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Abstract: We document that the decline in the labor income share since the 1950s has been countered by

a rise in the income share of capital goods that embody information and communication technology (ICT).

In parallel, there has been substantial reallocation of labor income from occupations relatively substitutable

with ICT (routine) to ones relatively complementary (non-routine). These trends are consistent with the

view that ICT allows for the mechanization of tasks that traditionally required labor, a process known as

automation. Our calibration suggests that automation can account for half of the decline in the labor share,

but that it is unlikely to be the sole driver of the decline in the routine labor income share. A representative

agent framework suggests welfare gains of 4%.
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1. Introduction

The advent of information and communication technology (ICT) is widely viewed to have had trans-

formational effects on the distribution of income across factors of production. The discussion has centered

around two mechanisms: first, ICT may have lowered the demand for tasks that can easily be automated

relative to those that cannot, thus leading to a reallocation of labor income across occupations (e.g., Autor

and Dorn, 2013).1 Second, automation—the process of mechanizing certain tasks that traditionally required

labor—may have led to the reallocation of income from labor to capital, thus lowering the labor income

share (e.g., Karabarbounis and Neiman, 2014).2 While these distributional implications are broadly consid-

ered adverse, ICT has also been celebrated as an important engine of growth over the last few decades. Thus,

the policy discussion surrounding automation has often focused on striking a balance between the growth

gains from ICT and its potential distributional implications.

In this paper, we hope to further this discussion by providing some measurements of the potential distri-

butional implications of ICT and of its potential growth benefits. We begin by documenting the evolution of

income shares for different capital and labor inputs, disaggregated based on their relationship with ICT (see

Figure 1 and Table 1). We find a substantial reallocation of income from routine labor, which is relatively

more substitutable with ICT, to non-routine labor, which is relatively less substitutable with ICT, driven both

by changes in employment and by changes in average wages. In addition, we document a steep increase in

the income share of ICT capital, while the income shares of other capital types have remained trendless.

We then offer a structural interpretation of the observed trends, which allows us to comment on the

effects of automation. In particular, our quantitative analysis suggests that, in recent decades, ICT has been

responsible for about a third of output growth and about half of the decline in the labor income share. These

findings inform the policy debate on the welfare effects of automation by providing some estimates both of

the growth gains from ICT and of its implications for the distribution of income between capital and labor.

Our analysis further suggests that it is unlikely that automation is the sole driver of the decline in the

routine labor income share. We illustrate this by considering a model in which changes in the income share

1While many older contributions provide mostly conditional correlations, Akerman, Gaarder and Mogstad (2015) as well as
Gaggl and Wright (2017) are two recent examples providing estimates for the causal effects of ICT investments on the employment
and wage distribution. Their estimates confirm many of the earlier results (based mostly on conditional correlations) surveyed by
Acemoglu and Autor (2011).

2Further examples are Elsby, Hobijn and Sahin (2013) as well as Bridgman (2014).

2



Figure 1: The Division of Income in the US
(A) Labor’s Income Share (B) Capital’s Income Share
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Notes: Occupation specific income shares are based on CPS earnings data from the annual march supplement (1968 and after) and
rescaled to match the aggregate income share in the Non-Farm Business Sector (BLS). Non-routine workers are those employed
in “management, business, and financial operations occupations”, “professional, technical, and related occupations”, and “service
occupations”. Routine workers are those in “sales and related occupations”, “office and administrative support occupations”, “pro-
duction occupations”, “transportation and material moving occupations”, “construction and extraction occupations”, and “installation,
maintenance, and repair occupations” (Acemoglu and Autor, 2011). For details see Section 3. The construction of capital-type spe-
cific income shares is described in Section 2. The underlying data are nominal gross capital stocks and depreciation rates, drawn
from the BEA’s detailed fixed asset accounts.

Table 1: The Division of Income in the US

Labor Share Capital Share
Labor Share (%) Capital Share (%) Routine (%) Non-Routine (%) ICT (%) Non-ICT (%)

A. Raw Data
1950 63.56 36.44 0.63 35.80
1967 63.04 36.96 37.25 25.78 1.20 35.77
2013 57.05 42.95 20.68 36.37 4.10 38.85

Percentage Point Change
1967-2013 -5.99 5.99 -16.57 10.58 2.90 3.08
1950-2013 -6.52 6.52 3.47 3.05

B. Hodrick-Prescott Trend
1950 64.80 35.19 0.51 35.03
1967 63.85 36.13 37.93 26.07 1.18 34.89
2013 58.04 41.95 20.82 37.15 4.04 38.24

Percentage Point Change
1967-2013 -5.81 5.82 -17.11 11.08 2.86 3.36
1950-2013 -6.76 6.76 3.53 3.21

Notes: The table summarizes the long run trends in labor and cpaital shares as depicted in Figure 1. See the notes to Figure
1 for details on the data construction. Since our earnings data based on the CPS start in 1967 we report the disaggregated
labor shares only for the period 1967-2013. Panel A is based on raw data values while panel B uses a Hodrick-Prescott trend
to remove cylicality.
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of routine labor are driven solely by changes in relative factor supplies, in particular the increase in the ICT

capital stock. We find that this model is difficult to reconcile with the data given a standard nested CES

production framework. While, under some measurement assumptions, it is possible to match the observed

trends, doing so requires a very high elasticity of substitution between routine and non-routine labor, which

is arguably unrealistic. This suggests that other sources may be contributing to the trend in routine labor

income. For example, Autor, Dorn and Hanson (2013) emphasize the potential roles of offshoring and

international trade.

This paper is most closely related to the literature on the general equilibrium effects of declining capital

prices (e.g., Krusell, Ohanian, Rı́os-Rull and Violante, 2000; Autor and Dorn, 2013; Karabarbounis and

Neiman, 2014). Our main departure from this literature is an explicit focus on the distinction between ICT

and non-ICT (NICT) capital. Karabarbounis and Neiman (2014) and Autor and Dorn (2013) consider an

aggregate capital input. Closer to our decomposition, Krusell et al. (2000) and vom Lehn (2015) distinguish

between equipment and structures. The ICT capital class considered in this paper is a subset of the broader

class of equipment. Our focus on this narrower category is motivated by the rich literature emphasizing that

ICT features unique interactions with different types of labor (Acemoglu and Autor, 2011; Akerman et al.,

2015; Gaggl and Wright, 2017). While the analysis in Krusell et al. (2000) does not find an effect on the

labor income share, our model suggests that ICT changes the distribution of income between capital and

labor, consistent with Karabarbounis and Neiman (2014).

2. Decomposing The Capital Income Share

Our approach for disaggregating the capital income share follows Hall and Jorgenson (1967) and Chris-

tensen and Jorgenson (1969).3 Suppose that there are several types of capital, denoted Ki, with i = 1, ..., I .

If aggregate income is divided between capital and labor, then the share of payments to capital must satisfy

the following relation:

sK,t =

I∑
i

Ri,tKi,t

PtYt
= 1− sL,t, (1)

3For a few more recent contributions that use the same basic strategy to compute the return to specific types of captial in various
contexts see for example Jorgenson (1995), O’Mahony and Van Ark (2003), and Caselli and Feyrer (2007). We outline the basic
idea of our implementation to measure capital type specific income shares here and provide detailed derivations in Appendix B.
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where sK,t and sL,t denote the aggregate capital and labor income shares, respectively, PtYt denotes nominal

output, and Ri,t denotes the nominal rental rate of capital type i.

A no-arbitrage condition between different assets implies that, for every capital type i,

Ri,t + Pi,t+1(1− δi,t)
Pi,t

= 1 + rt, (2)

where rt is the market interest rate, δi,t is the depreciation rate and Pi,t is its nominal price of a unit of

capital. The left hand side is the rate of return on a unit of capital of type i, which is purchased at the price

Pi,t, rented out for a period and resold. The right hand side is the market return on investment. We show in

Appendix B how equations (1) and (2) allow us to compute an income share for each type of capital, defined

as si,t = Ri,tKi,t/(PtYt), using the labor income share, nominal current cost values for each type of capital,

capital-specific depreciation rates, and capital-specific price indexes.

To measure the current cost values of different types of assets, we use the BEA’s detailed fixed asset

accounts.4 We aggregate the BEA’s detailed industry-level estimates into three types of capital, classified ac-

cording to the BEA’s definition: residential assets, consumer durables and non-residential assets. Within the

non-residential and consumer durables categories, we distinguish between ICT and non-ICT (NICT) assets.

Within non-residential assets, we consider an asset to be ICT if the BEA classifies it as software (classifica-

tion codes starting with RD2 and RD4) or as equipment related to computers (classifications codes starting

with EP and EN). See Tables A.7 and A.8 in Appendix A for complete lists of the detailed assets grouped

into the two types of non-residential capital. Within consumer durables, we classify the following assets

as ICT: PCs and peripherals (1RGPC); software and accessories (1RGCS); calculators, typewriters, other

information equipment (1RGCA); telephone and fax machines (1OD50).5 Our definition of ICT capital is

4Official documenation for the BEA’s methodology to construct these estimates is available at
http://www.bea.gov/national/pdf/Fixed Assets 1925 97.pdf. Most macroeconomic studies using capital stocks utilize a sim-
pler version of the perpetual inventory method than the BEA’s estimates, usually based on linear constant depreciation and
aggregate real investment rates. We prefer the BEA’s estimates for several reasons: first, they are provided at the detailed asset
level; second, they allow for time varying non-linear depreciation patterns; finally, these estimates allow us to directly use nominal
stocks at current cost, rather than chain-weighted quantity indexes.

5We note that it is difficult to identify robots in the BEA classification. Industrial robots are perhaps the most relevant type
of robot within our context, especially in the earlier part of our sample. The International Robot Association defines this type of
capital as “automatically controlled reprogrammable, multifunctional manipulator with at least three programmable axes which
may be either fixed in place or mobile for use in industrial automation applications” (as defined in the standard ISO 8373: 1994).
Given the BEA’s asset classification these robots are most likely classified as “industrial machinery”, which we calssify as NICT.
However, the software components of the robots are classified in the software category, which we identify as ICT. Thus, within our
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Figure 2: Relative Prices & Depreciation
(A) Relative Capital Prices (B) Depreciation Rates
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Notes: Panel A graphs implicit price deflators by capital type expressed as a fraction of the GDP deflator, which were constructed
directly from the BEA’s detailed fixed-asst accounts. The BEA GDP deflator is taken from FRED. Panel B depicts asset-specific
depreciation rates constructed directly from the BEA’s fixed asset accounts. See Tables A.7 and A.8 in Appendix A and the text for
our grouping of assets.

in line with other available estimates of ICT, which we briefly discuss in Appendix E.

We measure the price indexes, Pi,t, and the depreciation rates, δi,t, directly from the BEA’s fixed asset

accounts.6 Panel A of Figure 2 depicts the path of prices for ICT and NICT assets relative to the GDP

deflator. This figure reveals that while the price of NICT capital relative to output remained essentially

constant throughout the entire sample, the relative price of ICT capital has fallen substantially. Panel B

of Figure 2 graphs the respective depreciation rates for each type of capital. The depreciation rate of ICT

capital is substantially higher than the depreciation rate of NICT capital and increases over time.

Panel B of Figure 1 illustrates the resulting estimates of the different capital income shares (also see

Table 1). The income share of NICT capital does not show any significant trend over the period 1950-2013.

In contrast, the income share of ICT capital has increased roughly seven-fold, from 0.63% in 1950 to 4.1%

framework, robots will show up both as ICT capital goods and as NICT capital goods that are complementary to ICT capital, which
we comment on in Section 5.1.

6We employ implicit price deflators that we construct for each type of capital based on chain type price indices provided
by the BEA to obtain a series for Pi,t. Notice that this involves constructing appropriate chain type quantity aggregates and
associated implicit price deflators for each capital type, derived from the BEA’s estimates of stocks and prices for the detailed
assets listed in Tables A.7 and A.8 in Appendix A. We use Fisher’s “ideal” formula to compute these chained aggregates. We
measure depreciation rates based on the BEA’s nominal values for depreciation and net capital stocks. That is, we compute δi,t =
(Pi,tDepi,t)/(Pi,tNetStock i,t+Pi,tDepi,t). Since both measures are reported in year-end nominal values, the price terms cancel.

6



Figure 3: Capital and its Rental Rate
(A) Capital Stock Relative to 1968 (B) Rental Rate of Capital
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Notes: Panel A graphs the stock of ICT and NICT captial relative to its 1968 level. Panel B depicts asset-specific real rental rates
(Ri,t/Pt) in % of final output, derived from expressions (B.5)-(B.6) in Appendix B. The underyling data are the BEA’s detailed
fixed-asset accounts. The dashed vertical lines indicate the year 1968.

by 2013.7

This accounting exercise suggests that roughly half of the decline in the labor income share is attributable

to the rise in the ICT income share. The remainder is due to a rapid rise in the NICT income share, partic-

ularly after 2001. Consistent with the findings of Rognlie (2015), a further decomposition of the increase

in the NICT capital income share in the post-2001 period reveals that this rise is accounted for entirely by

a rise in the income share of structures and residential capital (see Appendix C). After removing structures

and residential capital income, the NICT capital income share is stationary. If one assumes that trends in

real estate income are unrelated to automation, this measurement exercise suggests that about half of the

decline in the labor income share is potentially attributable to ICT.

We further document that the trends in the ICT and NICT income shares are primarily within-industry

phenomena. In particular, results presented in Appendix D show that the aggregate trends in ICT and NICT

income illustrated in Figure 1 and Table 1 are robust to the inclusion of industry fixed-effects. This suggests

that the disaggregated trends in the capital income shares are not merely a result of changes in industrial

composition.

7Our estimated trends are consistent with those reported in the Conference Board’s Total Economy Database (TED), covering
the period 1990-2016, as well as the Groningen Growth and Development Centre’s (GGDC) industry growth accounts, covering
1979-2003 (see Figure E.14 in Appendix E).
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Finally, it is it instructive to decompose the payments to capital, (Ri,t/Pt)Ki,t, into a price component

and a quantity component. To this end, we construct chained quantity indexes for the stocks of ICT and

NICT capital based on Fisher’s “ideal” formula and the BEA’s fixed asset accounts. Figure 3 shows that

while the stock of ICT has increased, its rental rate has declined.

3. Decomposing The Labor Income Share

An extensive literature in labor economics distinguishes between two types of labor based on their

interactions with ICT (Acemoglu and Autor, 2011). The first type of labor executes primarily “routine”

tasks, that require following exact, pre-specified decision trees (or routines). By their very nature, these tasks

are prone to automation. The second type of labor is intensive in non-routine tasks that require judgement,

creativity or interpersonal skills, deeming them less readily prone to automation.

We measure the income shares of several occupation groups, using two alternative measures of earnings

at the occupation level from the U.S. Current Population Survey (CPS): annual earnings from the March

supplements (MARCH) starting in 1967 (provided by IPUMS, Ruggles, Alexander, Genadek, Goeken,

Schroeder and Sobek, 2010); and weekly earnings from the CPS outgoing rotation groups (ORG) starting

in 1979 (drawn from the basic monthly CPS files provided by the NBER). Panel A of Figure 4 illustrates

that the two alternative measurements result in very similar estimates of the aggregate labor share, which are

both highly correlated with the BLS’s labor share within the total non-farm business sector (which includes

benefits, pensions, etc.).

For each occupation, we divide the aggregate annual wage bill by nominal GDP to obtain the occu-

pation’s share of wage and salary earnings in aggregate income.8 We categorize occupations as “routine”

or “non-routine” based on the classification in Acemoglu and Autor (2011). That is, we consider work-

ers employed in “management, business, and financial operations occupations”, “professional, technical,

8We use CPS sampling weights to estimate the aggregate wage bill at the detailed occupation level. For the ORGs, which are
drawn from the raw CPS basic files, this requires several non-trivial adjustments to the raw data. First, since the U.S. Department
of Labor’s (DOL) classification of occupations changes several times during our sample period, we aggregate individuals into a
panel of 330 consistent occupations, designed by Dorn (2009). We thank Nir Jaimovich for providing a crosswalk between Dorn’s
(2009) occupation codes and the latest Census classification that is used in the CPS since 2011. This crosswalk is the same as in
Cortes, Jaimovich, Nekarda and Siu (2014). Second, we follow Champagne, Kurmann and Stewart (2017) and adjust top coded
earnings based on Piketty and Saez’s (2003) updated estimates of the cross-sectional income distribution. While top-coded earnings
values may pose less of a problem in many microeconomic analyses, they potentially introduce substantial bias when estimating
the aggregate wage bill for high-wage occupations.
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Figure 4: Labor’s Share in Income: CPS-ORG and CPS-MARCH
(A) Aggregate Labor Income Share (B) Routine/Non-Routine Income Shares
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Notes: Panel A contrasts aggregate income shares (as a fraction of GDP) based on the CPS outgoing rotation groups (ORG) as well
as annual earnings from the CPS March supplement (MARCH), aggregates reported in the NIPA tables, as well as the BLS’s estimate
for the total non-farm business sector that includes benefits, self employed, proprietors income, and other non-salary labor income.
The aggregate series are drawn from FRED. The series labeled “CPS-ORG (R+NR)” and “CPS-MARCH (R+NR)” are constructed
from our occupation specific earnings based on CPS ORG and MARCH earnings. Panel B contrasts our estimates for the routine
and non-routine income shares based on ORG and MARCH data, respectively.

and related occupations”, and “service occupations” as non-routine; and we define routine workers as ones

employed in “sales and related occupations”, “office, clerical, and administrative support occupations”,

“production occupations”, “transportation and material moving occupations”, “construction and extraction

occupations”, and “installation, maintenance, and repair occupations”. This classification emerges out of

an extensive literature, surveyed by Acemoglu and Autor (2011), that originated from the seminal work by

Autor, Levy and Murnane (2003). They and many other contributions in this line of research use detailed

information on the task content of at least 300 detailed occupations (depending on the study) obtained from

the Dictionary of Occupational Titles (DOT) and its successor O*Net. The classification used here is the

“consensus aggregation” suggested by Acemoglu and Autor (2011), that captures the key insights from the

more detailed micro analyses. We drop farm workers from all our analyses for comparability with the BLS

measure of the labor income share.

Finally, we proportionately rescale group-specific income shares (which originally add up to the series

labeled “CPS-ORG(R+NR)” and “CPS-MARCH(R+NR)” in panel A of Figure 4) so that they match the

share of non-farm business labor income in GDP, as estimated by the BLS. Panel B of Figure 4 presents the

resulting estimates of the routine and non-routine labor income shares. Consistent with the labor economics
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Figure 5: Income Shares of Major Occupations

A. Income Share Levels B. Percent Change from 1983
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Notes: Panel A plots income shares for five major occupation groups. Panel B shows percent deviations from 1983 to illustrate trend
growth. Occupation specific income shares are based on CPS earnings data from the annual march supplement (MARCH, 1967 and
after) and rescaled to match the aggregate income share in the Non-Farm Business Sector (BLS).

literature, we find that, in the U.S., the decline in the aggregate labor share is entirely accounted for by

routine occupations, while the income share of non-routine labor has been rising.

To illustrate that these trends are not an artifact of aggregation, Figure 5 plots the income shares of the

five major occupations that are used for the routine/non-routine classification. The income shares of both

non-routine occupation groups are increasing at similar rates throughout the sample. In the routine category,

the income shares of the three major occupation groups have exhibited somewhat different trends before the

1990s, but very similar trends since.

In analogy to our decomposition of capital income shares, we would like to decompose these trends in

income shares into trends in wages and trends in labor inputs. However, in the case of labor, such a de-

composition is less straightforward: while the BEA provides quality-adjusted quantity indexes for different

capital types, quality-adjusted measures of routine and non-routine labor inputs are not readily available.

Constructing quality-adjusted measures of labor inputs requires making some assumptions about the

economic environment. To illustrate, consider two alternatives: first, imagine a frictionless economy in

which labor is a homogeneous input and workers can transition freely between routine and non-routine

occupations. In this case, observed differences in wages must reflect (possibly unobserved) differences in

quality, such as differences in ability, experience or education. As wages per unit of quality are equalized

across occupations, the different income shares of routine and non-routine occupations must reflect differ-

ences in quality-adjusted labor inputs, rather than differences in wages.
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Figure 6: Routine & Non-routine Labor (Relative Quantities & Prices)
(A) Relative Quantities (B) NR Wage Premium
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Notes: Panel A plots relative employmnet (expressed as percent of routine workers) based on two alternative measurement assump-
tions: the raw data and “effective” employment under the assumption of a homogeneous labor input. Panel B plots the non-routine
wage premium (NRP), defined as 100 × (wnr/wr − 1), where wnr and wr represent non-routine and routine wages, for the two
alternative measurement approaches: raw CPS average wages; zero NRP by assumption.

Second, consider the opposite extreme, in which routine and non-routine labor are completely differen-

tiated inputs, and it is impossible to convert routine labor into non-routine labor (or vice versa). Given that

routine workers cannot become non-routine workers, there are no limits on the size of the premium paid to

non-routine work. In this economy, the increase in the income share of non-routine work relative to routine

work may reflect an increase in the relative quantity of non-routine labor, an increase in the relative payment

to non-routine labor, or both.

Figure 6 presents a comparison of these two alternatives. Under the assumption of homogenous labor

inputs, the wage per unit of quality-adjusted labor is equalized across occupations, and hence the rising

relative income share of non-routine labor is attributed entirely to a rise in the quality-adjusted quantity of

non-routine labor. In contrast, under the assumption of differentiated labor inputs, the rise in the relative

income share of non-routine labor is attributed both to a rise in relative labor inputs and to a rise in relative

pay. For this scenario, the measurement in Figure 6 is based on simple employment counts and average

wages, which do not take into account any changes in the composition of labor inputs. Appendix F presents

alternative ways to account for changes in observed labor composition; however, it turns out that these

alternative measurements do not affect our main results, and we therefore relegate their detailed discussion

to Appendix F.
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4. A Calibrated Production Function

The relative stability of the NICT capital income share suggests a production function that is a Cobb-

Douglas aggregate of NICT capital (Kn) and a composite input, X , which is produced by ICT (Kc), routine

labor (Lr) and non-routine labor (Lnr). Specifically, using lower case letters to denote variables normalized

by aggregate labor (e.g., `r = Lr/L and `nr = Lnr/L, with L ≡ Lr + Lnr), we write the aggregate

production function as

y = kαnx
1−α (3)

In the spirit of Krusell et al. (2000), we specify the composite x as the following nested CES aggregator:

x =
[
η`θr + (1− η)zθ

] 1
θ (4)

z = [γkσc + (1− γ)`σnr]
1
σ (5)

where η, γ ∈ [0, 1] and θ, σ ≤ 1.9

To calibrate the parameters of this production function, we use the first order conditions of a compet-

itive firm. Taking wages and rental rates as given, the firm’s optimality conditions imply the following

relationships between relative quantities and relative income shares:

ln

(
sc
snr

)
= ln

(
γ

1− γ

)
+ σ ln

(
kc
`nr

)
(6)

ln

(
sr
sz

)
= ln

(
η

1− η

)
+ θ ln

(
`r
z

)
(7)

where sc, snr, sr and sz are the income shares of kc, `nr, `r, and z, respectively. Our baseline approach uses

measured trends in income shares and quantities from the previous sections to calibrate the four parameters

γ, σ, η, and θ using the following two steps:10

9We note that, in principle, there are three ways to nest the CES composite x. We illustrate in Appendix G that, for the
alternatives, our calibration strategy delivers parameter values that are either inconsistent with the CES asumptions or require the
unrealistic assumption that routine and non-routine labor are perfect substitutes.

10As an alternative to this two step approach we also fit equations (6) and (7) jointly using GMM. The results are almost identical
and are shown in Appendix H. The GMM specification also allows us to consider trends in birth rates 15 years ago, as a possible
instrument for trends in labor supply, following Jaimovich, Pruitt and Siu (2013). The results are virtually identical, which is not
surprising given that our strategy targets long-run trends.
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1. Estimate γ and σ using OLS and compute the implied quantities for z

2. Estimate η and θ using OLS, based on the implied series for z from step 1

Note that this calibration strategy targets the trends in the relative income shares of ICT capital and both

routine and non-routine labor. By focusing on relative rather than absolute income shares and excluding

NICT capital, our calibration attributes only the rise in the ICT capital income share to automation, allowing

for part of the decline in the aggregate labor income share to reflect other factors.

This calibration strategy requires taking a stance on the quantities of routine and non-routine labor.

Table 2 shows the calibration results for the two alternative approaches for measuring `r and `nr detailed in

Section 3.11 Given our focus on long run trends, we eliminate short run fluctuations by using a fitted log

linear trend rather than the raw data series for all regressions shown in Table 2.12

Panel A of Table 2 reports the results under the assumption of homogeneous labor inputs, while panel

B reports the results under the assumption of differentiated labor inputs. While the first approach (panel A)

suggests an estimate of θ = 0.876 < 1, the second approach (panel B) results in a point estimate of θ > 1,

which is inconsistent with our CES production framework.

To develop intuition for these results, it is useful to observe that ICT capital income is small relative to the

income of non-routine labor. If we ignore ICT capital income, the production function of x is approximately

a two-factor CES aggregate of routine and non-routine labor (x ≈ (η`θr + (1 − η)`θnr)
1/θ). If we treat

routine and non-routine labor as differentiated inputs, we are faced with a situation in which both the relative

quantity of non-routine labor and the relative wage of non-routine labor are increasing over time. This

is inconsistent with a fixed two-factor CES demand system, which requires an increase in relative factor

supplies to be met with a decrease in their relative marginal products. When, instead, we treat routine and

non-routine labor as homogeneous labor inputs, the relative wages of routine and non-routine labor are

equalized by assumption; this is consistent with the two-factor approximation x ≈ `r + `nr (or θ ≈ 1), in

which the marginal products of routine and non-routine labor are always 1. By incorporating the contribution

of ICT capital, we are able to obtain an estimate of θ < 1.

11In Appendix H we illustrate that additional alternatives, including chained quantity indexes for labor, yield results that mirror
those based on raw employment counts and average wages. We therefore omit these results in the main text.

12We note that the results are virtually identical when we do not de-trend the data series or if we use the first and last observation
only. For transparency and in the interest of space we only report the results based on log linear trends here.
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Table 2: Calibration of production parameters

A. Homogeneous Labor B. Differentiated Labor

(A.1) (A.2) (B.1) (B.2)

ln
(
sc
snr

)
ln

(
sr
sz

)
ln

(
sc
snr

)
ln

(
sr
sz

)
ln (kc/`nr) 0.299*** 0.275***

(0.006) (0.005)
ln (`r/z) 0.876*** 1.071***

(0.003) (0.004)
Constant -5.201*** 0.138*** -5.037*** -0.100***

(0.053) (0.001) (0.046) (0.001)

Obs. 47 47 47 47

Estimated Parameters & Implied Elasticities
γ 0.005 0.006
σ 0.299 0.275
EOS(kc, `nr) 1.427 1.379

η 0.535 0.475
θ 0.876 1.071
EOS(z, `r) 8.039

Notes: The table shows OLS estimates for the the parameters in equations
(6) and (7) based on the two-step procedure described in the text: in step
one, we estimate (6); in step two, we estimate (7) conditional on the results
from step one. All regressions use fitted log-linear trends as data inputs, in
order to eliminate the influence of cyclical fluctuations. Panel A assumes labor
inputs are homogeneous and relative labor inputs therefore equal relative labor
income shares; panel B directly uses employment counts and average wages
from the CPS MARCH data. Standard errors are reported in parentheses below
each coefficient. Significance levels are indicated by * p < 0.1, ** p < 0.05,
and *** p < 0.01.

5. Counterfactual Analysis

To comment on the potential benefits of automation, we consider a representative agent model, in which

an infinitely lived household solves the following optimization problem:

max
ct,kn,t+1,kc,t+1,`r,t,`nr,t,xt,zt,yt

∞∑
t=0

βtu(ct)

subject to `r,t + `nr,t = 1, yt = kαnx
1−α
t , equations (4)-(5), and the budget constraint

ct + (1 + g)
∑
i

pi,tki,t+1 = yt +
∑
i=n,c

pi,t(1− δi,t)ki,t (8)
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where ct is consumption per-worker and g is the growth rate of aggregate labor, Lt.

Note that, in this model, labor is a homogeneous input that is allocated optimally across routine and

non-routine occupations. We specify the model in this way for two reasons: first, because alternative spec-

ifications with differentiated labor inputs result in calibrations of the aggregate production function that are

inconsistent with the assumption of a time-invariant CES production framework (see Table 2). Second,

assuming a homogenous labor input that can be costlessly reallocated between routine and non-routine oc-

cupations is a useful benchmark for providing an upper bound on the welfare effects of automation. Since

we are simulating a representative agent framework which ignores potential distributional implications, it is

natural to focus on obtaining an upper bound.

We consider two sources of exogenous variation. The first and most relevant is the decline in the relative

price of ICT capital, pc,t. While prices are conceptually endogenous variables, in this context the price of

ICT capital can be interpreted as the real transformation rate of output into ICT capital (see also Karabar-

bounis and Neiman, 2014). The second source of exogenous variation is time variation in the depreciation

rate of ICT capital, which, as we document, is quite substantial (see Figure 2). Taken together, these two

sources of variation capture changes in the “effective” price of ICT capital from the viewpoint of an investor.

Staring from an initial steady state, we simulate the transition to a final steady state, given the paths

of the ICT capital price and its depreciation rate between 1950-2013. Along this transition, we assume a

perfect foresight equilibrium.13

We compare this baseline simulation with two sets of counterfactuals: first, we hold both the price of ICT

capital and its depreciation rate fixed at the initial steady state level. Second, we compute a counterfactual

transition in which we keep the price of ICT capital fixed but let its depreciation rate vary. This second

counterfactual allows us to disentangle the effects of the fall in the ICT capital price from the effects of the

rise in the ICT capital depreciation rate.

Our simulations are based on the calibration of the core production parameters from Section 4 (panel

A of Table 2) and the values reported in Table 3. The value of β, the discount factor, is calibrated based

13While identifying 1950 and 2013 with initial and final steady states is perhaps an oversimplification, it is worth noting that the
relative price of ICT is essentially flat in the early 1950s, falls rapidly starting in the early 1960s and starts to flatten out in the mid
2000s. Similarly, the rate of ICT depreciation is essentially flat at the beginning and end of our sample, but rises rapidly over the
period 1980-2000 (see Figure 2).
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Table 3: Calibration of Remaining Parameters

Parameter Calibration

β 0.9737
u(c) ln(c)

δn 0.0733 (mean of NICT depreciation, BEA data)
α 0.3505 (mean of NICT share, BEA data)
g 0.0192 (trend growth in aggregate labor index; see Figure F.18)

pc,t ∈ [0.254, 1.727] (BEA data, 1950-2013)
δc,t ∈ [.137, 0.206] (BEA data, 1950-2013)

Notes: The ICT price and depreciation rates are measured directly based on the BEA’s fixed
asset accounts.

on our estimates of the returns to capital.14 Given our focus on long run trends, we assume log utility,

or a unitary inter-temporal elasticity of substitution, which is consistent with the wide range of empirical

estimates (see, for example, the discussion and references listed by Guvenen, 2006). For the depreciation

rate of NICT capital we take the average value of our BEA-based estimates. Likewise, we calibrate the

NICT capital intensity, α, using the average of our estimated NICT capital income share, ignoring any short

term fluctuations around this average.

Figure 7 presents a comparison of the baseline simulations and the counterfactuals, alongside the rele-

vant empirical counterparts.15 Table 4 summarizes the steady state comparisons. The analysis suggests that

the changes in the price and depreciation rate of ICT led to a 3.46 percentage point decline in the aggregate

labor share (panel C of Table 4), approximately half of the observed decline of 6.52 percentage points over

the period 1950-2013 (Table 1).

Our simulated transition paths further allow us to comment on the sources of the decline in the routine

labor income share. Over the period 1967-2013, our baseline simulation predicts a 13.37 percentage point

decline in the routine labor income share and a 10.45 percentage point increase in the non-routine share. This

decomposition suggests that 10.45 percentage points of the 13.37 percentage point decline in the routine

share (78%) are reallocated to non-routine labor, and the remaining 2.92 percentage points (22%) are reallo-

14The steady state Euler equation implies that β(1 + r) = 1, where r is the return to capital. We assume that the returns to
capital before 1980 are roughly at their steady state level and calibrate β based on this relation.

15The empirical counterparts for output and capital inputs are normalized to match the average level of output per (composition
adjusted) worker during the first 15 years of our calibration sample, starting in 1967.
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Figure 7: Counterfactual Simulations

A. Labor Share B. Output

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
57

58

59

60

61

62

63

64

65

66

In
c
o
m

e
 S

h
a
re

 (
%

 o
f 
G

D
P

)

Labor Share: Baseline

Labor Share: Constant ICT price

Labor Share: Data (BLS)

Initial SS

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
10.1

10.15

10.2

10.25

10.3

10.35

10.4

10.45

10.5

10.55

10.6

L
o

f 
o

f 
Q

u
a

n
ti
ty

 I
n

d
e

x

Output: Baseline

Output: Constant ICT price

Output/Worker: Data (BEA/CPS)

C. Routine & Non-Routine Income Shares D. Routine & Non-Routine Quantities

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
20

22

24

26

28

30

32

34

36

38

40

In
c
o
m

e
 S

h
a
re

 (
%

 o
f 
G

D
P

)

Routine: Baseline

Non-Routine: Baseline

Routine: Data

Non-Routine: Data

Routine: Const. ICT price

Non-Routine: Const. ICT pr.

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
E

m
p

lo
y
m

e
n

t 
S

h
a

re
 (

%
)

Routine: Baseline

Non-Routine: Baseline

Routine: Data

Non-Routine: Data

Rout.: Constant ICT price

Non-Rout.: Const. ICT pr.

E. ICT & Non-ICT Income Shares F. ICT & Non-ICT Quantities

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
0

5

10

15

20

25

30

35

40

In
c
o
m

e
 S

h
a
re

 (
%

 o
f 
G

D
P

)

ICT: Baseline

Non-ICT: Baseline

ICT: Data

Non-ICT: Data

ICT: Constant ICT price

Non-ICT: Constant ICT price

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
6

7

8

9

10

11

12

L
o
g
 o

f 
Q

u
a
n
ti
ty

 I
n
d
e
x

ICT: Baseline

Non-ICT: Baseline

ICT: Data

Non-ICT: Data

ICT: Constant ICT price

Non-ICT: Const. ICT pr.

Notes: Each figure shows our baseline simulation (solid red and blue), data (thin black), and counterfactual simulations (dotted red
and blue). All Simulations are initialized in a steady state consistent with the ICT price and depreciation in 1950.
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Table 4: The Effects of the Declining ICT Price

A. Output & Consumption

Log. Output Log. Consumption

Baseline Counterf. Diff. Baseline Counterf. Diff.

Initial SS 10.20 10.20 0.00 9.79 9.79 0.00
Final SS 10.34 10.19 0.15 9.87 9.78 0.09
100 × Change 13.77 -1.49 15.26 8.47 -0.99 9.46

B. ICT and NICT Capital

Log. ICT Log. Non-ICT

Baseline Counterf. Diff. Baseline Counterf. Diff.

Initial SS 7.46 7.46 0.00 11.45 11.45 0.00
Final SS 10.22 6.86 3.37 11.59 11.44 0.15
100 × Change 276.66 -60.02 336.68 13.65 -1.49 15.14

C. Labor Share

Agg. Labor Share (%) Routine Share (%) Non-Routine Share (%)

Baseline Counterf. Diff. Baseline Counterf. Diff. Baseline Counterf. Diff.

Initial SS 63.14 63.14 0.00 35.58 35.58 0.00 27.55 27.55 0.00
Final SS 59.68 63.51 -3.83 19.98 37.93 -17.95 39.71 25.58 14.13
Change -3.46 0.37 -3.83 -15.61 2.35 -17.95 12.15 -1.98 14.13

D. Capital Share

ICT Share (%)

Baseline Counterf. Diff.

Initial SS 1.81 1.81 0.00
Final SS 5.27 1.44 3.83
Change 3.46 -0.37 3.83

Notes: The table shows steady state changes for the baseline and counterfactual (constant ICT price) simulations. To gauge the
impact of falling ICT prices on output, consumption, the stocks of ICT and NICT capital, labor and capital shares we compute the
difference between the initial and final steady state for both simulations, along with the difference in differences.

cated to ICT capital.

The model further suggests that the declining price of ICT capital has led to steady state consumption

and output gains of 8.47% and 13.77%, respectively. We compute a measure of welfare gains, λ, as the

permanent increase in consumption necessary to compensate the representative household for remaining in
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Figure 8: Welfare and Consumption Gains by Cohort
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Notes: Panel A shows equivalent permanent consumption gains (λ) for different evaluation years t0 and panel B graphs contempo-
raneous consumption gains (100× [ct/c1950 − 1]).

the counterfactual (in which the price and depreciation rate of ICT remain constant). Formally,

1

1− β
ln

([
1 +

λ

100

]
c1950

)
=
∞∑
t=t0

βt−t0 ln(ct) (9)

Figure 8 illustrates this measure for different evaluation periods (t0), alongside the underlying contempora-

neous consumption differences, defined as 100× (ct/c1950− 1). The welfare gains are substantially smaller

for generations optimizing in the 1950s compared to those optimizing in the 2000s and later. These differ-

ences are driven by two forces: the cost of foregone consumption in order to finance capital accumulation,

and time discounting. Since contemporaneous consumption differences are negligible until 1980 (panel B

of Figure 8), the differences in welfare gains over the period 1950-1980 are primarily driven by discounting.

Our simulations suggest that the welfare gains for generations optimizing in 1980 are approximately 4%.

5.1. Growth Accounting

Economists have long sought to gauge the overall contribution of ICT to output growth. Most existing

estimates are based on growth accounting exercises in the spirit of Solow (1957)—a decomposition of

the growth in output into the marginal contributions of each production input. However, due to the low

19



income share of ICT capital, this technique tends to attribute only a small portion of output growth to the

accumulation of ICT capital (e.g., Colecchia and Schreyer, 2002; Basu, Fernald, Oulton and Srinivasan,

2003; Jorgenson and Vu, 2007; Acemoglu, Autor, Dorn, Hanson and Price, 2014).

Using steady state comparative statics, we illustrate how traditional growth accounting exercises under-

state the long-run aggregate output gains from ICT by about 50%, in large part because they fail to account

for an important general equilibrium (GE) effect: investments in ICT capital tend to trigger complementary

NICT investments.16 It is worth pointing out that the general equilibrium amplification that we emphasize is

not unique to this model, and illustrates a more general issue with interpreting growth accounting exercises.

A growth accounting exercise is an accounting framework that attributes changes in output to changes

in inputs. The growth accounted for by a marginal unit of ICT capital is:

∂ ln y

∂ ln kc
= (1− α) ∂ lnx

∂ ln kc
(10)

To assess the indirect effect of ICT on NICT capital accumulation, recall that, in our neoclassical growth

model, the steady state condition for NICT capital is given by:

αkα−1
n x1−α = const⇒ ln kn = const+ lnx (11)

Using the above, we can quantify the general equilibrium (GE) effect of the growth in kc as follows:

∂ ln y

∂ ln kc
+

∂ ln y

∂ ln kn

∂ ln kn
∂ ln kc

= (1− α) ∂ lnx
∂ ln kc

+ α
∂ lnx

∂ ln kc
(12)

=
∂ lnx

∂ ln kc

This expression suggests the following simple relationship between the direct accounting effect and the

16Note that the work by Stiroh (2002) as well as Brynjolfsson and Hitt (2003) has found comparatively large gains from ICT
by resorting to growth accounting exercises at the firm or industry level. However, the discrepancies between micro and macro
estimates based on traditional growth accounting exercises are not surprising and possibly have a different interpretation. Intuitively,
a growth accounting exercise at the industry (or firm) level will attribute a larger growth contribution of ICT to more ICT intensive
industries, even if all industries had the same amount of ICT investment. The implied aggregate effects will then depend on the
cross-sectional distribution of the output share of industries (or firms) with various ICT intensities. The argument we make in this
paper is that even in industries with a low ICT intensity, the growth contribution of ICT may be substantial if there are sufficient
complementarities with NICT.
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Table 5: Contribution of ICT to Output Growth

Growth Contribution of ICT

USA % of USA
Decade % growth perc. points total pp. due to NICT

(1) (2) (3) (4)

1950s 2.08 0.04 1.72 0.38
1960s 3.41 0.04 1.10 0.18
1970s 1.26 0.07 5.90 1.49
1980s 2.54 0.11 4.37 1.79
1990s 2.40 0.24 10.13 2.63
2000s 0.86 0.47 54.26 12.05
2010s 0.97 0.35 35.64 12.86

1950-2016 1.73 0.17 9.81 2.66

Notes: Column 1 shows the implied, constant, annual growth rate of
real GDP per capita for various time periods in the US. Real GDP
(GDPC1) and the civilian non-institutionalized population of age 16 and
older (CNP16OV) are taken from FRED. Column 2 shows model pre-
dicted growth in GDP per capita due to the falling price of ICT. Column
3 expresses ICT’s contribution (column 2) as a percent of USA (column
1). Column 4 shows the portion of column 3 that is due to NICT invest-
ments and is based on an alternative counterfactual simulation in which
the stock of NICT capital is fixed at it’s initial steady state value. The differ-
ence in the growth contribution between the baseline simulation and this
counterfactual can be attributed to complementary NICT investments.

general equilibrium effect:

GE growth contribution of kc =
Direct growth contribution of kc

1− α
(13)

As the NICT capital income share is α ≈ 0.35, the general equilibrium contribution of ICT will be

roughly 1.5 times its direct accounting contribution. In our simulation, the income share of ICT is roughly

0.03, and the growth in ICT capital is close to 300%. The direct effect is therefore approximately 0.03 ·

300% = 9%. The contribution of NICT capital accumulation is 0.35 · 13% ≈ 4.5%. The GE contribution

of ICT to growth is the sum of the two contributions, amounting to approximately 13.5%.

Table 5 compares the growth rate of output per capita in our simulations with the growth in real GDP

per-capita in the United States. Our simulation suggests that ICT accounted for less than 5% of US growth

until the 1980s, around 10% of US growth during the 1990s, and more than 30% of US growth since 2000.

Our structural framework also allows us to assess what portion of this growth contribution is due to the

indirect accumulation of NICT capital. We accomplish this by simulating another counterfactual, in which

we exogenously keep the NICT stock at its initial (1950) steady state level. The difference between this
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counterfactual and our baseline simulation illustrates the portion of ICT-induced growth that is strictly due

to complementary NICT investments. Column 4 of Table 5 shows that this contribution was relatively minor

prior to the 1990s, but larger in recent decades.

5.2. The Elasticity of Substitution Between Capital and Labor

A large literature, going back at least to Blanchard (1997) and Caballero and Hammour (1998), has

discussed the central role of capital-labor substitutability for the division of income between capital and

labor. However, the elasticity of substitution between these two factors is hard to estimate, and the values

reported in the literature range anywhere between 0.5 and 1.5.17 In light of this debate, we find it useful to

discuss this elasticity within the context of our model.

Like in the work by Miyagiwa and Papageorgiou (2007) and Oberfield and Raval (2014), the aggregate

elasticity of substitution in our framework is an endogenous, time-varying object. Moreover, as Blackorby

and Russell (1989) discuss, Hicks’ original notion of the elasticity of substitution was developed for produc-

tion functions with two inputs and there is some ambiguity of this concept within production structures with

additional inputs. However, we show below that we can avoid this ambiguity by constructing a two-factor

production function for any pair of inputs, or aggregation of inputs, which gives rise to the same factor de-

mand system as our original four-factor production function. Hicks’ original notion of a two-factor elasticity

of substitution can then be applied, and all its properties (e.g., symmetry) are preserved.

To compute the aggregate elasticity of substitution (EOS) between capital and labor in our model, we

specify the following time varying production function in aggregate capital, K, and aggregate labor, L:

Ft(K,L) = y(`∗r , `
∗
nr, k

∗
i , k
∗
n) (14)

where (`∗r , `
∗
nr, k

∗
i , k
∗
n) = arg max

`r,`nr,kc,kn
y + (1− δn)kn + (1− δi)pc,tkc

s.t. L = `r + `nr

and K = pc,t−1kc + kn

17See for example, Berndt (1976), Antràs (2004), Klump, McAdam and Willman (2007), Karabarbounis and Neiman (2014),
Piketty (2014), Oberfield and Raval (2014), Alvarez-Cuadrado, Long and Poschke (2015), Herrendorf, Herrington and Valentinyi
(2015), or Glover and Short (2017).
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Figure 9: Calibrated Elasticities of Substitution Between Capital and Labor
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Notes: The figure plots calibrated elasticities of substitution based on two-factor
production functions like (14) and (15). Numerical values for these elasticities
are computed for each point along our our baseline simulation.

Note that `∗r , `
∗
nr, k

∗
n and k∗c must satisfy the first order conditions in our original model from Section 5.

Using this two-factor production function, the elasticity of substitution between capital and labor can then be

obtained by numerically solving for the change in relative income shares, [MPL(K,L)×L]/[MPK(K,L)×

K], induced by a change in relative quantities, L/K.18

Our findings suggest an elasticity of substitution between capital and labor that is very close to unity, not

far from the most reliable estimates in the literature. As Figure 9 illustrates, the average elasticity of substi-

tution between 1950-2013 is 1.046. In a model with a single capital input and using steady state comparative

statics, Karabarbounis and Neiman (2014) show that an elasticity of about 1.25 generates approximately half

of the observed fall in the aggregate labor share in response to a 25% drop in the relative price of capital.19

18It is straightforward to verify that Ft(K,L) is a constant returns to scale production function, and thus the relative income
shares of capital and labor depend only on the capital-labor ratio.

19We note that, while similar, the two exercises can’t be compared directly. For example, Karabarbounis and Neiman (2014)
measure investment prices (i.e., an investment share weighted aggregate price index) while we measure the price of the ICT and
NICT stocks. Investment weighted price indexes produce a much larger drop in the aggregate price index than stock weithed
indexes. Thus, a direct, stock-weighted aggregation of our prices would require an even larger elasticity of substitution in order to
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Our model generates roughly the same decline in the aggregate labor income share with a significantly lower

elasticity of substitution. The key to this result is that, in our model, the decline in the price of capital is

concentrated in the type of capital which is relatively more substitutable with labor.

To illustrate this, we use a similar approach to compute the elasticities of substitution between ICT

capital and different labor inputs. For example, to compute the elasticity of substitution between ICT capital

and routine labor, we specify the following two-factor production function with ICT capital and routine

labor inputs:

Ft(`nr, kc) = y(`∗r , `nr, kc, k
∗
n) (15)

where (`∗r , k
∗
n) = argmax

`r,kn
y(`r, `nr, kc, kn)− wr,t`r − (rt + δn)kn

We find that the elasticity of substitution between routine labor and ICT capital ranges between 2.14 in

1950 to 3.27 in 2013, while the elasticity of substitution between ICT and non-routine labor is constant at

1/(1− σ) = 1.427.

5.3. The Elasticity of Substitution Between Routine and Non-Routine Labor

Another elasticity that is key for our results is the elasticity of substitution between routine and non-

routine labor, which we can compute based on the following two-factor production framework:20

Ft(`r, `nr) = y(`r, `nr, k
∗
c , k
∗
n) (16)

where (k∗n, k
∗
c ) = argmax

kn,kc
y(`r, `nr, kc, kn)− (rt + δn)kn − (1 + rt)pc,t−1kc + (1− δc,t)pc,tkc

Our model implies an elasticity of 7.8 over the period 1950-2013 (Figure 10). While there there are no good

estimates for this particular elasticity, we note that our estimate falls on the high-end of available empirical

estimates of the elasticity of substitution between different types of labor. For example, Hamermesh and

rationalize half of the fall in the labor share in a model with aggregate capital and labor as the only production inputs. However,
given the structure of our neo-classical growth model, the price of the ICT stock is the relevant price measure to conduct steady
state comparative statics.

20Similar to equation (14), it is easily verified that Ft is a constant returns to scale production function, and hence the elasticity of
substitution can be computed based on changes in the relative income shares of routine and non-routine labor induced by changes
in their relative quantities.
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Figure 10: Calibrated Elasticity of Substitution Between Routine and Non-Routine Labor

1950 1960 1970 1980 1990 2000 2010 2020

Year

7.75

7.8

7.85

7.9

7.95

8

8.05

E
la

s
ti
c
it
y
 O

f 
S

u
b

s
ti
tu

ti
o

n

EOS(R,X) = 1/(1-θ)

EOS(R,NR)
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simulation.

Grant (1979) survey an older literature that estimates the EOS between various “types” of workers (including

production vs. non-production, educated vs. non-educated, etc.) which range from marginally negative to as

large as 12. Two recent papers estimate elasticity parameters that are conceptually very close to ours and fall

at the lower end of this range: Goos, Manning and Salomons (2014) estimate an EOS between a continuum

of tasks with differing “routine intensity” of 0.9, while Lee and Shin (2017) find an EOS between “workers”

and “managers” of 0.341.

Our calibration of a high EOS is a result of attributing the entire decline in the routine labor income

share to changes in relative factor supplies. To illustrate this point, consider an alternative specification of

the production structure, in which the production parameter η, which governs the demand for routine labor,

evolves exogenously according to:
ηt

1− ηt
= a exp(ρt) (17)

for some ρ and a > 0. In our baseline calibration, ρ = 0 and η is time invariant. An alternative parameteri-
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zation of ρ < 0 implies an exogenous decrease in the relative demand for routine labor, which is unrelated

to the increase in the ICT capital stock. Under these assumptions, equation (7) can then be rewritten as

ln

(
sr,t
sz,t

)
= a+ ρt+ θ ln

(
`r,t
zt

)
(18)

Equation (18) implies that any given trend in relative income shares can be accounted for by different

combinations of θ and ρ. Moreover, a lower θ (and hence a lower elasticity of substitution between routine

and non-routine labor) can be made consistent with observed trends when combined with a lower ρ.

As an illustration, Figure 11 presents the simulation results obtained from a calibration that targets

EOS(`r, `nr) = 1/3, very close to the estimate of Lee and Shin (2017).21 Here, the counterfactual sim-

ulation is one in which both the price of ICT capital and its depreciation rate are held fixed, but η evolves

exogenously according to the law of motion (17). This alternative calibration attributes a smaller share of the

declining labor income share to the declining price of ICT capital. While the baseline simulation continues

to imply a 3.5pp decline in the labor income share between steady states, part of this decline is attributed to

the exogenous decline in η. Note that a decline in the demand for routine labor is equivalent to an increase

in the demand for z, and hence for ICT capital. In this environment, automation is driven both by cheaper

ICT capital and by an exogenous process that increases the demand for z.

A less-than-unitary elasticity of substitution between routine and non-routine labor implies that the fall

in the ICT price increases the income share of routine labor, while reducing the income share of non-routine

labor (Panel C of Figure 11). This is due to complementarity: an increase in the quantity of z relative to

`r increases the relative income share of `r. Of course, other specifications of the aggregate production

function may alter these comparative statics while maintaining the elasticity of substitution between routine

and non-routine labor.

Given the wide range of estimates for the EOS discussed above, Table 6 illustrates the implications for

the aggregate labor share over the period 1950-2013 under alternative assumptions about the EOS. For all

calibrations, the model accounts for approximately half of the measured 6.5pp decline in the aggregate labor

share over this period. The table shows that ICT accounts for as much as 60% of this decline, even with an

21To match an average elasticity of substitution between routine and non-routine labor of 1/3, we calibrate θ = −2.0303,
a = 0.8775 and ρ = −0.075.
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Figure 11: Counterfactuals: Exogenous Path of Routine Intensity
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Table 6: Model Predicted Decline in the Labor Share (1950-2013)

Perc. Point Decline in the Labor Share (1950-2013)

Calibrated Parameters due to ICT

(1) (2) (3) (4) (5) (6) (7) (8)
EOS(`r, `nr) θ a ρ ∆sL due to trend in η pp % of total

0.25 -3.000 1.1240 -0.0999 -3.47 -1.43 -2.05 58.91
0.33 -2.030 0.8775 -0.0750 -3.43 -1.40 -2.03 59.26
0.70 -0.429 0.4704 -0.0339 -3.31 -1.30 -2.01 60.68
0.90 -0.111 0.3898 -0.0258 -3.28 -1.27 -2.02 61.40
1.50 0.333 0.2768 -0.0144 -3.21 -1.17 -2.04 63.62
3.00 0.667 0.1921 -0.0058 -3.10 -0.95 -2.15 69.47
5.00 0.800 0.1582 -0.0024 -2.98 -0.65 -2.33 78.10
7.00 0.857 0.1437 -0.0009 -2.86 -0.35 -2.51 87.65
8.00 0.875 0.1391 -0.0005 -2.81 -0.20 -2.61 92.74

Notes: The table reports the percentage point decline in the aggregate labor share over the period 1950-
2013. Column 1 reports alternative targets for EOS(`r, `nr) and Colums 2-4 report the corresponding
calibrated parameter values. Column 5 reports the predicted, percentage point decline in the labor share
due to the combined impact of an exogenous trend in η as well as a changing ICT price and depreciation.
Columns 6-8 decompose the overall decline from Column 5 into the portion due to the exogenous trend
in η and the portion due to ICT accumulation. The final decomposition is derived from the counterfactual
paths as displayed in Figure 11 for the case of EOS(`r, `nr)=1/3.

elasticity of substitution that is as low as 1/4.

This exercise illustrates that a lower elasticity of substitution between routine and non-routine labor can

be made consistent with observed trends if there is an exogenous decline in the demand for routine work.

Given that attributing the entire transformation in labor income to changes in factor supplies necessitates

a very high elasticity of substitution between routine and non-routine labor, we conclude that additional

factors are likely contributing to the decline in the routine labor income share.

6. Concluding Remarks

The discussion on the social costs and benefits of automation can roughly be divided into two issues: its

effects on aggregate consumption and its distributional implications. The general consensus is that, while

there is likely a positive effect on aggregate consumption, there are some adverse distributional implications.

This paper sets out to inform this discussion in two ways. First, we document changes in the income

shares of different factors of production in order to comment on the potential distributional implications of

ICT. Our analysis suggests that the income share of ICT capital has increased by about 3pp and that this

increase has come at the expense of labor income. Within labor, we document a large shift in the distribution
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of income between routine and non-routine occupations. However, our analysis suggests that it is unlikely

that the accumulation of ICT capital is the sole driver of this shift. In particular, given the small income

share of ICT capital, the large simultaneous increases in the relative employment in non-routine occupations

and the relative pay for non-routine work are difficult to reconcile with a standard production function with

time invariant parameters. Doing so requires a very high elasticity of substitution between routine and

non-routine labor, which is likely unrealistic.

Second, our analysis informs the discussion by providing an upper bound on the aggregate welfare

gains from automation. We find that, in a representative agent model, the declining price of ICT capital

generates an aggregate welfare gain of about 4%. By construction, this estimate ignores any potential

adverse distributional implications, as well as any costs associated with reallocating labor from routine to

non-routine occupations. Hence, a 4% welfare gain should be interpreted as an upper bound.
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Appendix A. Classification of ICT and Non-ICT Assets

Table A.7: ICT Assets
Share of Aggregate Capital (%) Average Growth in Share (%)

ICT Assets 1960-1980 1980-2000 2000-2013 1960-1980 1980-2000 2000-2013

EP20: Communications 2.73 3.91 3.39 2.87 1.78 -2.63
ENS3: Own account software 0.24 0.75 1.56 27.26 6.68 2.58
ENS2: Custom software 0.11 0.61 1.40 34.82 8.49 2.06
EP34: Nonelectro medical instruments 0.35 0.76 1.08 4.87 2.97 2.30
EP36: Nonmedical instruments 0.51 0.92 0.92 0.62 2.41 -1.08
ENS1: Prepackaged software 0.02 0.33 0.83 32.28 14.63 -1.04
EP35: Electro medical instruments 0.11 0.36 0.66 7.25 3.43 4.28
EP1B: PCs 0.00 0.31 0.45 12.12 0.96
RD23: Semiconductor and other component manufacturing 0.05 0.23 0.43 6.58 8.21 2.75
RD22: Communications equipment manufacturing 0.26 0.21 0.27 3.27 0.89 0.24
EP31: Photocopy and related equipment 0.53 0.75 0.26 6.75 -2.11 -7.70
EP1A: Mainframes 0.19 0.36 0.24 24.00 1.91 -4.97
EP1H: System integrators 0.00 0.03 0.23 42.85 3.45
RD24: Navigational and other instruments manufacturing 0.05 0.19 0.22 3.20 5.78 -1.59
EP1D: Printers 0.07 0.22 0.19 20.75 7.20 -9.76
EP1E: Terminals 0.02 0.14 0.16 71.14 5.48 -4.62
EP1G: Storage devices 0.00 0.17 0.12 7.55 -9.55
EP12: Office and accounting equipment 0.48 0.32 0.12 -3.09 -5.00 -6.13
RD40: Software publishers 0.00 0.05 0.09 16.91 -1.13
RD21: Computers and peripheral equipment manufacturing 0.16 0.09 0.07 3.68 -3.07 -0.60
RD25: Other computer and electronic manufacturing, n.e.c. 0.01 0.01 0.02 0.91 3.24 -0.34
EP1C: DASDs 0.09 0.13 0.00 30.38 -36.26 -78.36
EP1F: Tape drives 0.06 0.03 0.00 22.77 -40.33 -186.06

Notes: The data are drawn from the BEA’s detailed fixed asset accounts. ICT assets are defined as BEA asset codes starting
with EP, EN, RD2, or RD4. Notice that the EP category incorporates two assets that are strictly speaking likely not ICT: EP34 and
EP36. Our results do not critically hinge on these two assets and we therefore stick with the more standard BEA aggregation of
EP. Assets are ranked by their average share in aggregate capital during 2000-2013. The share of aggregate captial is the value of
each individual asset, as estimated by the BEA at current cost, as a fraction of the value of all assets in Tables A.7 and A.8. Panel A
reports averages of these shares for three time periods. Panel B reports the average annual growth in these shares over same three
time periods.
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Table A.8: Non-ICT Assets
A. Average Share of Aggregate Capital (%) B. Average Growth in Share (%)

Non-ICT Assets 1960-1980 1980-2000 2000-2013 1960-1980 1980-2000 2000-2013
SOO1: Office 4.75 6.99 8.28 1.59 2.14 0.12
SI00: Manufacturing 8.27 8.07 6.96 0.22 -0.44 -1.39
SM01: Petroleum and natural gas 3.91 3.63 5.20 0.12 -2.30 6.54
SU30: Electric 6.44 5.48 4.73 -0.18 -1.79 0.89
SC03: Multimerchandise shopping 2.21 2.77 3.05 1.46 0.69 0.59
EI50: General industrial equipment 3.42 3.40 2.95 0.32 -0.60 -0.75
SB31: Hospitals 1.70 2.52 2.86 3.69 1.06 0.51
SU20: Communication 2.80 2.51 2.66 0.70 -1.09 1.79
SC02: Other commercial 1.55 2.00 2.47 1.43 1.41 0.38
SB41: Lodging 1.58 1.83 2.32 1.40 1.76 0.47
EI60: Electric transmission and distribution 2.87 2.50 2.16 -0.79 -0.64 -0.21
EI40: Special industrial machinery 2.63 2.52 1.95 -0.36 -0.07 -3.33
SB20: Educational and vocational 1.56 1.36 1.92 -0.26 0.68 2.78
SC01: Warehouses 1.18 1.40 1.89 0.54 1.57 1.03
ET30: Aircraft 1.17 1.59 1.79 5.36 0.94 0.37
EO80: Other 1.09 1.44 1.75 2.30 1.18 0.71
EO12: Other furniture 1.37 1.67 1.74 -0.45 1.68 -1.35
SB42: Amusement and recreation 1.84 1.67 1.70 -0.46 0.54 -1.44
SN00: Farm 3.48 2.46 1.69 -0.63 -2.66 -2.11
RD11: Pharmaceutical and medicine manufacturing 0.23 0.65 1.68 4.70 6.63 5.22
SU40: Gas 2.70 1.89 1.66 -1.66 -1.72 0.35
SC04: Food and beverage establishments 1.19 1.51 1.58 1.47 0.84 -0.51
SB10: Religious 2.11 1.57 1.51 -0.70 -0.73 -0.82
EI30: Metalworking machinery 2.32 2.10 1.49 0.46 -1.25 -3.31
ET11: Light trucks (including utility vehicles) 0.93 1.05 1.42 0.45 2.48 -2.56
RDOM: Other manufacturing 1.47 1.50 1.19 0.00 0.04 -1.13
ET20: Autos 1.80 1.67 1.14 -1.79 -0.33 -4.27
ET12: Other trucks, buses and truck trailers 1.59 1.46 1.02 0.54 -1.43 -3.04
SU11: Other railroad 4.14 1.86 0.97 -4.62 -3.94 -3.77
SU12: Track replacement 2.66 1.39 0.97 -4.22 -2.69 -1.34
SOO2: Medical buildings 0.57 0.83 0.95 1.55 1.90 0.25
EO40: Other construction machinery 1.16 1.02 0.94 1.79 -2.11 1.37
AE10: Theatrical movies 0.97 0.67 0.86 -4.28 2.37 0.00
AE20: Long-lived television programs 0.69 0.79 0.86 0.39 1.91 -0.55
EO60: Service industry machinery 1.14 0.94 0.85 -1.61 -0.49 0.00
EI12: Other fabricated metals 1.42 1.20 0.75 0.83 -3.88 -0.19
RD80: All other nonmanufacturing, n.e.c. 0.09 0.75 0.72 3.04 8.28 -3.34
SB32: Special care 0.41 0.62 0.71 3.70 1.59 -0.74
ET50: Railroad equipment 2.12 1.09 0.66 -1.97 -4.52 -0.75
EO30: Other agricultural machinery 1.58 1.11 0.63 0.61 -4.71 -0.74
EI21: Steam engines 0.75 0.57 0.46 0.16 -3.01 0.43
SU50: Petroleum pipelines 0.95 0.57 0.45 -2.76 -3.29 1.69
AE30: Books 0.40 0.42 0.43 -0.37 1.02 -0.54
ET40: Ships and boats 0.92 0.68 0.40 -0.91 -3.72 -1.18
RD92: Other nonprofit institutions 0.22 0.35 0.38 3.94 2.25 0.23
RD31: Motor vehicles and parts manufacturing 0.40 0.44 0.36 0.45 0.79 -4.90
SM02: Mining 0.31 0.40 0.35 2.12 -1.30 1.93
RD12: Chemical manufacturing, ex. pharma and med 0.59 0.47 0.34 0.04 -0.98 -1.58
EO50: Mining and oilfield machinery 0.54 0.39 0.31 0.73 -5.74 7.21
SO01: Water supply 0.23 0.28 0.28 0.22 1.25 -0.60
EO21: Farm tractors 0.69 0.44 0.28 -0.08 -4.65 -0.28
SO02: Sewage and waste disposal 0.24 0.29 0.28 0.26 1.16 -1.21
RD32: Aerospace products and parts manufacturing 0.33 0.41 0.25 2.09 -0.28 -2.54
AE40: Music 0.21 0.20 0.20 0.14 1.37 -4.21
RD70: Scientific research and development services 0.00 0.06 0.19 11.29 4.20
SO04: Highway and conservation and development 0.15 0.18 0.18 0.27 1.20 -0.44
SB43: Air transportation 0.15 0.15 0.17 0.74 1.03 -0.69
AE50: Other entertainment originals 0.18 0.17 0.17 -1.71 1.53 -2.58
SU60: Wind and solar 0.00 0.01 0.16 12.44 25.22
EO72: Other electrical 0.12 0.19 0.14 2.74 -0.20 -1.74
SO03: Public safety 0.14 0.10 0.11 -0.96 0.17 -0.55
RD60: Computer systems design and related services 0.00 0.03 0.11 22.31 2.68
EO11: Household furniture 0.16 0.13 0.10 0.19 -2.30 -1.38
EO22: Construction tractors 0.28 0.18 0.09 0.39 -5.15 -3.98
EI22: Internal combustion engines 0.09 0.08 0.08 -0.80 -1.19 0.43
SB44: Local transit structures 0.51 0.17 0.07 -6.06 -5.15 -4.84
EI11: Nuclear fuel 0.03 0.10 0.06 27.52 -3.93 -1.86
RD91: Private universities and colleges 0.03 0.04 0.06 0.95 2.71 3.68
SOMO: Mobile structures 0.05 0.07 0.05 0.35 1.29 -3.77
SB46: Other land transportation 0.04 0.03 0.05 -0.72 1.04 2.80
RD50: Financial and real estate services 0.00 0.02 0.05 22.33 -0.88
EO71: Household appliances 0.09 0.05 0.03 -2.09 -4.08 -2.35
SB45: Other transportation 0.02 0.02 0.02 -0.70 0.56 -0.71
Notes: The data are drawn from the BEA’s detailed fixed asset accounts. Assets are ranked by their average share in aggregate
capital during 2000-2013. The share of aggregate captial is the value of each individual asset, as estimated by the BEA at current
cost, as a fraction of the value of all assets in Tables A.7 and A.8. Panel A reports averages of these shares for three time periods.
Panel B reports the average annual growth in these shares over same three time periods.
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Appendix B. Construction of Capital Income Shares

This appendix outlines our approach to measure income shares directly from the BEA’s nominal current

cost values of detailed asset categories. As discussed in Section 2, our measurement exercise relies on two

assumptions: First, no-arbitrage in capital markets requires the return net of depreciation (2) to be equalized

across all types of capital, which can be written more compactly as

(1 + πi,t)
Ri,t
Pi,t

+ CGi,t = 1 + rt (B.1)

where (1 + πi,t) ≡ Pi,t+1/Pi,t captures price inflation and CGi,t = (1 + πi,t)(1− δt) are capital gains (net

of depreciation) for capital of type i.

Second, we impose constant returns to scale in aggregate production (equation (1)), and thus the follow-

ing condition must hold:

sK,tPtYt =
∑
i∈I

Ri,tKi,t (B.2)

where sK,t is a measure of the income share paid to reproducible capital. Equations (B.1) and (B.2) imply

the following expressions for the relative price adjusted rental rates for each capital type i = {c, n}:

PR c,t =
Rc,t
Pc,t

=
Pn,tKn,t

P̃tK̃t

(CGn,t − CGc,t) + (1 + πn,t)sK,t
PtYt

P̃tK̃t

(B.3)

PRn,t =
Rn,t
Pn,t

=
Pc,tKc,t

P̃tK̃t

(CGc,t − CGn,t) + (1 + πc,t)sK,t
PtYt

P̃tK̃t

(B.4)

where P̃tK̃t ≡ (1 + πn,t)Pc,tKc,t + (1 + πc,t)Pn,tKn,t. Based on (B.3) and (B.4) we then compute the

income shares for each type of capital as

sc,t = PR c,t
Pc,tKc,t

PtYt
(B.5)

sn,t = PRn,t
Pn,tKn,t

PtYt
(B.6)
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Appendix C. The Income of Different Types of Capital

Figure C.12: Relative Prices & Depreciation
(A.1) Relative Capital Prices (B.1) Relative Capital Prices
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Notes: Panels A.1 and B.1 graph implicit price deflators by capital type relative to the GDP deflator, which were constructed directly
from the BEA’s detailed fixed-asst accounts. The BEA GDP deflator is taken from FRED. Panels A.2 and B.2 depict asset-specific
depreciation rates constructed directly from the BEA’s fixed asset accounts.
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Figure C.13: Capital’s Income Share
(A) Equipment vs. Structures (B) Residential vs. Non-Residential
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Notes: Panel A decomposes the NICT share into equipment and structures. Panel B decomposes the NICT share into residential
and non-residential capital. The computations are based on the methodology described in Section 2 and the underlying data are
nominal gross capital stocks and depreciation rates, drawn from the BEA’s detailed fixed asset accounts. The vertical dashed line
indicates the year 2001.

Table C.9: Within Industry Trends in Capital Income Shares

ICT Share Non-ICT Share

(1) (2) (3) (4)

Ann. Trend Growth (%) 3.873*** 3.873*** 0.0692 0.0692
(0.327) (0.193) (0.205) (0.0601)

Industry FEs yes yes
Observations 1197 1197 1197 1197

Notes: The table shows regressions of 100 times the log ICT and NICT shares on
a time trend for an annual panel of 19 broad sectors over the period 1949-2012.
Columns 1 and 3 report pooled regressions while columns 2 and 4 condition on a
complete set of fixed effects for 19 broad sectors. Sector specific income shares
are based on the BEA fixed asset accounts and the BEA’s estimates of sector
specific value added and constructed as in Eden and Gaggl (2015). Standard
errors are HAC robust and significance levels are indicated by * p < 0.1, **
p < 0.05, and *** p < 0.01.
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Appendix D. The Role of Industrial Composition

We construct industry-specific ICT and NICT shares as in Eden and Gaggl (2015) based on the BEA’s

detailed fixed asset accounts. We then estimate the average annual growth rates in these income shares both

with and without industry fixed effects. Table C.9 reports the results.

Appendix E. Comparison with Other ICT Measures

While there are several data sources that provide ICT related statistics, we are not aware of any database

other than the BEA fixed asset accounts, that reports quality adjusted prices and stocks of ICT capital for the

US. However, we are able to construct measures for the ICT share from two alternative data sources, whose

growth patterns are comparable.

First, a direct estimate for the ICT share is provided by the Conference Board’s Total Economy Database

(TED, https://www.conference-board.org/data/economydatabase/) for the period 1990-2016, defining ICT

as “hardware, software and communication equipment”.22 Second, the Groningen Growth and Development

Centre’s (GGDC) industry growth accounting database (IGA, http://www.rug.nl/ggdc/projects/iga) defines

ICT as “software, computers and communications equipment” and reports ICT’s share in total capital com-

pensation at the industry level.23 These industry estimates are available for the period 1979-2003, and in

order to make them comparable to our aggregate numbers, we use data on value added by sector from the

BEA as well as the GGDC’s estimates of industry level labor shares, in order to construct a value added

weighted average of the ICT share across industries. While these two alternative sources do not report the

exact list of tangible and intangible assets included in their definition of ICT hardware, software and com-

munication equipment, the definitions appear broadly consistent with our list of ICT assets reported in Table

A.7. Panel A of Figure E.14 plots the levels of our estimates for the ICT share in comparison to the the two

alternatives.

Unfortunately, the levels of these three measures are difficult to compare directly for several reasons.

First, the GGDC database does not report value added by industry. While the BEA does report value added

22See https://www.conference-board.org/retrievefile.cfm?filename=TED SourcesMethods nov20161.pdf&type=subsite for de-
tails.

23See http://www.rug.nl/ggdc/docs/eu productivity and competitiveness.pdf for details.
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Figure E.14: Alternative ICT Share Measures (TED, GGDC)
(A) ICT and NICT Shares (B) ICT Share (normalized)
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Notes: Panel A displays our BEA based measure of the ICT share alongside two alternatives provided directly by the Conference
Board’s Total Economy Database (TED) and constrcuted from industry level estimates of ICT capital compensation by the Gronigen
Growth and Development Center’s (GGDC) industry growth accounting database (IGA). Since all three datasources use a different
measure of the labor share as a baseline to decompose factor compensation, panel B reports the ICT share for all three measures
normalized to 100 in 2001.

by industry, the industry classification/aggregation is not the same and it is not possible to construct a one-

for-one concordance in order to construct the appropriate industry weights. In part due to this problem, and

in part because the GGDC does not cover all industries, the value added weighted average of the GGDC’s

industry level labor shares does not match the BLS’s measure of the aggregate labor share used in our

calculations. Likewise, the TED database also uses a different measure of the aggregate labor share as a

baseline for their decomposition of factor compensation.

Thus, it is perhaps more meaningful to compare the growth trends of the ICT share. To facilitate this

comparison, Panel B of Figure E.14 reports normalized versions of all three estimates for the ICT share. One

can see that, while the levels in panel A do not match very well, the growth patterns appear very similar.

Given that our analysis is mostly focused on trends, the similarity in growth trajectories is reassuring.

As another alternative, the OECD reports ICT investment as a fraction of total fixed capital formation,

based on the following definition: “information technology equipment (computers and related hardware);

communications equipment; and software. Software includes acquisition of pre-packaged software, cus-

tomized software and software developed in-house” (https://data.oecd.org/ict/ict-investment.htm). Finally,

while the EU KLEMS database reports ICT specific measures for many countries, it does not report ICT

39

https://data.oecd.org/ict/ict-investment.htm


and NICT separately for the US (http://www.euklems.net/eukISIC4.shtml).

Appendix F. Alternative Composition Adjusted Labor Inputs

This appendix considers different measures of quality-adjusted routine and non-routine labor that ac-

count for changes in observed worker characteristics. We construct quantity indexes by estimating employ-

ment and wage bills within demographic cells based on the following characteristics:

1. five major occupations groups: Managerial, Professional, and Technical; Sales, and Administrative;

Service; Precision Production, Craft, and Repair; Operatives and Laborers

2. four age groups: 16-19; 20-29; 30-49; 50-99

3. gender: male, female

4. three racial groups: White; Black; Other

5. six education groups: None or preschool; Grades 1-4; Grades 5-8; Grades 9-11/12; High school

degree/some college; 2-Year College or more

6. six major sectors: Mining/Constr.; Manufacturing; Transp./Comm./Oth. Util.; Trade; Finance; Ser-

vice

To construct chain indexes, we would ideally like a balanced panel of “demographic bins”, each with

a total wage bill and a total employment count. However, since the CPS is a survey, we naturally end up

with some empty cells, even if the demographic bins are fairly coarse. In order to deal with this problem

we interpolate any “gaps” in the time series, and extrapolate/interpolate using polynomials at the beginning

and end of the sample.24 The demographic bins were chosen as a middle ground between narrow enough

cells to pick up interesting variation in compositional changes, while at the same time limiting the amount

of imputed values. Equipped with a panel of demographic cells, we then use Fisher’s “ideal” formula (and

1979 as the base year) to construct chained aggregates, analogously to our chain weighted quantity indexes

for ICT and NICT capital.

24Even though we are ultimately interested in long run trends, we require that at least 40% of each time series (for a demographic
bin) are actual data points and at most 60% of the series is imputed with a log linear trend. We have checked the robustness of
our results with respect to different cutoffs (including 100% data) and we do not notice much difference for the resulting trends in
quantity indexes and implicit price deflators. The main benefit of keeping as many bins as possible is that the aggregate wage bill
in the balanced panel is almost identical to the one measured in the raw, unrestricted data when we choose our 40% cutoff.
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Figure F.15: Major Occupations: Employment and Real Wage Growth

A.1 Routine Employment A.2 Non-Routine Employment
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Notes: Raw data are drawn from the CPS March supplement and shown as thin lines. Chain indexes are shown as thick lines and
are constructed for the following demographic cells: 5 major occupations, gender, 3 race groups, 4 age groups, 5 education groups,
and 6 industry groups. The base year for the chain indexes is 1979.

The resulting chain indexes for five major occupation groups and their associated implicit price deflators

are displayed as thick lines in Figure F.15. As a reference, raw employment counts and average wages within

each occupation group are illustrated as thin lines in the respective color/pattern. These figures indicate

that part of the increase in both routine and non-routine wages is reflecting changes in the demographic

characteristics of workers, suggesting that part of the measured wage increase should be interpreted as

changes in quantities. This is reflected in upward adjustments of the quantity indexes relative to the raw

employment counts. On the flip-side, the implicit price deflators are adjusted downward relative to average

wages. Taken together, Figures F.15 (five major occupations) and F.16 (routine/non-routine) suggest that

both non-routine wages and the quantity of non-routine labor inputs grew systematically faster than in the
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Figure F.16: Routine/Non-Routine Occupations: Employment and Real Wages

A.1 Employment Levels A.2 Employment Growth from 1983
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Notes: Raw data are drawn from the CPS March supplement and shown as thin lines. Chain indexes are shown as thick lines and
are constructed for the following demographic cells: 5 major occupations, gender, 3 race groups, 4 age groups, 5 education groups,
and 6 industry groups. The base year for the chain indexes is 1979.

routine group.

An alternative way to decompose the routine and non-routine income shares into price and quantity

components is based on cross sectional estimates of the non-routine wage premium (NRP). We estimate the

following cross-sectional regression model separately for each year, t:

lnwi,t = β0,t + β1,tNR i,t + β2,tXi,t + εi,t for t ∈ {1967, . . . , 2013}, (F.1)

where NR i,t is a dummy variable indicating that individual i works a non-routine job in year t and Xi,t

includes a variety of control variables. In particular, we include gender, race, and full-time employment
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Figure F.17: The Non-Routine Wage Premium

A. Wage Premium in Levels B. Percent Change from 1983
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Notes: The figure plots the premium paid to non-routine work relative to routine work for three specifications: average wages in
the raw data; implicit price deflators for chained quantity indexes; and 100× [exp(β̂1,t)− 1] from regression models (F.1) with Xi,t
containing the following demographic control variables: gender, race, and full-time employment dummies, a control for the weeks
worked, a full set of industry fixed effects (12 broad sectors), as well as forth order polynomials in age, education, and the interaction
of education and age.

dummies, a control for the weeks worked, a full set of industry fixed effects (12 broad sectors), as well as

forth order polynomials in age, education, and the interaction of education and age.

We estimate equation (F.1) based on individual level data from the annual CPS March supplements

(using CPS sampling weights). Figure F.17 illustrates these estimates by plotting the time series of 100 ×

[exp(β̂1,t) − 1] alongside alternative measures. These estimates highlight that the rising relative wage for

non-routine labor is not entirely driven by the rising skill premium or by specific industries. Moreover,

while the level of this premium depends slightly on the level of demographic aggregation—in narrower

demographic groups (as in our regressions) we find a smaller level of the wage premium—we find that this

premium unambiguously increased by at least 50% since the 1980s. In particular, our regression estimates

(with the narrowest demographic controls) suggest that the non-routine wage premium rose from around 7%

in the 1970s to around 20% in the 2000s.

Using this direct measure of the composition adjusted NRP, we can compute the relative non-routine

labor inputs using the definition of the relative labor income share:

snr
sr

=
wnrLnr
wrLr

= (1 +NRP )
Lnr
Lr

⇒ Lnr
Lr

=
1

1 +NRP

snr
sr

(F.2)
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Figure F.18: Aggregate Employment Indexes
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Notes: The figure plots raw CPS MARCH employment counts alonside two ver-
sions of aggregate employment indexes: chain indexes that are constructed us-
ing the methdology in Appendix F; aggregate employment in units of “reference
workers” is based on equation (F.1).

Figure F.19: Routine & Non-routine Labor (Relative Quantities & Prices)
(A) Relative Quantities (B) NR Wage Premium
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Notes: Panel A plots relative employmnet (expressed as percent of routine workers) based on four alternative measurement as-
sumptions: the raw data; “effective” employment under the assumption of a homogeneous labor inputs; chain indexes; effective units
assumingNRP > 0 based on regression model (F.1). Panel B plots the corresponding non-routine wage premium (NRP), defined as
100× (wnr/wr − 1), where wnr/wr represents the relative non-routine wage for the four alternative measurement approaches: the
ratio of average CPS wages; zero NRP by assumption; relative implicit price deflators for chain indexes; exp(β̂1,t) from regression
model (F.1).
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Quantity indexes for routine and non-routine labor can be obtained from this relation by constructing a

quantity index for aggregate labor (Figure F.18). Figure F.19 compares all relative employment measures

(panel A) and the corresponding non-routine wage premium (panel B).

Appendix G. Alternative Specificaitons for the Composite Input z

In addition to equations (4)-(5), there are two alternative ways to specify a nested CES production

function. The first is in the spirit of Autor and Dorn (2013), who consider the follwing setup:

x = (µzϕ + (1− µ)`ϕnr)
1
ϕ (G.1)

z = (χkξc + (1− χ)`ξr)
1
ξ

where µ, χ ∈ [0, 1] and ξ, ϕ ≤ 1. The interpretation is one in which non-routine labor interacts with “routine

inputs” (xr), which can be produced by either routine labor or ICT capital.

For example, a (non-routine) applied economist is more productive if there is more data available; it is

immaterial whether the data is collected by (routine) human surveyors or by an online survey. ICT affects

the productivity of non-routine labor only through increasing the supply of routine inputs, while routine

labor is directly substitutable with ICT.

Table G.10 reports the calibration results based on the specification (G.1). The calibration generates a

value of ϕ > 1 for all versions of labor measurement, inconsistent with the CES framework (which requires

ϕ ≤ 1). Specification (G.1) is therefore inconsistent with the the observed trends in relative prices and

quantities within our fixed CES demand structure.

The second alternative is one in which ICT capital is combined with a CES composite of routine and non-

routine labor. In this setup, the “inner” composite input z is simply a two-factor CES production function in

routine and non-routine labor. Under the assumption of time-invariant parameters, this specification is only

consistent with the assumption of homogeneous labor inputs (NRP=0). To see this, notice that step one in

our calibration procedure for this case can be written as

ln

(
snr
sr

)
= const+ θ ln

(
`nr
`r

)
(G.2)
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Table G.10: Calibration of Production Parameters

B. Segmented Labor Markets

A. Homogeneous Labor Data Chain Indexes Regressions

(A.1) (A.2) (B.1) (B.2) (B.3) (B.4) (B.5) (B.6)

ln
(
sc
sr

)
ln

(
sxr
snr

)
ln

(
sc
sr

)
ln

(
sxr
snr

)
ln

(
sc
sr

)
ln

(
sxr
snr

)
ln

(
sc
sr

)
ln

(
sxr
snr

)
ln (kc/`r) 0.484*** 0.483*** 0.503*** 0.500***

(0.007) (0.007) (0.007) (0.007)
ln (z/`nr) 1.242*** 1.944*** 2.037*** 1.656***

(0.009) (0.025) (0.027) (0.017)
Constant -6.866*** -0.135*** -6.813*** -0.819*** -6.966*** -0.894*** -6.976*** -0.413***

(0.064) (0.002) (0.063) (0.011) (0.068) (0.012) (0.068) (0.005)

Obs. 47 47 47 47 47 47 47 47

Estimated Parameters & Implied Elasticities
χ 0.001 0.001 0.001 0.001
ξ 0.484 0.483 0.503 0.500
EOS(kc, `r) 1.940 1.935 2.013 2.001

µ 0.466 0.306 0.290 0.398
ϕ 1.242 1.944 2.037 1.656
EOS(z, `nr)

Notes: The table shows OLS estimates of the parameters in specification (G.1) using the two-step procedure described in the text.
In analogy to Table G.11, estimates in panel A are based on the assumption of homogenous labor inputs, while those in panel B
assume segmented labor markets. HAC robust standard errors are reported in parethesis below estimated coefficients in panels A
and B. Significance levels are indicated by * p < 0.1, ** p < 0.05, and *** p < 0.01.

Under the assumption of homogeneous labor inputs we have that `nr/`r = snr/sr and this equation imme-

diately implies that θ = 1. Alternatively, if the non-routine premium is positive, then the equation can be

written as

ln(1 +NRP ) + ln

(
`nr
`r

)
= const+ θ ln

(
`nr
`r

)
(G.3)

where the non-routine premium is defined as NRP = wnr
wr
− 1 and θ governs the elasticity of substitution

between routine and non-routine labor. This further implies that

ln(1 +NPR) = const+ (θ − 1) ln

(
`nr
`r

)
(G.4)

Since the different specifications of differentiated labor inputs all imply positive trends in both ln(1+NRP )

and ln(`nr/`r) (see Figure F.19), we must obtain (θ − 1) > 0 or θ > 1. Thus, the only case consistent with
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Table G.11: Calibration of Production Parameters

B. Segmented Labor Markets

A. Homogeneous Labor Data Chain Indexes Regressions

(A.1) (A.2) (B.1) (B.2) (B.3) (B.4) (B.5) (B.6)

ln
(
sc
snr

)
ln

(
sr
sz

)
ln

(
sc
snr

)
ln

(
sr
sz

)
ln

(
sc
snr

)
ln

(
sr
sz

)
ln

(
sc
snr

)
ln

(
sr
sz

)
ln (kc/`nr) 0.299*** 0.275*** 0.286*** 0.293***

(0.006) (0.005) (0.005) (0.006)
ln (`r/z) 0.876*** 1.071*** 1.119*** 1.022***

(0.003) (0.004) (0.004) (0.004)
Constant -5.201*** 0.138*** -5.037*** -0.100*** -5.130*** -0.135*** -5.166*** 0.049***

(0.053) (0.001) (0.046) (0.001) (0.049) (0.001) (0.051) (0.001)

Obs. 47 47 47 47 47 47 47 47

Estimated Parameters & Implied Elasticities
γ 0.005 0.006 0.006 0.006
σ 0.299 0.275 0.286 0.293
EOS(kc, `nr) 1.427 1.379 1.400 1.415

η 0.535 0.475 0.466 0.512
θ 0.876 1.071 1.119 1.022
EOS(z, `r) 8.039

Notes: The table shows OLS estimates for the the parameters in equations (6) and (7) based on the two-step procedure described
in the text: in step one, we estimate (6); in step two, we estimate (7) conditional on the results from step one. All regressions use
fitted log-linear trends as data inputs, in order to eliminate the influence of cyclical fluctuations. Panel A assumes labor inputs are
homogeneous and relative labor inputs therefore equal relative labor income shares; panel B uses employment counts and average
wages as well as chained quantity indexes from Section Appendix F based on CPS MARCH data. Standard errors are reported in
parentheses below each coefficient. Significance levels are indicated by * p < 0.1, ** p < 0.05, and *** p < 0.01.

the observed trends in the data is θ = 1, making routine and non-routine labor perfect substitutes.

Appendix H. Alternative Calibration Specifications

Table G.11 reproduces the results from Section 4, adding results based on alternative labor measure-

ments. Table H.12 reports joint GMM estimates for equations (6) and (7). Table H.13 uses the same GMM

approach, instrumenting labor inputs using the aggregate birthrate 15 years lagged, as in Jaimovich et al.

(2013). Unsurprisingly, the estimates are extremely similar, given identification based on long run trends.

Tables G.11 through H.13 illustrate that the observed trends in relative prices and quantities are in-

consistent with a fixed CES demand system when labor quantities are measured under the assumption of

segmented markets, even if we adjust for observed changes in demographic composition.
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Table H.12: Calibration of Production Parameters: GMM Estimates

B. Segmented Labor Markets

A. Homogeneous Labor Data Chain Indexes Regressions
(1) (2) (3) (4)

σ 0.323*** 0.300*** 0.312*** 0.319***
(0.008) (0.007) (0.007) (0.008)

γ 0.004*** 0.005*** 0.005*** 0.004***
(0.000) (0.000) (0.000) (0.000)

θ 0.875*** 1.072*** 1.120*** 1.022***
(0.002) (0.003) (0.003) (0.003)

η 0.531*** 0.469*** 0.460*** 0.507***
(0.001) (0.001) (0.002) (0.001)

Obs. 47 47 47 47

Notes: The table shows joint GMM estimates for the the parameters in equations
(6) and (7). All GMM esimtates use fitted log-linear trends as data inputs, in order
to eliminate the influence of cyclical fluctuations. Panel A assumes labor inputs
are homogeneous and relative labor inputs therefore equal relative labor income
shares; panel B uses employment counts and average wages, chained quantity
indexes and associated implicit price deflators based, and labor indexes based on
regression estimates for the NRP using CPS MARCH data. HAC robust standard
errors are reported in parentheses below each coefficient. Significance levels are
indicated by * p < 0.1, ** p < 0.05, and *** p < 0.01.

Table H.13: Calibration: GMM Estimates Instrumenting with Lagged Brithrate

B. Segmented Labor Markets

A. Homogeneous Labor Data Chain Indexes Regressions
(1) (2) (3) (4)

σ 0.323*** 0.302*** 0.315*** 0.321***
(0.009) (0.008) (0.008) (0.009)

γ 0.004*** 0.005*** 0.004*** 0.004***
(0.000) (0.000) (0.000) (0.000)

θ 0.875*** 1.074*** 1.122*** 1.024***
(0.003) (0.003) (0.004) (0.003)

η 0.531*** 0.469*** 0.460*** 0.507***
(0.001) (0.002) (0.002) (0.001)

Obs. 47 47 47 47

Notes: The table shows joint GMM estimates constructed analogously to Table
H.12. The only difference is that we now instrument all labor inputs with the
birthrate 15 years lagged. HAC robust standard errors are reported in parentheses
below each coefficient. Significance levels are indicated by * p < 0.1, ** p < 0.05,
and *** p < 0.01.
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