FINN 6203 Homework 1 Solutions

1. The budget set is the set of all consumption processes satisfying
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This is the equation of a hyperplane in R*.

2. Fix ¢ = {c(0),¢(T)} € X = R*L. Since the market is complete, there is some 6° such
that DO = ¢(T'). Now suppose 0% is an arbitrage strategy (of the second type). Choose w so
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This is possible since — 25:1 0%p, > 0. Then
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since ijzl 0%d, > 0. So the strategy 6° + wf* provides at least ¢(T") consumption at time
T. So ¢ € B(0,p) and the result follows since B(0,p) C B(e', p).
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Since Rank(D) = 3, all contingent claims are attainable. As there are 3 states, the
attainable set is R3. (Technically, we should say R? since any consumption at time
0 is attainable. But since this is always the case, I prefer to just consider attainable
terminal consumption.)

ii. Since this market is complete, this consumption process is attainable. To find a trading
strategy that attains it, solve the system DO = ¢(T') for 6. Since
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the solution is 8 = [1/4,0,0]". That is, buy 1/4 of a unit of Security 1 and 0 units of
Securities 2 and 3. The price of this trading strategy is € - p = 35/4. Since ¢(0) = 10,
the initial endowment is e(0) = 10 + 35/4 = 18.75.

iii. Since this market is complete, this consumption process is attainable. To find a trading

strategy that attains it, solve the system D@ = ¢(T') for . Since
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the solution is 6§ = [2,5,—259/12]. That is, buy 2 units of Security 1, buy 5 units of
Security 2, and sell short 259/12 units of Security 3. The price of this trading strategy
is 6 - p = 11. Since ¢(0) = 0, the initial endowment is e(0) = 11.

iv. We simply need to check whether D'W = p has a positive solution. Since
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we have that W = [1/4,1/4,1/2], and thus a state price vector exists. Hence the given
price system does not permit arbitrage.

4. Let P be the statement (U(b') > U(c')) and let =P denote “not P”. Then the statement
in Definition 1.4 is

A feasible allocation {c'} is Pareto Efficient < V feasible {0}, —P.

Now (V feasible {b'}, —=P) < (=3 feasible {0}, P) follows from an axiom of the predicate
calculus (see



http://en.wikipedia.org/wiki/First-order_logic

for more than you probably wanted to know about this).

So
A feasible allocation {c'} is Pareto Efficient < —3 feasible {b'}, P

which is the statement you are asked to prove in Problem 4.



