue
€4 1s unobservable, we need to use an estimated residual &, = Y. — Xt’B , Where B is an
estimator for 5. Note that when Hj holds, {&;,,} may not be a martingale difference sequence
unless h = 1. In general, H, allows {e;.1} to follow a MA(h) dependence. This has important
implication on inference, particularly when h is relatively large.

In this section, we develop a unified nonparametric testing framework which is applicable
to test hypotheses in (2.1) and (2.4). The basic idea is to use a nonparametric estimator for

E(Yin|Xt) or E(ein]X:) and check if the estimator is close to constant or zero. As is well-
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known, the nonparametric method has an advantage that it does not require an ex ante model
specification and can capture any predictive relationship no matter whether it is linear or non-
linear (c.f. Hirdle (1993), Pagan and Ullah (1999)). Thus, it is quite suitable for our purpose
here.

To avoid capturing spurious predictability due to in-sample overfitting, we consider out-of-
sample predictability check. There are several reasons why out-of-sample predictability check
is important. First, the usual practice of extensive search for more complicated models using
the same or similar data set may suffer from the so-called data snooping bias, as pointed out
by Lo and MacKinlay (1989) and White (2000). A more complicated model may overfit some
idiosyncratic features of the data without capturing the true data generating process. Out-
of-sample prediction evaluation will alleviate, if not eliminate completely, such data snooping
bias. Second, a model that fits in-sample data well may not predict the future well because
of unforeseen structural changes or regime shifts in the data generating process. Therefore, in-
sample analysis is not adequate and it is important to examine out-of-sample prediction. Third,

out-of-sample prediction is more relevant to most economic applications in practice.
Specifically, suppose we have an observed sample {Y;, X/}, of size T. We first split the sample
into two parts: the first subsample contains R observations, and the second subsample contains
n =T — R observations. We will use the first subsample or a modification of it to estimate model
parameter 5 and use the second subsample to check predictability. There are various methods to
estimate parameter 3. One simple method is to use the first subsample {Y; .5, X/}, to estimate
B. Another method is to use {Y; i, Xt}iﬁrl to estimate 8 when predicting Yz p1144, for 0 < <
n—h—1. This is called the rolling estimation. One can also use the recursive estimation method,
which uses the subsample {Y; 5, X;}/' to estimate 3 when predicting Yz ni145. Generally, we
use the notation Bt to denote an estimator for 5 when predicting Y;.; in an out-of-sample context.

The resulting estimated out-of-sample residual from a linear model (2.3) is

Eoon =Y — X|Bt=R+1,---T—h
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To capture potentially neglected nonlinear predictable component in €,,,, we use a smoothed

kernel method to estimate E(e;.p|X;). Put

T—h
~ 1 .
mh(x) = n—~h Z Eerh[(b(aj - XS)7
s=R+1
1 T—h
gn(z) = — Z Ky(z — X5),
s=R+1

where x = (21,22, ,24), y = (y1,y2, - ,ya), and Ky(z —y) = I b7 K|[(z; — y;)/b]. The
kernel function K (-) is is a prespecified symmetric probability density function. Examples include
a Gaussian kernel K (u) = (27)""/? exp(—u?/2) and a quatic kernel K (u) = 2(1 — u?)1(Ju| < 1),
where 1(-) is the indicator function, giving value 1 if |u| < 1 and value 0 otherwise. The
bandwidth b = b(n) vanishes to zero as the sample size n — oo, but at a slower rate. For
simplicity, we use the same bandwidth for each components of X;. In practice, one can first

standardize each component of the vector X; by its sample standard deviation. The regression

estimator for E(eq 5| X¢) is then defined as follows:

oy ()
() = gn(z)

This is called the Nadaraya-Watson regression estimator. The estimator g, (x) in the denominator
is a kernel estimator for the marginal density gn(z) of {X;}. Under regularity conditions,

Th(x) — rp(x) = E(et1n|X: = ) in probability as both R,n — oc.

Under Hy, 7,(z) is close to zero for all z. Under the alternative hypothesis H 4, 7,(z) is not
a zero function but is a nontrivial function of x subject to sampling variation. To measure the
departure of 7, (z) from zero over all x, we use the following global measure

T—h

Q(h) = 77 (Xp)w(Xy),
t=R+1

where the positive weighting function w(-) can be chosen to trim the extreme observations where
the estimation of 7(x) is not reliable due to sparse observations (we allow the distribution of X

has unbounded support). It can also be used to direct power of the proposed test to the region of
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interest, such as predictability when X, is negative (in this case, we choose w(x) = 1(xz < 0). The
statistic @(h) can be viewed as a measure of the magnitude of the "signal" that can be extracted
to predict asset returns if (and only if) it contains no systematic predictable component in
E(e4n|X;), the estimator 7,(X;) and therefore Q(h) will be close to zero.

Alternatively, we can directly use an integrated global measure Q = [7; w(x)dz,
where the integral is over the support of w(x), and it can be computed using either a numerical

integration method (e.g. the Gauss-Newton method) or a Monte Carlo simulation method."
The asymptotic behaviors of Q(h) and Q(h) are similar, so we can focus on Q(h). To gain

insight, we consider the heuristic decomposition

/ da:—i—R

where a(z) = w(z)/g(z), and R is a reminder term dominated by the first (leading) term under
suitable regularity conditions. Thus, we can focus on the first term, which will determine the

asymptotic distribution of the statistic @(h) For the first term, we have

/ m2(z)a(z)de = Z Erinbain / Ky(z — X)) Ky(z — X,)a(z)dx

|t s|>h

Z 5t+h€s+h/Kb x— X)) Ky(z — Xs)a(z)dx

|t s|<h

= A(h)+ B(h),

where the term A(h) is a sum over (¢, s) with [t — s| > h, and the term B(h) is a sum over (¢, s)

with |t — s| < h. For the term B(h), we have

h

Bt) = rye? [ e [ K+ S GBI (6 X0 + Oyl(n1) )

Jj=1

where 02 = var(e.4n), ¥(j) = cov(er, &1—;), and f;(-, -) is the joint probability density of (X;, X;_;).

6The Monte Carlo method can be implemented as follows. Without loss of generality assume that w(-) is a
prespecified probability density function.Then we can generate a large i.i.d. sample { X} *}N from the probability
distribution w(-). Then the average Q*(h) = N~!xN V.72(X7) will be arbitrarily close to Q(h) if N is sufficiently
large (much larger than the sample size n) by the laW of large numbers.
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Note that generally v(j) # 0 for 0 < j < h in a h-step ahead prediction model (2.3), even when

Hy holds. As noted earlier, {e;,,} generally displays a MA(h — 1) structure under H,.

Thus, B(h) depends on the serial dependence of {e;4,} due to the existence of the second
term. The effect of serial dependence in {e;;,} on B (h) is generally larger when the horizon h is
larger. In our construction of a test statistic, we could subtract the original form of B (h) directly
from the global measure @ (h), rather than use the asymptotic approximation of B (h). This will
make the proposed test robust to the effect of serial dependence contained in B (h). The term

A(h) can be written as

n—h t—h—1
~ 2
A(h) = — E E 5t+h€s+h/Kb r— Xo) Ky(z — Xy)a(z)de.
(n—h)? t=R+2s=R+1

Under Hy, A(h) has an approximately zero mean. Its variance var(A(h)) depends on serial
dependence in {e¢,,}. However, when {e;,} has a MA(h — 1) structure where h is a fixed
integer, the effect of serial dependence in {¢;} on var [g(h)] is an asymptotically negligible higher

order term, and it can be shown that the asymptotic variance of b%2(n — h)A(h)/o? is given by

2
V:8/ dm/{/K K(u+v)du| dv.

Using the central limit theorem for degenerate U-statistics, we can show b%(n — h)A(h)/ o? <

N(0,V) as n — o0, as stated below:

Theorem 1 Suppose Assumptions A.1-A.6 in the Appendiz hold. Then as n — oo,

(1) under Hy, we have

Vbi(n — h)Q(h) /52 — C/\Vbe @

Qi = 0,1
Qh \/V ( )
T—h
where C' = /w(:z:)dac/Kz(u)du, 2= (n—h)" Z €7 ps and ey = Epp — Th(Xy).
t=R+1
(77) under H 4,
Qu V2 [ri()g(e)w(r)de

—

Vbi(n — h) o2
The proof of this theorem is given in the Appendix. Among other things, the Q.. test allows
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the serial correlation of {e;,,}. The Q. test statistic has an appealing interpretation. Ignoring

2
e

the centering and scaling factors, the Q,, test statistic is essentially based on the ratio Q(h) /5
Here, the denominator 8? is the sample variance of pricing errors, and the numerator Q(h) is the
average of the squared predictable components neglected by the linear regression model (2.3).
Therefore, the ratio Q(h)/G> can be viewed as an estimator for the neglected signal-to-noise
ratio of the linear model. If the neglected pricing signal Q(h) is weak relative to the pricing
noise Eg, the Q test will not reject the null hypothesis Hy. If the neglected pricing signal Q(h)
is sufficiently large relative to the pricing noise /af, the Qh test will reject the null hypothesis
Hy. How large the signal-to-noise ratio should be in order to be considered as sufficiently large
is determined by the critical value of the test statistic.

Theorem 1(7i) shows that under H 4, the Q,, statistic diverges to infinity at rate \/b_d(n —h).
Thus, as long as r,(x) is not zero over the support of the weighting function w(z) under H, ,
the Q,, test will be able to reject Hy at any given level with probability approaching one as the

sample sizes R,n — oo.

In computing the neglected pricing signal-to-noise ratio, we have used a nonparametric esti-

2

. . ~2 . . . . .
mator for oZ. The variance estimator o_ is based on the nonparametric residual e;y; which is

always consistent for the true pricing error € = Y, — E(Y;44|X:) under both Hy and H4. One
could also use the parametric variance estimator o> = 1/(n — h) tT:_}g 1 GA 1, using the estimated
residuals from the linear regression model. This estimator is simpler than 3?, and may give better
sizes in finite samples, because it is a better estimator for o2 than 5> under Hy. However, &~ is
not consistent for the true error variance Var(e7) under H,, because it contains the neglected
signals. Consequently, it may give a lower power in finite samples.

The test statistic Qh is constructed to check the out-of-sample predictability of the residual

&14p using X;. It can also be used to test the null hypothesis Hy in (2.1), namely the predictability

of X; for Y;.;. This can be done by replacing the sample size n with T, and replacing the
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estimated residual &, with Y;,, — Y, where Y = (T — h)~! ZtT:_lh Y,y is the sample mean of
{Y;1 15", The resulting test statistic is still asymptotically N(0,1) under Hy in (2.1).

Theorem 1(7) implies that approximately ~(n — h)@(h) /62 ~ X4, as R,n — oo where the
constant v = 2C/V and the degree of freedom ), = 2C?/bV. Here, both constants v and A, do
not depend on any nuisance parameters or nuisance functions, such as the error distribution and
density function of X;. In fact, they are independent of the data generating process. Therefore,
the asymptotic null distribution of the scaled signal-to-noise ratio statistic y(n — h)Q(h)/6? is
independent of nuisance parameters or nuisance functions, and approximately ~y(n — h)Q(h) /52
is distribulted as N(A,,2A,) where A, is known. This is the so-called Wilks’ phenomena in
statistics. One important implication of Wilks’ phenomena is that one can simply simulate the
null distributions by setting the nuisance parameters under the null hypothesis at reasonable
values or estimates.

The asymptotic normality is quite convenient to use in practice. However, several reasons
suggest that the asymptotic normal approximation may not work well in finite samples. First,
the nonparametric estimator 7, (x) converges slowly to the true function r,(x) particularly when
the dimension d of X; is relatively large. As it turns out, the neglected reminder terms in the
asymptotic expansion of Q(h) /52 are quite close to in order of magnitude to the dominating term
which determines the asymptotic normal distribution of Qh. Evidence in related literature shows
that the size of nonparametric test statistics is generally very poor in finite samples. Second, in
the present framework, {e;,} is not an i.i.d. or martingale difference sequence under the null
hypothesis. Instead, it follows an MA(h—1) structure in &,,j under the null hypothesis Hy due to
the h-step ahead prediction. Asymptotic analysis shows that the serial dependence in {e;,,} has
no impact on the asymptotic mean C'/ Vbland the asymptotic variance V', but it may substantially
affect the finite sample mean and variance of the test statistic Q(h) /52, particularly when A is

relatively large. Third, our asymptotic analysis shows that parameter estimation uncertainty in
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Bt has an asymptotically negligible impact on the asymptotic distribution of the proposed test,
but the impact depends on the relative magnitude between two sample sizes R, n. When the ratio
n/R is large (i.e., when n is large relative to R) , the impact of parameter estimation uncertainty
of Bt may be substantial in finite samples.”
2.2 Simulation Design and Monte Carlo Evidence

It is well-known that there exist two well-documented sources of size distortion that may arise
in long-horizon regressions if the inference procedures are based on linear prediction models.
First, many predictors, such as dividends and earning price ratios, interest rates are highly
persistent and only predetermined, rather than fully exogenous. Second, standard test-statistics
based on prediction regressions do not have their usual limiting distribution (Cavanagh et al.,
1995). The use of standard critical values is known to generate severe size distortion. These
problems may carry over to the proposed nonparametric predictability test, particularly when h
is large. In order to check the reliability of the proposed test, we investigate the finite performance
(both size and power) of the proposed test using data-generating processes that could potentially
be employed to capture the persistent behavior commonly observed in predictive regressors. To
obtain a reliable reference based on the proposed test in finite samples, we propose the following
conditional bootstrap procedure which preserves the MA(h) structure in ;. among other things:
Step 1: Use the first subsample {Y; 5, X/}, to estimate the linear regression model Y; ) =
X[B + €i1n,t = 1,..., R.Obtain the parameter estimator B . Alternatively, rolling estimation or
recursive estimation could also be used.
Step 2: Use 3 to compute the out-of-sample residual Erpn =Y — X{B fort=R+1,...,T — h.
Step 3: Compute the nonparametric estimates 7,(X;) and the nonparametric residual ¢, =
Epon —Th(Xy) fort=R+1,..,T — h.

Step 4: Compute the signal-to-noise ratio Q(h) /5> using a prespecified kernel k(-) and bandwidth

"One implication of this result is that one should use a large R relative to n in practice to alleviate the impact
of parameter estimation in .
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b= (n — h)Y/?. In practice, data-driven methods can be used to choose the bandwidth b.

Step 5: Estimate an MA(h — 1) model for the nonparametric residual

h—1
/€\t+h = Z&jvt+hfj -+ ’Ut+h,t =R+ 1, ,T — h.
j=1

This can be done by the conditional quasi-maximum likelihood estimation. Save the moving

average parameter estimates {d;}”_, and estimated residual {Br+n}i_ 41 in the MA(h—1) model.
Step 6: Draw a bootstrap residual sample {0} +h}?:£ ', from the centered empirical distribution

of {0¢1n};_4.1. Then obtain a bootstrap residual sample {&;,,}/ 2., by the MA(h — 1) model

h—1
Eron = b, 40 t=R+1,...T—h,
j=1
where the parameter estimates {¢é;}"_, are obtained in step 5. The bootstrap residual {; N i
approximately preserves the MA(h — 1) structure of {e;,} under Hy.
Step 7: Use the bootstrap sample {},,, Xt}f:_é’ '+, to compute the bootstrap signal-to-noise ratio
Q*(h)/7* using the same kernel k(-) and bandwidth b as in Step 4.

Step 8: Repeat Steps 6 and 7 for a total of B times where B is a large number. Denote the

obtained B bootstrap test statistics as {QF(h)/377}E,.

Step 9: Compute the bootstrap p-value of the Qy:

SHRIC O]

el

where 1(+) is the indicator function. Reject the null hypothesis Hy at level « if and only if p* < «a.

The above resampling approximation is a wild bootstrap. Here, one only need to calculate
the signal-to-noise ratio Q(h)/ 52 using the observed sample and bootstrap samples. There is no
need to compute the original test statistic Q) which involves calculation of centering and scaling
parameters. This follows because computing the bootstrap p-value involves ranking Qh and Q;,

which is equivalent to ranking the pricing signal-to-noise ratios Q(h) /5> and Q*(h)/57?, given
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the fact that the centering and scaling factors do not depend on nuisance parameters and the

data generating process. This greatly simplifies the computation of the test statistic.
When testing predictability of X, for Y;.; (i.e., testing Hp in (2.1)), Steps 1 and 2 are not
needed, the nonparametric residual in step 3 is replaced with €, = Y;;4 —Y, and the MA(h—1)

models in Steps 6 should be changed to the following:

>

-1
1

<.
Il

where Y is the sample mean of {Y; ,}. .

We will examine the finite sample performance of the above conditional bootstrap proce-
dure via simulation studies. Table 2.0 summarizes the five data generating processes we use to
investigate the empirical size of the tests for both linear and nonlinear predictability check.

Under A.0(h), X; has no predictive power for Y; ;. This allows us to examine the size of the
nonparametric test under Hy : E(Y;in|Xy) = E(Yiyn). Under A.1(h) and A.2(h), there exist
linear and nonlinear predictability of X; for Y;,;.This allows us to examine the power of the test
under the alternatives. Next, under B.0(h), there is no neglected nonlinear predictability of X, for
Yi1n. This allows us to examine the size of the test for the null hypothesis Hy : E(g444]|X:) = 0.
Under B.1(h), there exists neglected nonlinear predictability, which allows us to examine the
power of the test.

Tables 2.1a and 2.1b report empirical rejection rates of the test at the 1%, 5%, and 10%
nominal levels, for sample sizes of T' = 250, 500, 1000 and time horizons of h = 1,4,12,20. The
nonparametric test with the bootstrap procedure has reasonable sizes in finite samples under
both the null hypotheses H; and H,, which are robust to the time horizon h and the persistence
of regressor X; (as measured by the large value of the autoregressive coefficient p). Moreover,
the proposed test has power under various alternatives to H; and H, respectively.

There is an upward bias in the predictive coefficient on the regressors due to both long-horizon
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returns and persistence of the regressors(Stambaugh 1999, Amihud and Hurvich 2004, Lewellen
2004). The existing long-horizon tests with robust Newey-West standard errors suffer from
substantial overrejection.® Our proposed test has reasonable sizes and robust power performance

to investigate the predictability and neglected nonlinear components over different time horizons.

3. DATA AND LONG-HORIZON PREDICTABILITY

3.1 The Long-horizon Framework and Predictability Regression

We now use the proposed test to investigate the predictability of equity returns over different
horizons. Denote the gross return on equity by Gyr1 = (Piy1 + Dyy1)/ P41 and the continuously
compounded return by ;11 = log(Gyy1). The long-horizon predictability regression considered
is

Yien = an + By Xt + €niin (3.1)

where Yiip, = (7/h)[(Ye+1 — 1¢) + -+ + ( Yt4n — re4n—1) is the annualized h-period excess return
for the aggregate stock market, r; is the risk-free rate from t to ¢t + 1, and y, 1 — r; is the one
period excess return from time ¢ to t+1. The constant 7 is different, depending on the frequency
of the data, i.e., 7 = 1 (annually), 7 = 4 (quarterly), and 7 = 12 (monthly). All returns are
continuously compounded. The error term &y, follows a M A(h — 1) process under the null
hypothesis of no predictability Hy : E(Yin|X:) = E(Yin) and Hy : E(e444]X:) = 0. We will use
different predictors as instruments in X; and estimate the regression (3.1) by OLS and compute
standard errors of the parameters using the Newey and West(1987) and Hodrick (1992) standard
error formula.” We use the test proposed in section 2.2 to check the predictability of different
variables using the regression framework in (3.1).

3.2 Data

8 Ang and Bekaert (2007) point out that the univariate dividend yield regression displays negligible size dis-
tortions in the shortest sample for the one-quarter horizon, but for the bivariate regressions, all tests slightly
over-reject at asymptotic critical values with longer horizons.

9Using generalized method of moments, (GMM) has an asymptotic distribution vZ'(8 — 6) & N(0, ) where
Q=2;'52", Zy = E(z}x;), and x; = (1 z})'. Hodrick(1992) sums x}x;_; into the past and estimates Sy by

1 T / h—1
So =7 Zt:h whtwht, wht = 817t+1 Zi:o Tt—j-
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Following Goyal and Welch (2008), we choose fifteen economic variables to examine pre-
dictability of the equity returns using annual, quarterly, and monthly data.

Stock Returns: Stock returns are continuously compounded returns on the S&P 500 index,
including dividends. Our quarterly data consist of price return (capital gain only), total returns
(capital gain plus dividend), and dividends on the Standard & Poor’s Composite Index from
March 1936 to December 2001. This data is obtained from the Security Price Index Record,
published by Standard & Poor’s Statistical Service. For monthly data, we use S&P 500 index
returns from January 1970 to December 2006 from CRSP’s monthend values. Monthly dividends
on the S&P 500 index are from Standard & Poor’s Statistical Service. For annual data, we get
data from 1872 to 2005 provided in Robert Shiller’s personal website.

Risk-free Rate: The risk-free rate is the T-bill rate from 1920 to 2005. We follow the methods
by Goyal and Welch (2007) to estimate T-bill rate prior to the 1920’s.!° For quarterly and
monthly data, T-bill rates from 1934 to 2005 are the 3-Month Treasury Bill: the Secondary
Market Rate from the economic research data base at the Federal Reserve Bank at St. Louis
(FRED).

Dividend Yields, Farnings Yields, and Dividend Payout Ratio: Dividends and Earnings are
the twelve-month moving sums of dividends and earnings paid on the S&P 500 index. The
data from 1871 to 1970 are available from Robert Shiller’s website. Quarterly dividends and
earnings from 1936 to 2005 and monthly dividends and earnings from 1970 to 2006 are from
the S&P Corporation. Dividends and Earnings are summed up over the past year. Monthly or
quarterly dividends and earnings are impossible to use because they are dominated by seasonal

components. The dividend yield (d/y) is defined as D}/ P, with the superscript 4 to denote

19Commercial paper rates for New York City are from the NBER’s Macrohistory data base. These are available
from 1871 to 1970. We estimated a regression from 1920 to 1971, which yielded T' — billRate = —0.004+
0.886 x Commercial Paper Rate , with an R? of 95.7% according to Goyal and Welch (2007). Therefore, we
instrumented the risk-free rate from 1871 to 1919 with the predicted regression equation. The correlation for the
period 1920 to 1971 between the equity premium computed using the actual T-bill rate and that computed using
the predicted T-bill rate (using the commercial paper rate) is 99.8%.
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that it is constructed using dividends summed up over the past year (four quarters), where
D} = Dy + Dyy1 + Diyo + Dy, 3 represents dividends summed over the past year and P is the
price level on S&P 500.'! We also define the monthly dividend yield with a superscript of 12 to
indicate that dividends have been summed over the past 12 months using the same method. We
also denote log dividend yields as dy;} = log(D{/ P,) for quarterly data and dy}? = log(D}?/ P)
for monthly data. We use the similar definitions for log earnings yields for both quarterly and
monthly. The Dividend Payout Ratio (d/e) is the difference between the log of dividends and
the log of earnings.

Stock Variance (svar): Stock Variance is computed as sum of squared daily returns on the
S&P 500. G. William Schwert provided daily returns from 1871 to 1926; data from 1926 to 2005
are from CRSP.

Book to Market Ratio: The Book to Market Ratio (b/m) is the ratio of book value to mar-
ket value for the Dow Jones Industrial Average.!> Book values from 1920 to 2005 are from
Value Line’s website, specifically their Long-Term Perspective Chart of the Dow Jones Industrial
Average.

Corporate Issuing Activity: We follow the two measures of corporate issuing activity in Goyal
and Welch (2007). Net Equity Expansion (ntis) is the ratio of twelve-month moving sums of net
issues by S&P listed stocks divided by the total end-of-year market capitalization of S&P stocks.
This dollar amount of net equity issuing activity (IPOs, SEOs, stock repurchases, less dividends)
for NYSE listed stocks is computed from the CRSP data as Netlssue; = Mcap, — Mcap,_1 - (1+
vwretx,), where M cap is the total market capitalization, and vwretz is the value weighted return
(excluding dividends) on the S&P 500 index. These data are available from 1926 to 2005. The

second measure, Percent Equity Issuing (eqis), is the ratio of equity issuing activity as a fraction

HSee, e.g., Ball (1978), Campbell (1987), Campbell and Shiller (1988a, 1988b), Campbell and Viceira (2002),
Campbell and Yogo (2006), the survey in Cochrane (1997), Fama and French (1988), Hodrick (1992), Lewellen
(2004), Menzly, Santos, and Veronesi (2004), and Ang and Bekaert(2007).

12See Kothari and Shanken (1997) and Ponti and Schall (1998).
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of total issuing activity. This is the variable proposed in Baker and Wurgler (2000)."® The first
equity issuing measure is relative to the aggregate market cap, while the second is relative to the
aggregate corporate issuing.

Long Term Yield (lty): The data is from Goyal and Welch (2008). The long-term government
bond yield data from 1919 to 1925 is the U.S. Yield On Long-Term United States Bonds series in
the NBER’s Macrohistory data base. Yields from 1926 to 2005 are from Ibbotson’s Stocks, Bonds,
Bills and Inflation Yearbook, the same source that provided the Long Term Rate of Returns (ltr).
The Term Spread (tms) is the difference between the long term yield on government bonds and
the T-bill. (See, e.g., Campbell (1987) and Fama and French (1989).)

Corporate Bond Returns: Long-term corporate bond returns from 1926 to 2005 are again
from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook. Corporate Bond Yields on AAA
and BAA-rated bonds from 1919 to 2005 are from FRED. The Default Yield Spread (dfy) is
the difference between BAA and AAA-rated corporate bond yields. The Default Return Spread
(dfr) is the difference between long-term corporate bond and long-term government bond returns.
(See, e.g., Fama and French (1989) and Keim and Stambaugh (1986).)

Inflation (infl): Inflation is the Consumer Price Index (All Urban Consumers) from 1919 to
2005 from the Bureau of Labor Statistics.

Investment to Capital Ratio (i/k): The investment to capital ratio is the ratio of aggregate
(private nonresidential fixed) investment to aggregate capital for the whole economy.

Consumption, wealth, income ratio (cay): The variable cay is proposed by Lettau and Lud-
vigson (2001). Data for cay’s construction at quarterly frequency from the second quarter of
1952 to the fourth quarter of 2005 are available from Martin Lettau’s website. The annual data
from 1948 to 2001 is available from Martin Lettau’s website.

Table 3.1 summarizes the descriptive statistics of the predictors. Panels (a), (b), and (c)

13We get the data from http://pages.stern.nyu.edu/ jwurgler/.
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report the results for quarterly, monthly, and annual data respectively. We summarize the
test statistics of the predictors under the null hypothesis of a unit root. Short rates, dividend
and earnings yields, book-to-market ratio, and inflation are all highly persistent at different

frequencies.

4. IS THE PREDICTABILITY THERE?

In this section, we first apply the nonparametric test to examine whether there exists the
predictability of equity returns in both short and long horizons. Then we test the predictability
power of the conventional predictive models and the historical mean model.

4.1 Short-Horizon and Long-Horizon Predictability

In this section, we use the linear predictive regression Y, = ay, + £, Xi + €pgrn in (3.1)
to check the predictability of equity returns by using quarterly, monthly, and annual data. For
quarterly and monthly data, we report the results of four sample periods (1936-2001, 1952-2001,
1936-1990, and 1952-1990), which are the same sample periods used in Ang and Bekaert (2007).*

Table 4.1 summarizes the results of the 1-quarter, 1-year, 3-year, and 5-year-ahead predictabil-
ity of excess return predictability. Table 4.1a focuses on the univariate regression with dividend
yields and earnings yields as the regressor. The t-statistics in parentheses are computed using
the Newey and West (1987) and Hodrick (1992) standard error respectively. The parameter
estimates have similar patterns over the four periods, but the estimated coefficients are twice
as large as for the period omitting the 1990s from the sample. The Hodrick standard errors
are smaller than the Newey-West standard errors. During the 1936-2001 and 1952-2001 periods,

there is no evidence of predictability for dividend yields for both short and long horizons. For the

Interest rate data are hard to interpret before the 1951 Treasury Accord, as the Federal Reserve pegged
interest rates during the 1930s and the 1940s. Hence, we examine the post-Accord period, starting in 1952.
Second, the majority of studies establishing strong evidence of predictability use data before or up to the early
1990s. Studies by Lettau and Ludvigson (2001) and Goyal and Welch (2003) point out that predictability by
the dividend yield is not robust to the addition of the 1990s decade. Hence, we separately consider the effect of
adding the 1990s to the sample.
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1936-1990 periods, there is strong predictability for dividend yields over the 1-quarter, 1-year,
3-year, and 5H-year ahead time horizons respectively. For the 1952-1990 period, there exists only
the predictability for 1-quarter and 1-year shorter horizons.

Table 4.1a also reports the bootstrap p-value for the predictability test under two hypotheses
H1 and H2. Hypothesis H1 is Hy : E(Yi44|X:) = E(Y;11), namely that X; has no predictive
power for Y;,,. Hypothesis H2 is Hy : E(e411]X;) = 0, namely that X; has no neglected nonlinear
predictive power for Y;,; beyond the linear model (3.1). As mentioned in Section 2.1, the Q.
test has an appealing interpretation: it is essentially based on the ratio Q(h) /52, where the
denominator Ei is the sample variance of pricing errors, and the numerator Q(h) is the average
of the squared predictable components neglected by the linear regression model. Therefore, the
ratio Q(h) /52 can be viewed as an estimator for the neglected signal-to-noise ratio of the linear
prediction model (3.1). If the neglected pricing signal Q(h) is weak relative to the pricing noise
5%, the Q) test will not reject the null hypothesis Hy. If the neglected pricing signal Q(h)
is strong relative to the pricing noise 8?, the Q) test will reject the null hypothesis Hy. The
results for testing H1 show that the Q). test strongly rejects the null hypothesis H1 for dividend
yields over the four sample periods. This implies that dividend yield is a significant predictor
of excess returns at all time horizon h, which is consistent with Campbell and Shiller (1988a,b).
We also examine whether there exists neglected nonlinear predictability of dividend yield for
equity returns. Table 4.1a show that the Qh test strongly rejects the null hypothesis H2 for
all four sample periods. It implies that there exists a nonlinear predictive relationship between
X; and Y, . The right four columns of Table 4.1a also report a univariate regression with the
earnings yield as regressor. The t-statistics suggest that there is no strong evidence for linear
predictability of earnings yields over the four sample periods. However, the nonparametric tests
for hypothesis H1 and H2 show that earnings yield is a good predictor for equity returns over

all the different time horizons h.
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Table 4.1b summarizes the bivariate regression with log dividend yields and short rate together
as regressors. It reports the bootstrap p-value of the predictability test for six various hypotheses
H1— H6, where X represents the short rate » and X, the dividend yield. The six hypotheses are,
respectively, H1 : E(Y; 11| X1) = E(Yiqn), H2 : E(eiin|X1) = 0, H3 : E(Yiin| Xot) = E(Yiin),
H4 : E(epp|Xo) = 0, H5 : E(Yiun| X1y, Xot) = E(Yiyn), and H6 : E(gin| X1, Xot) = 0.
Hypotheses H1 and H3 are to test the predictability of the short rate or dividend yield separately
and Hypothesis Hb5 is to test the joint predictability of the short rate and dividend yield together.
The short rate has strong predictability over the four periods based on the Newey-West standard
errors but the predictability only exists at short horizons when using the Hodrick (1992) standard
errors. In the bivariate regression, there is evidence of predictability of dividend yields for equity
returns when the sample period excludes the 1990s. The coefficient on the dividend yield is
larger using bivariate regression than the univariate regression. This suggests that the univariate
regression suffers from an omitted variable bias that lowers the marginal impact of dividend
yields on expected excess returns.!® Tt is consistent with Ang and Bekaert (2007). They find
that dividend yields predict excess returns only at short horizons together with the short rate
and do not have any long-horizon predictive power. At short horizons, the short rate strongly
negatively predicts returns. However, our Qh test significantly rejects the hypotheses H1 — H4
for all the four sample periods. It indicates that short rate and dividend yield are two good
predictors for equity returns but it cannot be fully captured by linear predictive regressions.

The Qh test rejects the hypothesis H5 only at the 1-quarter-ahead time horizon and fails to
reject at the 1-year, 3-year, and 5-year-ahead time horizon of the 1936-2001 period. The Q, test
rejects hypothesis H5 for the 1952-2001, 1936-1990, and 1952-1990 periods. There is evidence
of joint predictability for the short rate and dividend yield together for the three sample period

of 1952-2001, 1936-1990, and 1952-1990. The predictability of the short rate and dividend yield

15Engstrom (2003), Menzly, Santos, and Veronesi (2004), and Lettau and Ludvigson (2005) also note that a
univariate dividend yield regression may understate the dividend yield’s ability to forecast returns.
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for equity returns is only identified at the 1-quarter-ahead short horizon of the 1936-2001 period.
The Q) test rejects hypothesis H6 for the four time periods except for the 5-year-ahead time
horizon of the 1936-2001 and 1952-1990 periods. The bivariate linear regression does not have the
optimal predictive power for equity returns and there are neglected nonlinear components that
are not captured by the linear regression models. Nevertheless, there may exist the long-horizon
predictability for the 5-year time horizon in the 1936-2001 and 1952-1990 periods which can be
captured in the linear regression model since there is no strong evidence to reject hypothesis H6.

To compare with Lamont (1998) and Ang and Bekaert (2007), we report a bivariate regression
of excess returns on log dividend and log earnings yields. Lamont (1998) finds a positive coeffi-
cient on the dividend yield and a negative coefficient on the earnings yield. He argues that the
predictive power of the dividend yield stems from the role of dividends in capturing permanent
components of prices, whereas the negative coefficient on the earnings yield is due to earnings
being a good measure of business conditions. Ang and Bekaert (2007) finds that dividend and
earnings yields do not have a strong predictive power and only when the 1990s are excluded
they find significant coefficients for dividend and earnings yields. Table 4.1c summarizes the
bivariate regression with the log dividend yields and log earnings yields together as regressors.
The dividend yields and earnings yields have a strong predictive power for equity returns over
the four time periods when using the Newey-West (1987) standard errors. The results using the
Hodrick (1992) standard errors are similar to Ang and Bekaert (2007). The Q) test rejects the
six hypotheses over all the time horizons and for all 4 time periods. It supports Lamont (1998)’s
arguments. Dividend yields and earnings yields have the predictability power for equity returns
but the bivariate linear regression model cannot fully capture such predictability.

Table 4.1d summarize the test results of the trivariate regression with the short rate, log
dividend yields, and log earnings yields together as regressors. When we add the short rate as

a predictor in a trivariate regression of excess returns on risk-free rates, dividend and earnings
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yields, the coefficients on dividend and earnings yields remain insignificantly different from zero,
and the sign on the earnings yield is fragile. For the post-1952 samples, the short rate, and
dividend yields have predictive power in the presence of the earnings yield. The results for the
Qh test show that the three variables short rate, dividend yields, and earnings yields do have
the predictability power for the equity returns. The Qh test for the joint predictability of the
three variables rejects the hypothesis H7(Hy : E(Yiin| X1, Xot, X3t) = E(Yi1p)) for most of the
cases except the 1-year and 3-year ahead forecasts in the 1936-2001 and 1936-1990 periods and
the 5-year ahead forecast in the 1952-2001 period. The trivariate regression does not capture the
true equity returns and it needs a better nonlinear model to capture it.

We also use the monthly data from January 1970 to December 2006 to test the predictability
of the short rate, dividend yields, and earnings yields in univariate, bivariate, and trivariate
regressions respectively.'® We get similar results using monthly data. Using the Hodrick (1992)
standard errors, our results suggest that the short rate has strong predictability. The nonpara-
metric predictability tests show that the three variables are good candidates to predict equity
returns but it cannot be fully captured by the linear predictive models.

4.2 Does the prevailing models beat the historical mean?

Goyal and Welch (2007) reexamine the performance of predictive variables commonly used
in the academic literature. They find that the historical mean model outperforms the predictor-
based models in terms of both in-sample and out-of-sample performance. We consider both
In-Sample (IS) and Out-of-Sample (OOS) tests. Following Goyal and Welch (2007), the OOS
forecasts use only the data available up to the time at which the forecast is made. Let ey denote

the vector of rolling OOS errors from the historical mean model and e4 denote the vector of

rolling OOS errors from the OLS model. The OOS statistics are computed as R = 1 — %ggﬁ,

R = R2—(1— R?)-|%%| | ARMSE = MSEy — MSE,. It is important but difficult for

16The results for the regressions and predictability tests are summarized in Table 4.2. Please check the supple-
mentary document for details.
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OOS tests to choose the periods over which a regression model is estimated and subsequently
evaluated. In this section we consider the annual prediction with similar data used in Goyal and
Welch (2007). For the OOS test, we use the time period twenty years after data are available
as the out-of-sample validation period.

We estimate the predictive regressions Y., = ap, + 5, X; + €peen in (3.1). The predictive
variables X; are log dividend yields, log earnings yields, dividend payout ratio, short rate, in-
flation, book-to-market ratio(b/m), investment to capital ratio(i/k), corporate issuing activity
(Eqis and Ntis), and consumption, wealth, and income ratio(cay). The results are summarized
in Table 4.3. The t-statistics in parentheses are computed using the Newey and West (1987)
and Hodrick (1992) standard errors. We report the bootstrap p-value for the predictability test
under two hypotheses H1 and H2. Hypothesis H1 is E(Y;14|X;) = E(Y;1n) and Hypothesis
H2 is E(e444]X;) = 0. Table 4.3 summarizes both in-sample and out-of-sample results. We use
the difference of the signal-to-noise ratios as a criterion to evaluate the predictability power:
A(%) = Qn(R) /5% — Qa(h)/52, where Qn(h)/3> and Q4(h)/5” are the signa-to-noise ratios of
the historical mean model and the prevailing predictive model respectively. If A(%) > 0, there
is more neglected signal which cannot be explained by the historical mean model and thus the
prevailing predictive model performs better. If A(%) < 0, there is more neglected signal which
cannot be captured by the prevail predictive model and so the historical mean model performs
better.

Table 4.3 shows that with a linear predictive model, all variables considered are insignificant
and only several variables (dividend yield, short rate, eqis, and cay) are significant for 1-year
ahead forecast using the Newey-West standard errors. However, the results for both in-sample
and out-of-sample nonparametric tests show that all variables(i.e., log dividend yields, log earn-
ings yields, dividend payout ratio, short rate, inflation, book-to-market ratio(b/m), investment

to capital ratio (i/k), corporate issuing activity (Eqis and Ntis), and consumption, wealth and
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income ratio(cay)) have predictability power for equity returns. The historical meam model has
a higher signal-to-noise ratio than the prevailing predictive models for both in-sample and out-
of-sample tests. There exists more neglected signals which cannot be explained by the historical
mean model and the prevailing predictive model performs better. This conclusion differs from

Goyal and Welch (2007) and supports Campbell and Thompson (2007).

5. OUT-OF-SAMPLE FORECASTING OF EQUITY RETURNS

As mentioned in the previous sections, Goyal and Welch (2008) create enough of a controversy
within the profession and argue that the historical average equity return model produces better
forecasts than regressions of excess returns on predictive variables. However, Campbell and
Thompson (2008) argue that the empirical models can have a better out-of-sample forecast if
one restricts their parameters in the economically justified ways. Cochrane (2008) argues that
the out-of-sample tests performed by Goyal and Welch are relatively weak, and have a better
in-sample predictability power. The literature emphasizes that most of the linear predictive
regressions have poor out-of-sample performance (Goyal and Welch (2003, 2007); Campbell and
Thompson (2007)). The lack of consistent out-of-sample performance in Goyal and Welch (2008)
indicates the need for improved forecasting methods to better establish the empirical reliability
of equity premium predictability. Rapach, Strauss, and Zhou (2010) propose a combination
approach to improve the out-of-sample equity premium forecasting problem. In this section, we
propose nonparametric estimators to forecast the equity returns and compare the out-of-sample
performance of the different models.

5.1 Nonparametric forecast, linear predictive model, and Historical Mean Model

In the previous sections, our nonparametric test has showed that there exists the predictability
of equity returns at the short and long horizons. The predictors such as dividend yields, earnings

yields, dividend payout ratio, short rate, inflation, book-to-market ratio, investment to capital
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ratio, corporate issuing activity, and consumption, wealth, and income ratio have predictability
power for equity returns, but this cannot be fully captured by popular linear regression models.
We find that the poor out-of-sample performance of most linear prediction models is due to the
limitation of linear models. To find the better fit of the equity returns, we use two nonparametric

estimators to forecast the equity returns following the section 2.1.
The first estimator is to use a kernel method to estimate E(e,,|X;) and capture potentially

neglected nonlinear predictable component in €;,,. The expected equity returns can be estimated

by:

E(YinlX)) = X5+ Elewn| X)) = X{B +7i(x).

- X3+ i ()

where 7 = (21,2, -+ ,24), ¥y = (Y1, %2, ,ya)', and Ky(x —y) = N b~ K[(2; — v;)/b]. The
kernel function K(-) is is a prespecified symmetric probability density function. The second
estimator is to use a kernel method to estimate F(Y;.,|X;) directly. We can predict the equity
returns by

—h
1
mg Yorn Ky (v — X,)

E(th-i-h|Xt) = §h($)

Our out-of-time kernel estimator here is a weighted average of the past equity returns, where
the weights depend on the values of the predictive variable. For comparison, the historical mean
estimator used by Goyal and Welch (2008) is a simple average of the past equity returns. The
weights in our methods can provide more useful information in out-of-sample forecasts then the
historical mean model. In our paper, we choose the bandwith which is correlated with the size of

the out-of-sample forecasting period. There are several reasons that we use nonparametric models
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to detect the nonlinear predictive components other than nonlinear models. First, the existing
economic theory in the literature can not give a concrete form of the nonlinear predictive model
because we don’t know where the nonlinearity exactly comes from. Second, nonlinear models,
such as cubic or quadratic functions, may misspecify the nonlinearity of the true data. There
may exist outliers and it will cause the spurious identification for the predictability. Third,
nonparametric model can capture both the linear and nonlinear component without the model
specification. It is not restricted to the parametric forms. It can fit the data better than simply

the linear or nonlinear parametric model.

We want to compare the out-of-sample forecast results of four models: historical mean model,
linear predictive model, and two nonlinear predictive models. The three measures we use are
MSE (Mean squared error), MAE (Mean absolute error), and RMSE (Root mean squared error)

defined as below.

T—h

1 ~
MSE = —— > (Yo = Yorn)?,
n s=R+1
1 T—h N
MAE = —— 3" Vo= Yo
n s=R+1
1 T—h
RMSE = \|— > Yern = Yein)™
s=R+1

Table 5.1 show the out-of-sample results of the univariate linear predictive models. Table 5.1a
summarize the MSE, MAE, and RMSE of univariate linear predictive regression for dividend yield
during the period 1936-2001, 1952-2001, 1936-1990, and 1952-1990. The benchmark model is the
historical average equity returns. The alternative models are linear predictive model and two
nonparametric predictive models. Both the first and second nonparametric predictive models
have the lower RMSE than the historical mean model for the period 1936-1990, and 1952-1990.
The second nonparametric predicitve model can do a better job than historical mean model in

both short horizon and long horizon across the different time periods. The linear predictive
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model has a higher RMSE than the historical mean model which is consistent with the results
in Goyal and Welch (2007). The results show that the two nonparametric predicitve models
can improve the out-of-sample performance at both short horizon and long horizon compared to
the linear predictive model and the historical mean model. We also get the similar results for
earning yield by comparing the MSE, MAE, and RMSE of the four models across the different
time periods.!”

Table 5.2 reports out-of-sample bivariate regression results with short rate as an additional
regressor using quarterly data. Table 5.2a summarize the MSE, MAE, and RMSE of the bivariate
predictive regression using dividend yield and short rate during the period 1936-2001, 1952-
2001, 1936-1990, and 1952-1990. The benchmark model is historical average equity returns.
The alternative models are linear predictive model and two nonparametric predictive models.
For the period of 1936-2001, 1952-2001, 1936-1990, and 1952-1990, the second nonparametric
predictive regression model has the smallest RMSE. The second nonparametric predicitve model
can do better job than historical mean model in both short horizon and long horizon. The first
nonparametric predictive model has a lower RMSE than the historical mean model except for the
period of 1952-2001. For the post-Treasury Accord 1952-2001 sample, linear predictive model
and the first nonparametric predictive model has higher RMSE than the historical mean model.
In the bivariate regression with earning yield and short rate, the second nonparametric predictive
regression model is superior to the other three models across the different time periods.!®* Ang
and Bekaert (2007) find that dividend yields, together with the short rate, predict excess returns
only at short horizons. Our nonparametric predictive models shows higher prediction power for
equity returns and the short rate, dividend yields, and earnings yields have good predictability

power at both short and long horizons. The results of our nonparametric predictive models are

1"The results for the regressions and predictability tests are summarized in Table 5.1b. Please check the
supplementary document for details.

18The results for the regressions and predictability tests are summarized in Table 5.2b. Please check the
supplementary document for details.
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robust for the four subsamples.

Goyal and Welch (2007) argue that the historical average excess stock return forecasts future
excess stock returns better than the predictive regressions. In this paper we choose fifteen
variables used in Goyal and Welch (2008). They are dividend-price ratio (D/P), dividend yield
(D/Y), earnings-price ratio (F/P), dividend-payout ratio (D/E), stock variance (SV AR), book-
to-market ratio (B/M ), net equity expansion (NT'IS), treasure bill rate (T'BL), long-term yield
(LTY), long-term return (LT R), term spread (7'M S), default yield spread (DFY), default return
yield (DFR), inflation (INFL), and investment-to-capital ratio (I/K). The benchmark model
is historical average equity returns. The alternative models are linear predictive model and two
nonparametric predictive models. Table 5.3 report the out-of-sample forecasting results of equity
premium using the annual data from 1872 to 2005. Consistent with the previous results, the
second nonparametric predicitve model can do better job than historical mean model and linear
predictive model at both short horizon and longer horizon. Table 5.5 report the out-of-sample
forecasting results of equity returns using the quarterly data from 1947:1 to 2007:4. We consider
the out-of-sample forecast evaluation periods covering from 1965:1 to 2007:4 consistent with
Goyal and Welch (2008). The statistical results show that the second nonparametric predicitve
model outperform the historical mean model and linear predictive model at both short horizon
and long horizon. For most predictors except dividend-price ratio (D/P), dividend yield (D/Y),
earnings-price ratio (E/P), and book-to-market ratio (B/M), the two nonparametric models
outperform the historical mean model and linear regression model.

The out-of-sample forecasting results show that linear predictive model has higher RMSE than
historical mean model, and apparently it is consistent with Goyal and Welch (2008). However,
from our nonparametric test results it shows that the linear predictive regression models have
a lower signal-to-noise ratio and can beat the historical mean model without any restrictions.

Our nonparametric test can detect the nonlinear predictive component of the equity returns
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which contains more information that the historical mean model can not provide. Campbell and
Thompson (2008) show the similar results when imposing some restrictions on the predictors.
Following the same logic, our nonparametric predictive model can directly capture both the
linear and nonlinear predictive components of the equity returns and it has a better out-of-
sample forecasting performance. It is consistent with our nonparametric results in the previous
sections.

The out-of-sample forecasting performance shows that the predictability power of equity
returns increases with lower RMSEs when the forecasting horizon h increases. Ang and Bekaert
(2007) find that dividend yields, together with the short rate, predict excess returns only at
short horizons and do not have any long-horizon predictive power. Goyal and Welch (2008), and
Campbell and Thomason (2008) do not find the relationship between the predictability and time
horizons. However, Fama and French (1987a) show that the autocorrelations of portfolio returns
imply that time-varying expected returns explain 25-40% of 3- to 5-year return variances. Poterba
and Summers (1987) find that long-horizon stock returns have large predictable components
using variance-ratio tests. Economic theory has shown that there exists nonlinear relationship
between equity returns and the predictors such as dividend yield. If expected returns have
strong autocorrelation, the 1- to 4-year ahead forecast of equity returns are highly correlated.
As a consequence, the variance of expected returns grows faster with the time horizon than the
variance of unexpected returns. The variation of expected returns becomes a larger fraction of the
variation of returns. In the short run, the nonlineariy is relatively weak. When time accumulates,
the nonlinear relationship becomes stronger in the long run. Our nonparametric method has its
advantage to detect the nonlinearity. That explains why the RMSE becomes smaller when the
time horizon h becomes larger. In other words, the predictability of the linear predictive models
performs better in the short run than in the long run. The difference of the RMSE between

nonparametric model and linear predictive model is relatively small when forecasting horizon h
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is small and it becomes bigger when the forecasting horizon & increases.
5.2 Individual Forecast and Combined Forecast

In the literature, most papers focus on a set of predictors based on theoretical models. From
an academic viewpoint, the use of model-based predictors facilitates an understanding of specific
aspects of the economic mechanism. From an investor’s viewpoint, however, these predetermined
variables may not be enough to capture all information required in decision making. Forecast
combination has recently received renewed attention in the forecasting literature (Stock and
Watson (1999, 2003, 2004), Rapach, Strauss, and Zhou (2010)). In this section, we use both the
individual forecast and the combined forecast to examine the out-of-sample forecasting perfor-
mance of equity returns.

We follow the definition of the combined forecast by Rapach, Strauss, and Zhou (2010). The
combination forecasts of ;1 made at time ¢ are weighted averages of the M individual forecasts

M

based on )A/C,Hh = Zwiﬁtﬁﬂh where {w;;}M, are the ex ante combining weights formed at time ¢,
and 2,t+h is the ozlijof—sample forecast of the equity premium based on the individual predictive
models'®. For the individual predictors, we choose the 15 predictors used in the previous sections.
We calculate five different combining methods based on the definition of the weights. The first
three methods use the simple averaging schemes: mean, median, and trimmed mean. The mean
combination forecast sets w;; = 1/M for i =1,--- , M. The median combination forecast is the
median of {i/\;,t%}f\il, and the trimmed mean combination forecast sets w; ; = 0 for the individual
forecasts with the smallest and largest values and w;; = 1/(M — 2) for the remaining individual
forecasts. The other two combining methods are based on Stock and Watson (2004) and Rapach,
Strauss, and Zhou (2010), where the combining weights formed at time ¢ are functions of the

historical forecasting performance of the individual models over the holdout out-of-sample period.

Their discount mean square prediction error (DM S PE) combining method employs the following

19 _ /
Yien = an + B8, Xe + €ht4n-
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weights: w;; = ¢;t1/ Zj\il ¢;t1, Giy = Zts;% Qtflfs(ﬁﬂh—ﬁ,whf and 0 is a discount factor. The
DMSPE method thus assigns greater weights to individual predictive regression model forecasts
that have lower MSPE values (better forecasting performance) over the holdout out-of-sample
period. We consider the two values of 1.0 and 0.9 for 6.

Table 5.4 report the out-of-sample combined forecasting results of equity returns using the
annual data. Consistent with the previous results, the two nonparametric predicitve models
have lower RMSE and can do a better job than historical mean model and linear predictive
model in both short horizon and long horizon. Furthermore, the linear predictive model can
outperform the historical mean model by using combined method. Table 5.6 report the out-of-
sample combined forecasting results of equity premium using the quarterly data from 1947:1 to
2007:4. We choose the out-of-sample forecasting periods from 1965:1 to 2007:4 consistent with
Goyal and Welch (2008). The statistical results show that the two nonparametric predicitve
models outperform the historical mean model and linear predictive model at both short horizon
and long horizon. Rapach, Strauss, and Zhou (2010) find that forecast combination outperforms
the historical mean model by statistically and economically meaningful margins for out-of-sample
period. Our results are consistent with their conclusion. Using our nonparametric methods,
both combined and individual forecast outperform the historical average. The combined forecast
methods outperform the individual forecast methods with lower RMSE.

Figure 5.1 and 5.3 illustrate the out-of-sample forecasting performance for individual predictor-
based methods using annual data over 1-year and 5-year rolling windows. The black dotted line
is realized equity returns and the red dotted line is the unconditional historical average. The red
and green solid line are the forecasted returns by the first and second nonparametric models re-
spectively. For individual predictor-based models, the second nonparametric prediction is below
the unconditional historical average line for most of the cases. Figure 5.2 and 5.4 illustrate the

out-of-sample forecasting performance for combined methods using annual data over 1-year and
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5-year rolling windows. For combined predictor-based models, the two nonparametric predic-
tion models are below the unconditional historical average line. On average the nonparametric
method outperforms the historical average. Campbell and Thompson (2008) show that imposing
theoretically motivated restrictions on individual predictive regression models can improve their
out-of-sample performance. Our nonparametric prediction can improve the out-of-sample per-
formance without restrictions. We also get the similar results using the quarterly data. Figure
5.5, 5.7 and 5.9 illustrate the out-of-sample performance for individual methods using quarterly
data over 1-quarter, 1-year, and 3-year rolling windows.?’ Figure 5.6, 5.8 and 5.10 illustrate the
out-of-sample performance for combined methods using quarterly data over 1-quarter, 1-year,
and 3-year rolling windows.

Compared the individual forecast with the combined forecast, we find that combined predic-
tive models have lower RMSE than individual predictive models for the same forecasting horizon
h. Fama and French (1989) and others show that the existing predictor variables can detect
changes in economic conditions that potentially signal fluctuations in the equity risk premium.
But the dividend yield or term spread alone could capture different components of business con-
ditions, and a given individual economic variable may give a number of “false signals” and/or
imply an implausible equity risk premium during certain periods. Rapach, Strauss, and Zhou
(2010) argue that if individual forecasts based on the predictors are weakly correlated, forecast
combinatio should be less volatile and more reliably track movements in the equity risk premium.
This is one explanation why the combined forecast methods outperform the individual forecast
methods.

On the other hand, the nonparametric predictive model can fit the equity return better based
on the predictors. First, nonparametric prediction generates a forecast with a variance near that

of the smooth real equity return data, thereby reducing the noise in the individual predictive

20Figure 5.5, 5.7 and 5.9 can be found in the supplementary document for details.
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regression model forecasts. Second, combining forecast incorporates information from a host of
economic variables while the historical average ignores economic variables. Combined forecasts
have a substantially smaller bias than the historical average. Combining individual forecasts
helps to reduce forecast variability.

5.3 Economic Implication

In this section, we investigate how well our nonparametric predictive models capture true
expected returns implied by the models. Campbell and Thompson (2008) argue that even very
small positive R% 4 values, such as 0.5% for monthly data and 1% for quarterly data, can signal
an economically meaningful degree of return predictability in terms of increased annual portfolio
returns for a mean-variance investor. This provides a simple assessment of forecastability in
practice. To evaluate the economic significance, we calculate realized utility gains for a mean-
variance investor on a real-time basis, following Marquering and Verbeek (2004), Campbell and
Thompson (2008), Welch and Goyal (2008), Rapach, Strauss, and Zhou (2010), and Wachter
and Warusawitharana (2009). More specifically, we first compute the average utility for a mean-
variance investor with relative risk aversion parameter v who allocates her portfolio monthly
between stocks and risk-free bonds using forecasts of the equity premium based on the historical
average’!. A mean-variance investor who forecasts the equity premium using the historical
average will decide how to allocate the share of her portfolio to equities wp; = (%)(%ﬁ) in
period t 4+ 1 at the end of period t, where 8? 1 1s the rolling-window estimate of the variance of

stock returns. Over the out-of-sample period, the investor realizes an average utility level of:

o I,

o = o — (3174 (51)
where 11, and 88 are the sample mean and variance, respectively, over the out-of-sample period for
the return on the benchmark portfolio formed using forecasts of the equity premium based on the
historical average. We then compute the average utility for the same investor when she forecasts
the equity premium using an individual predictive regression model or combining method. She

will choose an equity share of w;; = (1/7)(F141/5,,,) and realizes an average utility level of:

~ IR
Vj = My — (5) ‘7? (5.2)

21'We assume that the investor estimates the variance using a ten-year rolling window of quarterly returns.
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where 7i; and 3? are the sample mean and variance, respectively, over the out-of-sample period for
the return on the portfolio formed using forecasts of the equity premium based on an individual
predictive regression model or combining method indexed by j. We measure the utility gain A
as the difference between (5.2) and (5.1), and the utility gain (or certainty equivalent return)
can be interpreted as the portfolio management fee that an investor would be willing to pay
to access the additional information available in a predictive regression model or combination
forecast relative to the information in the historical equity premium alone. We report results
for y= 3; the results are qualitatively similar for other reasonable v values. Table 5.5 report the
average utility gains for individual predictive models by using different methods. 13 of the 15
predictors produce positive utility gains relative to the historical average for all three forecast
models except for LTY and Book-to-Market ratio. The average utility gains shows that our
nonparametric forecast successfully produces a positive utility gain for all the predictors. Table
5.6 report the average utility gains for combined forecast. The utility gains associated with the
combined forecasts are sizable and positive and greater than the utility gains using the individual
methods. The key finding is that our nonparametric predictive models outperform the historical

average with statistically and economically meaningful margins for the out-of-sample periods.
6. CONCLUSION

The predictability of equity returns has been a long-standing problem in finance over decades.
In this paper, we develop a reliable and powerful nonparametric predictability test to examine
whether there exists the predictability of equity returns at short and long horizons. The prevailing
predictive variables, such as log dividend yields, log earnings yields, dividend payout ratio, short
rate, inflation, book-to-market ratio, investment to capital ratio, corporate issuing activity, and
consumption, wealth, and income ratio, have predictability power for equity returns at both

short and long horizons. The popular linear predictive regression models cannot fully capture
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the predictability due to the neglected nonlinear predictable components. We also compare
the in-sample and out-of-sample forecast performance of the conventional predictive regression
models with the historical mean model. We find that the prevailing predictive model outperforms
the historical mean model because it yields a smaller neglected signal-to-noise ratio based on our
test, which is different from the conclusion of Goyal and Welch (2007).

The poor out-of-sample performance of most linear predictive models is due to the limita-
tion of linear models. We propose two nonparametric estimators to forecast the equity returns.
Our nonparametric predictive models have lower RMSE than the historical mean model at both
short-horizon and long-horizon. Our nonparametric prediction can improve the out-of-sample
performance without restrictions. Using our nonparametric methods, both combined and indi-
vidual forecast outperform the historical average statistically and economically. The combined
forecast methods outperform the individual forecast methods for the out-of-sample periods.

Although motivated by investigating the predictability of equity returns, our econometric test
is applicable to examine predictability of other asset returns over the different time horizons. For

example, there are subjects of futher research such as bond returns and inflation rates.
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APPENDIX

Proof of Theorem 1: To prove theorem 1(i), we impose the following assumptions:
Assumption A.1: {Y,,,, X;} is a stationary time series process with mixing condition. The
marginal density function g(z) of X; is twice continuous differentiable with bounded second
derivatives and g¢(z) is strictly positive over the support of weighting function w(-) given in
Assumption A.5. The dimension of X; is d.

Assumption A.2: ¢, is a h-dependent process and ;. is independent of X, s < t.(a)
0 < E(},,|X:) = 02 a.s.; ()0 < E(e},,,) = D

Assumption A.3: \/E(B — ) = Op(1), where 5 = plim j.

Assumption A.4: The kernel function k& : R — [0, 1] is a symmetic, and twice continuously

differentiable probability density with bounded second derivatives.

Assumption A.5: w(-) is a positive continuous function over its support with / w(z)dr < oo

and /wz(x)dx < 0.
Assumption A.6: (i)b = b(n) = n~* — oo,where a € (0,1/d) and n = T — R. (ii)n*/R — 0,
where A < max{1 — ad, (1 + ad)}.

Assumption A.1 and A.2 are regularity conditions on the data generating process (DGP).
Given E(Y72,) < oo, there exists a measurable function r,(z) = E(ep]| Xy = x) which is
twice continuously differentiable with bounded second derivatives. Assumption A.3 allows for
any in-sample v/ R-consistent estimator for 3, which need not be asymptotically most efficient.
Assumption A.4 is a standard regularity condition on kernel function k(-). Assumption A.5 is the
regularity condition on the positive weighting function w(-). Assumption A.6 provides conditions
on the bandwidth b and the relative speed between R and n, the sizes of the estimation sample
and the prediction sample, respectively. Moreover, we allow the size of the prediction sample,
n, to be larger or smaller than or the same as the size of the estimation sample, R. This offers
a wide scope of applicability of our procedure, particularly when the whole sample {V;}7, is
relatively small.

Under the above regularity conditions, we have the following asymptotic results for the Q.
statistics.

To measure the departure of 7, (x) from zero over all x, we use the following global measure

Q(h) = L0 F(X)w(X,). Define Q*(h) = [ 77 (z)dz. We first show that Q(h)

and Q*(h) are asymptotically equivalent under HO.
Lemma 1.1: Under the conditions of Theorem 1, (n—h)Q(h) — (n— h)Q*(h) = 0,(b~%?) under

Hy.
Proof of Lemma 1.1: Because G(z ) — G(x) O,(n~'2 (Inn)®) where G(x) is the empirical
distribution function of X;, and (n — h) [72(z)w(z)g(z)dx = O,(b~?). Here we have made use
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of the well-known fact that

sup |G(z) — G(z)| = O,(nY% (Inn)?)

zeG

(see, e.g., Bentkus, Gotse and Tikhomirov (1997)) under Assumption A.1 and [ 77 (z)w(x)g(x)dz =
O,(n~*v~%) by Markov’s inequality. We have

T—h

(n—h)QMh) = Y Fr(X)w(X,)

t=R+1

— (n—h) / P2 (2)w(x)dG(z) + (n — h) / 72 (2)w(x)d[G(z) — G(x)

= (n=h) /?i(fﬂ)g(w)w(fﬁ)dx + Oy(sup |G(x) — G(2)))

zeG

— (n—h) / 72 (2)g(x)w(x)dz + Oy (n~ (Inn)?)0, (b~

= (n—h) /?i(x)g(x)w(:z:)dx + op(b_d/2)

given b x n=® for a € (0,1/d).This completes the proof of Lemma 1.1. m
Next we show that Q*(h) and @(h) are asymptotically equivalent under Hy, where @(h) =

[ 72 (x)g(x)w(x)dz and 73 (z) is defined in the same way as 77 (), with &, replacing ;.

Lemma 1.2: Under the conditions of Theorem 1, (n—h)Q*(h)—(n—h)Q(h) = (n—h) [T} (z)g(z)w(z)dz—
(n —h) [72(x)g(z)w(x)dr = 0,(b=Y?),under H.
Proof of Lemma 1.2: We decompose

(0= 1) [ F@ye)iG) ~ (1~ h) [ F)u(@)d6()

— (n—h) / Fal) — Ta(@) 2 w(@)dG(z) + 2(n — h) / Ful(2) Fa(z) — (@) w(2)dG (z)
= J, +2J,, say. (A.1)
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For jl, we further decompose

(n—h)"'S 0,

A

<Es+h

(n—h) 'S r

(=)' Y Kol

A

<€s+h

Ji :(n—M/:

<n—h>/_
(n— 1)~

T—h
Zs R+1

N

g(z)

(Bsrn — Esrn) Kp(r — Xs)r

eorn)Ki(z — X,) ] ’ 4G(x)
- Xy) |
— Esyn) Ky (7 — Xs)- ’ elt))

(-t [ 1
Hn—@/l@—hyl

jll + jlg, say.

T—h

2.

s=R+1

g9()

(és+h — €s+h)Kb(x - Xs)] [

dx

(A.2)

It suffices to consider the first term .Jy; in (A.2), since the second term Jip is a smaller

0.Under the null hypothesis E(e44]|X;) = 0, noting that

= X!(8 — B), we have

(0= 1) ST X8 - DKot X

T

g(z)

[0 = ) ST PR (o~ X)]

dx

order given sup,cq |j(x) — g(z)] L
Esth — Esyh = Yipn — X{ﬁ - (Yt+h - X{ﬁ)
j11 = (Tl — h)/
< [B-slPm—n [
= [[B=BI(n—h) = Op(R7%)’n
And j12 < jll |92(5U)/§2(37) - 1’ = Op

— g(z)| = op(1).

Supeec 19(x)

(jn - Supzea |§($)

g(z)
(A.3)
= Op(jn)

—g(z)]) = 0,(n/R) given

Next, we consider J, in (A.1). By the second order Taylor series expansion, we have

A

J2

(n—h) / () [Ph(x) = 7h(2)] w(z)dG(2)

-t |

()

G0yt |
O, (R/2)n0,(n"1?) =

This, together with (A.1) and (A.4), yields the desired result.

completed. m

Lemma 1.3: Under the conditions of Theorem 1, 6> = o2 + O,(n

OP<R_1/2TL1/2)
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(n—h)-! zfgﬂis&h) —een)Kol@ = Xo) s aoa)
—_1~T-h
7 (1) (n—h) Zng&j{ﬂhK"@ _ XS)w(a:)dG(x)

(A4)

The proof of Lemma 1.2 is

~1/2) under H.



Proof of Lemma 1.3: Since 62 = (n — h) ' Y1 _p. ¢2.,, and éyp, = Eryp — 74(X;), and the
same definition for 5> = (n — h)~! tT £+1 ¢7,y and €y, = 44, — 71 (Xy). Put Ay =& — cnn
= X,(8 = B) and B, = #,(X;) — #(X;), where 7,(X;) is defined in the same way as 7,(X;) with

€rrn replacing €;.5. Then we have

T—h

63 = (n_h)_l Z [éwh—fh(Xt)]Q

t=R+1

= (n—h)"" Z {(Been — ran) — [Fr(Xe) — F(X0)] + [eern — (X))}

t=R+1
and we can write
T—h T—h ) )
67 =62+ (n—h)"" D (A= B +2n—h)" D e — (XA - By, (A.5)
t=R+1 t=R+1

For the second term in (A.5), we first put

Kb(.QT - X ) .
S pa Ki(e — X))

Mmget =

Then ZZ:_]'; +1Ms = 1 for all s and B, = ZST:_}S 1 mgAs. Under Hy, we have

= X/(8-B) (A.6)

It follows that

(n—h) i (A, = B)? = (n—h)" S (At —~ stt/i5>

t=R+1 t=R+1

< 4|[B-BIP(n ZHXtW (™) (A7)

where the first term is O,(R™!) by the mean-value theorem, and Assumptions A.2 and A.3.
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For the third term in (A.5), we have

T—h
(n—h)"" Z [en — P(XD)](Ar — By)
t=R+1
T—h . . T—h . .
= (n—=h)" D (A —B)—(n—h)"" Y (X)) (A - By)
t=R+1 t=R+1

For the Ty term, by the Cauchy-Schwarz inequality, we have

T—h % T—h 2
A< oo Y fm] [<n—h>—1 S (- By
t=R+1 t=R+1
_ ()p(71_1/2b_d/2)()p<}%_1/2)
= 0, P PR) = 0,(n V), (A.9)

given Rb? — oo and (A.13), where (n—h) "' 3220 72(X,) = O,(n~'b=?) by Markov’s inequality,
E(et4n|Xt) =0 a.s. and Assumption A.1.

For the T} term, we decompose

T—h

Ty = (n—h)" > enn(A - By)

t= R+1

Z €t+hAt Z <"5t+hBt

t=R+1 t=R+1
= j&l__jl% say. (AulO)
Here, using (A.6), we have

T—h

Tiu=(n—h" > cnX/(B-P)=0,n"*R? (A.11)

t=R+1

where the first term is O,(n~Y2R~Y/2) by a second order Taylor series expansion, Chebyshev’s

inequality, the Cauchy-Schwarz inequality, and Assumptions A.2 and A.3; the second term is 0.
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For the T}, term in (A.10), recalling B, = ZZ’:_]ZH me A, and using (A.2), we have

T—h T—h
T12 = (n—h)fl Z Etth [(n—h)l Z mstAS

t=R+1 s=R+1
T—h T—h N
= (n—h)" Y e {(n )Y ma {Xt’(ﬁ - /3)] }
t=R+1 s=R+1
— O,(n" V2R (A.12)

Finally, for the first term 52 in (A.5), we have

T—h T—h T—h
i = (n—h)" Z e —(n—h)"12 Z evrnn(Xy) + (n—h)™! Z ™ (X:)
=R 11 t=R+1 =11

= [ol+ Op(n_1/2)] + Op(n_lb_d/2) + Op(n_lb_d)
= o2+ 0,(n1?),

given 3o, 1 72(X,) = O,(n~'b~%) by Markov’s inequality and 3", | £+474(X;) = Op(n~07%).
Collecting (A.5) and (A.7)—(A.12) yields the desired result of this lemma. m

With Lemma 1.3, we have (n— h)Q(h)/6% — (n— h)Q(h) /0% = (n— h)Q(h)/o2(62/6% — 1) =

O,(b=)0,(n12) = 0,(b=%2) given (n — h)Q(h) = O,(b=%) and nb® — oco. Therefore, we can
focus on (n — h)Q(h)/c>. .

We need to prove Q) = m(”fh)Q%/azfc/m KR N(0,1).
Proof of Theorem 1: The proof follows from Theorem 3.4 (Hong and Lee (2013)) with suitable

modifications with ¢, replaced by €,.,,. B
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