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This online appendix provides a number of detailed derivations and robustness analyses. Ap-

pendix A provides details on the Bayesian setup and estimation. Appendix B discusses details

on data construction, model selection, and illustrates sampler convergence for key model parame-

ters. Appendix C provides an analytical derivation of the occupation-specific trend component and

graphically illustrates an occupation-specific decomposition into trend and cyclical components.

Finally, in Appendix D we generalize the model to factor-specific state variables and break dates.

Based on several generalized specifications, we illustrate that the conclusions presented in the main

text are robust to these alternative specifications.

Appendix A. Bayesian Setup and Estimation

Appendix A.1. Parametrization of the transition distribution

Normalizing the transition to state 1 as the reference state, i.e. γ j1,· = 0, j = 1, 2, the explicit

parametrization of (5) is:

ξt =



1
1+

∑
s={2,4}

exp(X′t γ1s)
exp(γ12,0+γ12,1 xt+γ12,2t)

1+
∑

s={2,4}
exp(X′t γ1s) 0 exp(γ14,2t)

1+
∑

s={2,4}
exp(X′t γ1s)

1
1+

∑
s={2,3}

exp(X′t γ2s)
exp(γ22,0+γ22,1 xt+γ22,2t)

1+
∑

s={2,3}
exp(X′t γ2s)

exp(γ23,2t)
1+

∑
s={2,3}

exp(X′t γ2s) 0

0 0 exp(γ33,0+γ33,1 xt)∑4
s=3 exp(γ3s,0+γ3s,1 xt)

exp(γ34,0+γ34,1 xt)∑4
s=3 exp(γ3s,0+γ3s,1 xt)

0 0 exp(γ43,0+γ43,1 xt)∑4
s=3 exp(γ4s,0+γ1,4s xt)

exp(γ44,0+γ44,1 xt)∑4
s=3 exp(γ4s,0+γ4s,1 xt)


(A.1)
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The vector X′t = (1, xt, t) contains a constant, GDP growth (xt) and a time trend t. GDP growth

provides additional information for transitions into business cycle phases (recovery or recession),

and time t introduces prior information on the break date. The parameters γ jl,m, with j, l = 1, . . . , 4,

and m = 0, 1, 2, correspond to the state-dependent, state-specific effects of the variables in Xt. So,

γ jl,m represents either the constant transition (m = 0) effect, the effect of GDP growth (m = 1) or the

trend effect (m = 2) on the transition probability to switch from state j to state l. The denominators

are written in a general form, but note that appropriate elements of γ14 and γ23 are restricted to

zero.

Time enters the transition distribution of states 1 and 2, to include prior information on the

break date around 1990. We normalize t to be zero in the third quarter of 1990, which corresponds

to the peak of the 1980s expansion. The effect of time t should be decreasing for ξ j2,t, j = 1, 2 and

increasing for ξ14,t and ξ23,t. Therefore, we expect to estimate (γ12,2, γ22,2) ≤ 0 and (γ14,2, γ23,2) > 0.

These expectations can be included as information into the prior distribution. In the empirical

application, we are less informative and set π(γ12,2, γ22,2) = N(0, 0.16 · I2) and π(γ14,2, γ23,2) =

N(1, 0.16 · I2), i.e. we do not truncate the distributions.

Normalizing t to zero in the third quarter of 1990 favors a break after the expansion of the

1980s into the early 1990s recession. We explicitly make this choice based on the stylized patterns

in Figure 1. Our prime interest is to identify the existence, magnitude, and potential effects of a

structural break around 1990, rather than the timing of the break itself. The current specification

provides a convenient framework to conduct posterior inference on the structural component of

employment dynamics before and after 1990. Nevertheless, the framework is general enough to

conduct inference on the break date itself in future research.

Appendix A.2. State-space representation

To expose the setup in a concise way, we cast model (1)-(4) into a condensed state-space

framework (see also Chan and Jeliazkov (2009)). First, we stack all filtered units in period t into
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the N × 1 vector y∗t :

Ψ(L)yt = y∗t = λ ft − λ � (ψ·1 ⊗ 11×k) ft−1 − · · · − λ �
(
ψ·q ⊗ 11×k

)
ft−q + εt (A.2)

εt ∼ N (0,Σε) , Σε diagonal

ft = µS t + Φ1 ft−1 + · · · + Φp ft−p + ηt, ηt ∼ N (0, Ik) (A.3)

where � and ⊗ represent the Hadamar and the Kronecker product, respectively. The N × 1 vector

ψ· j, j = 1, . . . , q, stacks the coefficient at lag j of the idiosyncratic dynamics (see (4)) of all units.

The 1× k row vector 11×k is filled with 1s. The K ×K matrices Φ j are diagonal and each row of the

N ×K matrix λ, λi, contains only one non-zero element, i.e. λik , 0 if δi = k and λik = 0 otherwise.

We stack all observations to obtain the matrix representation:

y∗ = Λ f + ε, ε ∼ N
(
0, IT−q ⊗ Σε

)
(A.4)

Φ f = µ + η η ∼ N (0,Ω) (A.5)

where y∗ =
(
y∗q+1

′, . . . , y∗T
′
)′

and f =
(

f ′q+1−max(p,q), . . . , f ′q+1, . . . , f ′T
)′

stacks all unobserved factors,

including initial states. The matrices Λ andΦ are, respectively, of dimension (T − q)N × (T + d) k

and square (T + d)k, with d = (p− q)I{p>q}. Typically, these matrices are sparse and band-diagonal:

Λ =


−λ �

(
ψ·q ⊗ 11×k

)
. . . λ 0 . . . 0

0(T−q)N×dk
. . .

. . .
. . .

...

0 . . . 0 −λ �
(
ψ·q ⊗ 11×k

)
. . . λ



Φ =



Ip ⊗ Ik 0 . . .

− Φp . . . −Φ1 Ik 0 . . .

. . .

. . . 0 −Φp . . . −Φ1 Ik


, Ω =


Ip ⊗ Σ0

η 0 . . .

0
... IT+d−p ⊗ Ik
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where Σ0
η represents the variance of the initial states (see below). The vector µ includes the state-

dependent intercept,

µ =
[
01×max(p,q)k, µ

′
S q+1

, . . . , µ′S T

]′
Appendix A.3. Likelihood and prior distributions

Given the representation in (A.4)-(A.5), the complete data likelihood has a normal distribution:

L
(
y∗| f ,S, δ, θ

)
∼ N

(
Λ f , IT−q ⊗ Σε

)
(A.6)

Conditional on the state indicator, from (A.5) we obtain following prior distribution for the

unobserved factors:

f |S, θ ∼ N
(
f0, F−1

0

)
(A.7)

f0 = Φ−1µ∗, F0 = Φ′Ω−1Φ

In Ω, the variance of the initial states, Σ0
η, may be chosen to be diffuse. Here, we will choose

Σ0
η to be a multiple of the identity matrix, Σ0

η = κIk.

The prior for the unobserved state indicator factorizes into

π (S|ξ) =

T∏
t=q+1

π
(
S t|S t−1, ξt

)
π
(
S q

)

where the initial state distribution π
(
S q

)
is assumed to be uniform across state 1 and 2, P(S q =

s) = 0.5, for s = 1, 2 and P(S q = s) = 0 for s = 3, 4.

The prior for the classification indicator is assumed to be uniform discrete, P (δi = k) = 1/K, ∀i.

To complete the model, we assume that the parameters are block-independent a priori, π (θ) =

π(λ|δ)π(ψ)π(φ)π(µ)π(σ)π(γ), with standard distributions:

1. π(λ|δ) =
∏N

i=1 π(λiδi) =
∏N

i=1 N(l0,L0)

2. π(ψ) =
∏N

i=1 π(ψi1, . . . , ψiq) =
∏N

i=1 N(q0,Q0)I{Z(ψi)>1}

where I{·} is the indicator function and Z(ϕ) > 1 means that the characteristic roots of the

process ϕ(L) lie outside the unit circle.
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3. π(φ) =
∏K

k=1 π(φk1, . . . , φkp) =
∏K

k=1 N(p0, P0)I{Z(φk)>1}

4. π(µ) =
∏K

k=1 π(µk1, . . . , µk4) =
∏K

k=1 N(m0,M0)

5. π(σ) = π(σ2
1, . . . , σ

2
N) =

∏N
i=1 IG(e0,E0)

6. π(γ) =
∏4

s=2 π(γs) =
∏4

s=2 N(g0s,G0s)

where γs =
(
γ′1s, . . . , γ

′
4s

)′
, s = 2, . . . , 4, and g0s and G0s have appropriate dimensions.

Appendix A.4. Posterior Distributions

Combining the prior with the likelihood, we obtain the posterior for

1. the factors, π ( f |y∗,S, δ, θ) = N
(
f, F−1

)
, with F = F0+Λ

′
(
IT−q ⊗ Σ−1

ε

)
Λ and f = F−1

(
Λ′

(
IT−q ⊗ Σ−1

ε

)
y∗ + F0f0

)
.

To avoid the full inversion of F we take the Cholesky decomposition, F = LL′, then F−1 =

L−1L−1′. We obtain a draw f by setting f = f + L−1ν, where ν is a (T + d)k vector of

independent draws from the standard normal distribution.

2. the state indicator, π (S| f , ξ,µ,φ). To obtain a draw, we adapt the forward-filtering, backward-

sampling procedure described in Chib (1996) to the time-varying Markov structure, see also

Frühwirth-Schnatter (2010), Algorithm 11.1 and 11.2.

3. the classification indicator, π (δ|y, f ,ψ,σ) =
∏N

i=1 π
(
δi|yi, f ,ψi, σ

2
i

)
. To obtain a draw, we

compute the posterior classification probabilities

P
(
δi = k|yi, f ,ψi, σ

2
i

)
∝ L

(
yi| f ,ψi, σ

2
i , δi = k

)
P (δi = k) , k = 1, . . . ,K

∝

 T∏
t=q+1

(
Liδi( f ∗iδit)

2 + σ2
i

)
−1/2

×

exp

−1
2

T∑
t=q+1

(
y∗it − liδi f ∗iδit

)2

Liδi( f ∗iδit
)2 + σ2

i

 P (δi = k) (A.8)

where y∗it and f ∗iδit represent the filtered values y∗it = yit − ψi1yi,t−1 − . . . ψiqyi,t−q and f ∗iδit =

fδit − ψi1 fδi,t−1 − . . . ψiq fδi,t−q, respectively, and Liδi and liδi are the posterior moments of the

factor loadings given below in (A.9). The indicator δi is set equal to

k =

 K∑
l=1

I


 l∑

j=1

P(δi = j|·)

 ≤ U


 + 1
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where I{·} is the indicator function, P(δi = j|·) are the normalized posterior indicator proba-

bilities obtained from (A.8) and U ∼ U(0, 1) is drawn from the uniform distribution.

4. the parameters in the state transition distribution, π (γ|S, x, t). Conditional on two layers

of data augmentation, the posterior turns out to be a normal distribution (see Frühwirth-

Schnatter and Frühwirth (2010) and for additional details Kaufmann (2014)).

• The first layer expresses the latent state utilities S u
st, ∀s ∈ {2, . . . , 4}, in difference to the

maximum of all other relevant latent state utilities, and defines the binary observation

D(s)
t = I{S t = s}. We obtain a linear, non-normal model:

S ∗st := S u
st − S u

−s,t = c + X′tγs + υst, υst i.i.d. Logistic

where

S u
st = X′tγs + νu

st, ν
u
st i.i.d. Type I Extreme Value

S u
−s,t = max

j∈S∗−s

S u
jt

with c being a constant, X′t =
(
X′t D

(1)
t−1, . . . , X

′
t D

(4)
t−1

)
. The elements of γs are restricted

appropriately to obtain the specification in (A.1). The relevant other latent utilities are

those corresponding to states to which the transition probability is not restricted to zero

in (A.1), see table A.1.

• In the second layer, we approximate the Logistic distribution by a mixture of normals

with M components, Rs =
(
Rs,q+1, . . . ,RsT

)
, ∀s = 2, . . . , 4. Conditional on S∗s =

(S ∗s,q+1, . . . , S
∗
sT ) and Rs, we obtain the normal posterior (see Kaufmann (2014) for

additional details on the moments):

γs|S,X ∼ N
(
gs

(
S∗s, Rs

)
,Gs (Rs)

)
5. the remaining parameters, which can be sampled out of standard distributions:
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Table A.1: Relevant states in S∗−s for S t = s given S t−1

S t = 2 3 4
S t−1= 1 2 2 3 4 1 3 4
S∗−s = {1,4} {1,3} {1,2} {4} {4} {1,2} {3} {3}

(a) π(λ|y, f , δ,σ, ψ) =
∏N

i=1 N(liδi ,Liδi), where

Liδi =

σ−2
i

T∑
t=q+1

f ∗iδit
2

+ L−1
0


−1

, liδi = Liδi

σ−2
i

T∑
t=q+1

y∗it f ∗iδit + L−1
0 l0

 (A.9)

(b) π(ψ|y, f , δ,σ, λ) =
∏N

i=1 N(qi,Qi)I{Z(ψi)>1}, with

Qi =
(
σ−2

i ε
′
i,−1εi,−1 + Q−1

0

)−1
, qi = Qi

(
σ−2

i ε
′
i,−1εi + Q−1

0 q0

)
I{Z(ψi)>1}

and where εi and εi,−1 are, respectively, the appropriately designed left- and right-hand

side matrices of the regression model:

εit = ψ1εi,t−1 + · · · + ψqεi,t−q + εit, εit ∼ N(0, σ2
i )

(c) π(φ,µ| f ,S) =
∏K

k=1 N(pk, Pk)I{Z(φk)>1}I{µk1<µk2,µk3<µk4}, with

Pk =
([

fk,−1 D
]′ [ fk,−1 D

]
+ diag (P0,M0)−1

)−1
(A.10)

pk = Pk

([
fk,−1 D

]′ fk + diag (P0,M0)−1 vec (p0,m0)
)

(A.11)

and where fk, fk,−1, D are respectively, the appropriate matrices of the regression

model:

fkt = φ1 fk,t−1 + · · · + φp fk,t−1 + µ1D(1)
t + · · · + µ4D(4)

t + νt, νt ∼ N(0, 1)

(d) π(σ|y, f , δ,ψ, λ) =
∏N

i=1 IG(ei,Ei) where

ei = e0 + 0.5(T − q), Ei = E0 + 0.5
T∑

t=q+1

ε2
it

7



Appendix B. Data, Model Selection, and Sampler Convergence

Appendix B.1. Adjusting for Administrative Changes in Occupatoin Classifications

One of the biggest challenges in working with the detailed CPS data are the frequent changes in

the DOL’s system for classifying occupations. Even Dorn’s (2009) consistent panel features many

jumps in the level of employment since various occupations “jump” from one group to another, new

occupations are introduced, or old ones disappear. These jumps are not readily visible in long run

comparisons (e.g. across decades) but they become immediately apparent at higher frequencies.

To avoid this problem, Foote and Ryan (2012), who also study the cyclicality of labor market

polarization, decide to use industry-skill cells as a proxy for jobs/tasks instead of occupations

specified by the DOL.

However, since the level jumps are due to purely administrative changes, they always happen

in a single month. Therefore, one way to accommodate the level jumps, is to use growth rates

instead of levels and “average out” the jumps for the occupations in which administrative changes

happen. That is, we replace the growth rate at the jump with a linear interpolation. Figure B.1

shows the levels implied by our adjusted growth rate series. It is obvious that any adjustment

procedure introduces some measurement error, but Figure 1 illustrates that the dynamic patterns

in the level of routine and non-routine jobs implied by these adjusted growth rates is virtually the

same as in the level series employed by Jaimovich and Siu (2018). In fact, our approach to adjust

in growth rates is very similar in spirit to the “flows approach” of Cortes, Jaimovich, Nekarda, and

Siu (2014).

Ultimately, it should be clear that all four approaches, broad aggregation as in Jaimovich and

Siu (2018), forming industry-skill cells as in Foote and Ryan (2012), the “flows approach” by

Cortes et al. (2014), and our adjustment in growth rates, are an imperfect solution and introduce

some form of measurement error. However, given the nature of administrative changes in the

DOL’s definition of occupations, these are the best options available.1

1We obtain the same qualitative results when we estimate our model with 9 occupation groups assembled as in
Jaimovich and Siu (2018).
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Figure B.1: Employment Trends Based on Growth Rates
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Notes: The figure illustrates the cumulative growth of employment/population in each occupation
assigned to factors 1 and 2 in model (1), which are tabulated in Table 2. The imputed level series
start with the level of employment/population in 1976q1 and illustrate the variation in growth rates
used in our estimation procedure. The series labeled “raw” are are based on the unadjusted growth
rates in the occupation level series while those labeled “adjusted” are based on a growth rate
series in which the administrative “jumps” were interpolated based on the median January growth
(all administrative jumps happen in January). Data for this graph are directly constructed from the
monthly basic CPS files for the consistent panel of occupations compiled by Dorn (2009).

Appendix B.2. Model Selection

We obtain the most precise factor assignment when we set K = 2 and since the ultimate goal

of this study is to analyze aggregate labor market dynamics, we choose the specification for which

the variance share explained by cluster specific variation is largest. In particular, Table B.1 lists

this statistic for alternative AR lag lengths, p and q, and shows that a specification with p = q = 2

performs best, on average, according to this metric. While this is our preferred specification, the

“second best” alternative, q = 3 and p = 2, does not change our main results.
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Table B.1: Model Selection
Var(Ŷk)/Var(Yk)

q p Cluster 1 Cluster 2 Avg.

1 1 0.345 0.353 0.349

1 2 0.286 0.216 0.251

2 1 0.138 0.138 0.138

2 2 0.607 0.588 0.597

2 3 0.306 0.213 0.260

3 2 0.484 0.620 0.552

3 3 0.223 0.199 0.211
Notes: The table reports the fraction
of the variation in aggregate employ-
ment/population that is explained by common
cluster dynamics, conditional on the median
factor assignment. Maxima are highlighted.

Appendix B.3. Sampler Convergence

In total, we draw 500,000 times out of the posterior distribution and discard the first 100,000 as

burn-in. To remove autocorrelation across draws, we retain every fourth of the remaining 100,000

draws. Figures B.2 and B.3 illustrate the first 2000 of these draws for the factor specific drifts

µkS t . These figures clearly illustrate convergence of the sampler. All other model parameters show

similar patterns but omit these graphs for space considerations.
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Figure B.2: State Dependent Mean of Factor 1

(A) Pre-1990 Recession (B) Post-1990 Recession
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Notes: The graphs illustrate the first 2000 draws of the retained sample of posterior draws for µkS t .
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Figure B.3: State Dependent Mean of Factor 2

(A) Pre-1990 Recession (B) Post-1990 Recession
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Notes: The graphs illustrate the first 2000 draws of the retained sample of posterior draws for µkS t .
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Appendix C. Deriving the Occupation-Specific Trend Component

We start out from the model defined for growth rates yit =
(
ỹit − ỹi,t−1

)
/ỹi,t−1:

yit =

K∑
k=1

λik fkt + εit (C.1)

= λiδi fδit + εit (C.2)

φk(L) fkt = µkS t + νkt, νkt ∼ N (0, 1) (C.3)

ψi(L)εit = εit, εit ∼ N
(
0, σ2

i

)
(C.4)

with occupation-specific factor indicator δi = {1, . . . ,K}, factor-specific AR(p) processes, φk(L) =

1 − φk1L − · · · − φkpLp, k = 1, . . . ,K, and occupation-specific (idiosyncratic) AR(q) processes

ψi(L) = 1 − ψi1L − · · · − ψiqLq, i = 1, . . . ,N (in the application p = q = 2).

Conditional on the state indicator S T , we derive the Wold representation of (C.1) (with φk(L)−1 =

Ck(L) and ψi(L)−1 = Bi(L)):

yit = λiδi fδit + εit (C.5)

= λiδi

ι t−1∑
j=0

Φ
j
δi
µδiS t− j

+
[
Cδi(1) + (1 − L) C∗δi

(L)
]
νδit

 +[
Bi(1) + (1 − L) B∗i (L)

]
εit (C.6)

where ι = (1, 01×p−1) is a selection vector and Φk and µk,S t
are the system matrices of the AR(p)

companion form, i.e. for p = 2:

Φk =

 φk1 φk2

1 0

 , µk,S t
=

 µkS t

0


For the decomposition of Ck(L) and Bk(L) we exploit the fact that a process W(L) = W0+W1L+· · ·+

WpLp, W0 = I, can be represented as W(L) = [W(1) + (1 − L) W∗ (L)], with W(1) = W0 + · · · + Wp

and W∗(L) being of order p − 1 with W∗
j = −

∑p
i= j+1 Wi, j = 0, . . . , p − 1.2

2The inversion of a univariate AR(p) process, φ(L)xt =
(
1 − · · · − φpLp

)
xt = υt, yields an infinite MA process,

xt = C(L)υt =
∑∞

j=0 C jL jυt− j. In this case, the decomposition into a “deterministic” part C(1) and a “stochastic” part

13



Because the eigenvalues of Φk are smaller than 1, the term
∑t−1

j=0 Φ
j
δi
µδiS t− j

is well approximated

by Ck(1)µδiS t
. Substituting and gathering terms yields

yit = λiδi

[
ιCδi(1)

(
µδiS t

+ νδit

)]︸                         ︷︷                         ︸
τc

t

+ Bi(1)εit︸ ︷︷ ︸
τi

t

+

λiδi (1 − L) C∗δi
(L) νδit + (1 − L) B∗i (L) εit︸                                               ︷︷                                               ︸

τ
cycl
t

(C.7)

Here, Cδi(1) = (1−φδi1−φδi2)−1 and Bi(1) = (1−ψi1−ψi2)−1 represent the long-run effect of shocks

on the level variables, and ιCδi(1)µδiS t
can be interpreted as the period-state-specific unconditional

mean growth rate. The terms on the first line in (C.7) may thus be interpreted as the trend growth

rates stemming from the common trend and the idiosyncratic permanent component, τc
t and τi

t,

respectively. The terms on the second line, would represent the stationary stochastic component of

the growth rate, τcycl
t = yit − τ

c
t − τ

i
t, in other words the growth component in deviation from trend

growth.

For the level ỹit we obtain:

ỹit =
(
1 + τc

t + τi
t + τ

cycl
t

)
ỹi,t−1 (C.8)

=
(
1 + τc

t
)

ỹi,t−1 + τi
tỹi,t−1 + τ

cycl
t ỹi,t−1 (C.9)

with τ
cycl
t ỹi,t−1 = ỹit −

(
1 + τc

t + τi
t

)
ỹi,t−1. The first and second terms represent the trend levels

contributed from, respectively, the common trend and the idiosyncratic permanent component,

while the third term captures the stationary stochastic component in deviation from the trend level.

The following figures provide a graphical decomposition of the level series into these compo-

nents. To draw the graphs, we evaluate (C.7)-(C.9) for each draw and take the average. Addition-

ally, conditional on the posterior mean classification probability δ̄i = maxk

{∑M
m=1 δ

(m)
i = k

}
we show

graphs of aggregated group-specific employment share levels and corresponding trend levels. Ta-

ble C.2 displays the variance shares of the common trend and permanent idiosyncratic components

in growth rates, pre-, post-break and over the whole observation period, and the average variance

(1 − L)C∗(L), C(L) = C(1) + (1 − L)C∗(L), yields C(1) =
(
1 − φ1 − · · · − φp

)−1
, which is easily computed.
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share accounted for by the common component as well.

Table C.2: Common state indicator, break date at 1990Q3. Variance share in growth rates accounted for by trend
growth of permanent (τc = Var(τc

t )/Var(yt)) and idiosyncratic (τi = Var(τi
t)/Var(yt)) component, by common com-

ponent overall (cc = Var(λiδi fδit)/Var(yt))

Occupations λ̄iδi τc τi τc τi τc τi cc
Pre 1990Q3 Post 1990Q3 Overall

Cluster 1 (Routine occupations)
F.1 Machine Operators, Assemblers, Inspectors 1.09 0.45 0.86 0.34 0.78 0.37 0.79 0.30
E.2 Construction Trades 0.88 0.28 0.89 0.19 0.69 0.22 0.74 0.17
E.4 Precision Production 0.84 0.26 0.56 0.19 0.47 0.21 0.49 0.17
F.2 Transportation and Material Moving 0.70 0.29 0.42 0.36 0.41 0.34 0.42 0.27
E.1 Mechanics and Repairers 0.63 0.13 0.38 0.14 0.36 0.14 0.37 0.11
B.2 Sales 0.46 0.17 0.54 0.18 0.42 0.17 0.46 0.14
B.3 Administrative Support 0.15 0.07 1.09 0.10 1.09 0.08 1.07 0.07
C.1 Housekeeping and Cleaning -0.01 0.01 0.42 0.01 0.35 0.01 0.37 0.01

Cluster 2 (Non-routine occupations)
A.2 Management Related 0.80 0.13 0.46 0.15 0.46 0.15 0.46 0.14
C.37 Misc. Personal Care and Service 0.60 0.02 0.42 0.02 0.45 0.02 0.43 0.02
A.1 Executive, Administrative, Managerial 0.57 0.18 0.68 0.14 0.64 0.16 0.64 0.16
C.36 Child Care Workers 0.42 0.02 0.50 0.02 0.53 0.02 0.52 0.02
E.3 Extractive 0.42 0.02 0.54 0.01 0.52 0.01 0.53 0.01
A.3 Professional Specialty 0.39 0.06 0.47 0.21 0.65 0.11 0.52 0.10
C.32 Healthcare Support 0.33 0.03 0.38 0.03 0.37 0.03 0.38 0.03
B.1 Technicians and Related Support 0.22 0.02 0.73 0.03 0.78 0.03 0.76 0.02
C.33 Building, Grounds Cleaning, Maintenance 0.21 0.01 0.42 0.01 0.45 0.01 0.44 0.01
C.34 Personal Appearance 0.13 0.01 0.34 0.01 0.31 0.01 0.32 0.01
C.31 Food Preparation and Service 0.12 0.01 0.45 0.01 0.42 0.01 0.43 0.01
C.2 Protective Service 0.08 0.01 0.33 0.02 0.33 0.02 0.33 0.01
C.35 Recreation and Hospitality -0.04 0.00 0.35 0.01 0.41 0.01 0.37 0.00
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Figure C.4: Cluster-specific occupation level (black) along with common trend and idiosyncratic permanent compo-
nents and mean posterior probabilities of state 1 and 3..
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Figure C.5: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).
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Figure C.6: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).
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Figure C.7: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).
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Figure C.8: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).
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Figure C.9: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂

✂✵✁

✂✵�

✶

✶✵✶

✶✵✷

✶✵✄

✶✵☎
❈✆✝✝

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✵✶

✲✂✵✂✞

✂

✂✵✂✞

✂✵✶

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✵✶

✲✂✵✂✞

✂

✂✵✂✞

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✂✵✄

✂✵✄✞

✂✵☎

✂✵☎✞
❈✆✝✟

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✵✂☎

✲✂✵✂✷

✂

✂✵✂✷

✂✵✂☎

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✵✂☎

✲✂✵✂✷

✂

✂✵✂✷

✂✵✂☎

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂

✶✄✁

✷

✷✄✷

✷✄☎

✷✄✆
❈✝✞✟

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✄✶

✲✂✄✂✠

✂

✂✄✂✠

✂✄✶

✂✄✶✠

✂✄✷

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✄✶

✲✂✄✂✠

✂

✂✄✂✠

✂✄✶

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✂✄✆

✂✄✁

✶

✶✄✷

✶✄☎
❈✝✡

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✄✂✠

✂

✂✄✂✠

✶�✁✂ ✶��✂ ✷✂✂✂ ✷✂✶✂
✲✂✄✂✠

✂

✂✄✂✠

21



Figure C.10: Series-specific decomposition into the common trend component (left: level (red) and trend (blue)), the
idiosyncratic permanent component (middle) and stationary stochastic component (right).
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Appendix D. Robustness to Alternative Specifications in a Generalized Model

To investigate the robustness of our main results, we generalize the model to allow for cluster-

specific state variables with independent breaks, and estimate specifications that allow for up to

four clusters. This generalization allows us to test for the sensitivity with respect to the assumptions

of synchronized business cycle dynamics and break dates. For example, a model with three factors,

in which we impose a synchronized break date for two factors (e.g., in 1990q3) and a third factor

with a different break date (e.g. 1983q3), would allow for the possibility that some occupations are

better represented by a factor with a break in 1983q3, rather than in 1990q3, as postulated in our

baseline estimation. In general, we find that our main conclusions are robust to such alternative

specifications.

To save space, we report two specifications as illustrative examples: one specification with

two clusters and cluster-specific state indicators; and one with four clusters that allows for three

alternative break dates. The main inference remains largely the same: first, we find that “routine”

occupations tend to sort into clusters that contract more strongly post-break, and “non-routine”

occupations are generally assigned to clusters that grow throughout the entire sample, but less

strongly post-break. Second, we find that occupation specific employment dynamics experienced

a structural break around 1990. Thus, the main insights from the 2-cluster model are robust to

these extensions.
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Appendix D.1. 2 Clusters and Cluster-Specific State Variables

This section reports estimates from a model with a synchronized break at 1990Q3 but other-

wise independent, cluster-specific state variables. The estimates are virtually identical to the ones

reported in the baseline specification.

Figure D.11: Cluster-specific state indicators, break date at 1990Q3. Cluster-specific occupation level (black) along
with common trend and idiosyncratic permanent components and mean posterior probabilities of state 1 and 3.
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Table D.3: Mean posterior state-specific growth rates, break date at 1990Q3

Cluster Pre 1990Q3 Post 1990Q3
State 1 State 2 State 1 State 2

1 -0.72 0.16 -1.22 -0.03
2 0.38 1.08 0.21 0.55
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Table D.4: Cluster-specific state indicator, break date at 1990Q3. Cluster analysis

Occupations P(δi = 1|y) P(δi = 2|y) λ̄iδi median(λiδi ) +/- one stand.dev.
Cluster 1 (Routine occupations)
F.1 Machine Operators, Assemblers, Inspectors 1.00 0.01 1.10 1.10 0.79 1.40
E.2 Construction Trades 0.99 0.01 0.86 0.87 0.58 1.15
E.4 Precision Production 1.00 0.00 0.83 0.84 0.60 1.06
F.2 Transportation and Material Moving 1.00 0.00 0.69 0.69 0.53 0.86
E.1 Mechanics and Repairers 1.00 0.00 0.62 0.62 0.46 0.79
B.2 Sales 0.96 0.04 0.45 0.45 0.33 0.56
B.3 Administrative Support 0.70 0.30 0.13 0.14 -0.09 0.35
Cluster 2 (Non-routine occupations)
A.2 Management Related 0.00 1.00 0.80 0.80 0.60 1.01
C.37 Misc. Personal Care and Service 0.18 0.82 0.59 0.63 0.01 1.16
A.1 Executive, Administrative, Managerial 0.00 1.00 0.58 0.57 0.39 0.78
C.36 Child Care Workers 0.30 0.70 0.44 0.43 -0.05 0.93
A.3 Professional Specialty 0.01 0.99 0.39 0.39 0.27 0.51
E.3 Extractive 0.45 0.55 0.37 0.39 -0.71 1.45
C.32 Healthcare Support 0.15 0.85 0.32 0.37 -0.01 0.64
B.1 Technicians and Related Support 0.25 0.75 0.21 0.22 0.02 0.40
C.33 Building, Grounds Cleaning, Maintenance 0.27 0.73 0.20 0.21 -0.05 0.46
C.34 Personal Appearance 0.44 0.56 0.14 0.14 -0.16 0.44
C.31 Food Preparation and Service 0.50 0.50 0.11 0.11 -0.05 0.28
C.2 Protective Service 0.39 0.61 0.06 0.15 -0.28 0.41
C.1 Housekeeping and Cleaning 0.48 0.52 -0.01 -0.02 -0.34 0.32
C.35 Recreation and Hospitality 0.44 0.56 -0.05 -0.06 -0.50 0.39
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Table D.5: Cluster-specific state indicator, break date at 1990Q3. Variance share in growth rates accounted for by
trend growth of permanent (τc = Var(τc

t )/Var(yt)) and idiosyncratic (τi = Var(τi
t)/Var(yt)) component, by common

component overall (cc = Var(λiδi fδit)/Var(yt)).

Occupations λ̄iδi τc τi τc τi τc τi cc
Pre 1990Q3 Post 1990Q3 Overall

Cluster 1 (Routine occupations)
F.1 Machine Operators, Assemblers, Inspectors 1.10 0.20 0.62 0.18 0.62 0.39 0.79 0.31
E.2 Construction Trades 0.86 0.11 0.77 0.09 0.61 0.21 0.75 0.17
E.4 Precision Production 0.83 0.11 0.48 0.10 0.41 0.21 0.48 0.17
F.2 Transportation and Material Moving 0.69 0.13 0.34 0.19 0.33 0.34 0.43 0.27
E.1 Mechanics and Repairers 0.62 0.05 0.35 0.08 0.33 0.14 0.37 0.11
B.2 Sales 0.45 0.07 0.48 0.08 0.37 0.17 0.46 0.13
B.3 Administrative Support 0.13 0.01 1.02 0.02 1.00 0.08 1.11 0.06
Cluster 2 (Non-routine occupations)
A.2 Management Related 0.80 0.04 0.41 0.04 0.39 0.15 0.47 0.14
C.37 Misc. Personal Care and Service 0.59 0.00 0.40 0.00 0.43 0.02 0.43 0.02
A.1 Executive, Administrative, Managerial 0.58 0.05 0.55 0.04 0.53 0.17 0.63 0.17
C.36 Child Care Workers 0.44 0.00 0.47 0.00 0.50 0.02 0.51 0.02
A.3 Professional Specialty 0.39 0.02 0.45 0.05 0.56 0.11 0.53 0.10
E.3 Extractive 0.37 0.00 0.52 0.00 0.51 0.01 0.53 0.01
C.32 Healthcare Support 0.32 0.00 0.36 0.00 0.35 0.03 0.38 0.03
B.1 Technicians and Related Support 0.21 0.00 0.69 0.00 0.74 0.03 0.76 0.02
C.33 Building, Grounds Cleaning, Maintenance 0.20 0.00 0.40 0.00 0.43 0.01 0.44 0.01
C.34 Personal Appearance 0.14 0.00 0.33 0.00 0.30 0.01 0.32 0.01
C.31 Food Preparation and Service 0.11 0.00 0.43 0.00 0.41 0.01 0.43 0.01
C.2 Protective Service 0.06 0.00 0.31 0.00 0.32 0.02 0.33 0.01
C.1 Housekeeping and Cleaning -0.01 0.00 0.41 0.00 0.34 0.01 0.37 0.01
C.35 Recreation and Hospitality -0.05 0.00 0.34 0.00 0.40 0.01 0.37 0.00
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Appendix D.2. 4 Clusters and Cluster-Specific State Variables (One Break at 1983q3, Two at

1990q3, One at 2007q4)

This section reports the result form a model with four clusters. For two clusters we impose a

break in 1990q3, for one cluster we impose the break in 1983q3, and for one cluster we impose a

break in 2007q4. These break dates are chosen based on visual inspection of Figure 1 in the main

text. We have experimented with various alternative break dates and our main insights remain

unchanged.

In this model, cluster 1 groups “non-routine” occupations, and the estimated pre- and post-

break factor-specific growth rates are virtually identical to those estimated for “non-routine” oc-

cupations in the 2-factor specification. The common feature of this occupation group is that it

experiences employment growth in both expansions and recessions, and it experiences a break at

1990q3.

Clusters 2-4 now pick up occupations that were mostly associated with “routine” occupations

in the 2-factor model. The common feature of these three factors are strong contractions during

recessions. Moreover, cluster 2, with a break in 1990q3, shows significantly different factor spe-

cific growth rates pre- and post-break and the estimated growth rates are largely in line with the

cluster grouping “routine” occupations in the 2-factor model. Table D.7 reveals that this cluster is

comprised mostly of administrative and clerical jobs, often referred to as “routine cognitive” oc-

cupations in the polarization literature, which suggests that these occupations are particularly im-

portant for the observed break in dynamics around 1990. This observation is in line with findings

by Cortes, Jaimovich, and Siu (2017), who find that “routine cognitive” occupations experience

the most substantial changes around 1990. In contrast, pre- and post-break factor specific growth

rates for factors 3 and 4 do not differ significantly, suggesting that occupation-specific employment

dynamics likely did not experience meaningful structural breaks at 1983Q3 and 2007Q4. We find

very similar results for additional specifications with alternative break dates.

In sum, the main insights of the 2-factor model are largely preserved across a variety of alterna-

tive specifications within this generalized model: first, “non-routine” occupations tend to sort into

a cluster that experiences positive employment growth, both in recessions and expansions; second,

“routine” occupations tend to sort into clusters that contract during recessions; third, there is a
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significant break around 1990, with the feature that the cluster comprising mostly of “non-routine”

occupations tends to grow less strongly in both recessions and recoveries, while the cluster with a

break around 1990 grouping mostly “routine” occupations tends to contract more strongly during

recessions, and recover more slowly during expansions.

Figure D.12: Cluster-specific state indicators, break date at 1983Q3, two at 1990Q3 and at 2007Q4 (in brackets).
Cluster-specific occupation level (black) along with common trend and idiosyncratic permanent components and mean
posterior probabilities of state 1 and 3.
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Table D.6: Mean posterior state-specific growth rates, break date at 1983Q3, two at 1990Q3 and at 2007Q4

Cluster Break date Pre break Post break
State 1 State 2 State 1 State 2

1 1990Q3 0.38 1.01 0.22 0.53
2 1990Q3 -0.55 0.31 -1.08 -0.46
3 1983Q3 -0.78 -0.01 -1.17 0.24
4 2007Q4 -0.81 -0.24 -1.13 0.05

Table D.7: Cluster-specific state indicator, break date at 1983Q3, two at 1990Q3 and at 2007Q4 (in brackets). Cluster
analysis

Occupations P(δi = j|y) λ̄iδi median(λiδi ) +/- one stand.dev.
j = 1 j = 2 j = 3 j = 4

Cluster 1 (1990Q3)
A.2 Management Related 0.87 0.00 0.00 0.12 0.58 0.73 0.04 1.12
A.1 Executive, Administrative, Managerial 0.94 0.00 0.00 0.06 0.56 0.57 0.19 0.93
C.36 Child Care Workers 0.44 0.17 0.19 0.20 0.36 0.33 -0.24 0.97
A.3 Professional Specialty 0.85 0.00 0.00 0.14 0.30 0.39 -0.01 0.60
C.37 Misc. Personal Care and Service 0.50 0.17 0.14 0.20 0.19 0.24 -0.51 0.89
C.32 Healthcare Support 0.63 0.14 0.08 0.16 0.15 0.27 -0.27 0.57
E.3 Extractive 0.27 0.23 0.25 0.25 0.08 0.13 -0.99 1.15
C.33 Building, Grounds Cleaning, Maintenance 0.39 0.26 0.17 0.17 0.07 0.10 -0.27 0.40
Cluster 2 (1990Q3)
B.3 Administrative Support 0.06 0.90 0.01 0.03 0.60 0.71 0.23 0.97
B.1 Technicians and Related Support 0.39 0.40 0.09 0.12 0.19 0.23 -0.06 0.44
C.31 Food Preparation and Service 0.17 0.49 0.23 0.11 0.18 0.20 -0.03 0.40
C.1 Housekeeping and Cleaning 0.24 0.31 0.25 0.20 0.10 0.10 -0.24 0.43
Cluster 3 (1983Q3)
F.2 Transportation and Material Moving 0.00 0.00 1.00 0.00 0.95 0.96 0.80 1.10
E.2 Construction Trades 0.00 0.01 0.98 0.00 0.88 0.87 0.60 1.15
E.1 Mechanics and Repairers 0.00 0.08 0.77 0.15 0.53 0.53 0.37 0.69
B.2 Sales 0.08 0.01 0.88 0.03 0.39 0.39 0.27 0.52
C.34 Personal Appearance 0.21 0.23 0.42 0.14 0.14 0.15 -0.27 0.55
C.2 Protective Service 0.28 0.11 0.32 0.29 -0.16 -0.22 -0.50 0.18
Cluster 4 (2007Q4)
F.1 Machine Operators, Assemblers, Inspectors 0.00 0.12 0.03 0.85 1.82 1.87 1.54 2.10
E.4 Precision Production 0.00 0.14 0.02 0.84 0.82 0.81 0.62 1.01
C.35 Recreation and Hospitality 0.28 0.25 0.19 0.28 -0.11 -0.09 -0.57 0.36
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Table D.8: Cluster-specific state indicator, break date at 1983Q3, two at 1990Q3 and at 2007Q4 (in brackets). Variance
share in growth rates accounted for by trend growth of permanent (τc = Var(τc

t )/Var(yt)) and idiosyncratic (τi =

Var(τi
t)/Var(yt)) component, by common component overall (cc = Var(λiδi fδit)/Var(yt)).

Occupations λ̄iδi τc τi τc τi τc τi cc
Pre break Post break Overall

Cluster 1 (1990Q3)
A.2 Management Related 0.58 0.04 0.42 0.03 0.41 0.14 0.48 0.14
A.1 Executive, Administrative, Managerial 0.56 0.06 0.50 0.04 0.48 0.20 0.61 0.20
C.36 Child Care Workers 0.36 0.00 0.47 0.00 0.50 0.02 0.52 0.02
A.3 Professional Specialty 0.30 0.02 0.42 0.05 0.52 0.12 0.50 0.12
C.37 Misc. Personal Care and Service 0.19 0.00 0.41 0.00 0.43 0.02 0.44 0.01
C.32 Healthcare Support 0.15 0.00 0.36 0.00 0.35 0.03 0.38 0.03
E.3 Extractive 0.08 0.00 0.52 0.00 0.51 0.01 0.53 0.01
C.33 Building, Grounds Cleaning, Maintenance 0.07 0.00 0.40 0.00 0.44 0.01 0.44 0.01
Cluster 2 (1990Q3)
B.3 Administrative Support 0.60 0.28 0.14 0.27 0.15 0.57 0.33 0.57
B.1 Technicians and Related Support 0.19 0.00 0.70 0.00 0.75 0.03 0.77 0.03
C.31 Food Preparation and Service 0.18 0.01 0.43 0.00 0.40 0.02 0.43 0.02
C.1 Housekeeping and Cleaning 0.10 0.00 0.40 0.00 0.34 0.01 0.37 0.01
Cluster 3 (1983Q3)
F.2 Transportation and Material Moving 0.95 0.35 0.10 0.38 0.10 0.63 0.20 0.55
E.2 Construction Trades 0.88 0.18 0.67 0.11 0.59 0.22 0.70 0.19
E.1 Mechanics and Repairers 0.53 0.06 0.40 0.04 0.35 0.11 0.39 0.09
B.2 Sales 0.39 0.09 0.42 0.06 0.40 0.14 0.46 0.11
C.34 Personal Appearance 0.14 0.00 0.36 0.00 0.30 0.01 0.32 0.01
C.2 Protective Service -0.16 0.00 0.30 0.00 0.32 0.02 0.33 0.02
Cluster 4 (2007Q4)
F.1 Machine Operators, Assemblers, Inspectors 1.82 0.68 0.04 0.71 0.03 0.92 0.19 0.81
E.4 Precision Production 0.82 0.10 0.42 0.25 0.30 0.18 0.43 0.16
C.35 Recreation and Hospitality -0.11 0.00 0.36 0.00 0.43 0.01 0.37 0.01
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