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ABSTRACT 
 

 

We study the effects of information and communication technologies (ICT) on the distribution of 

income across factors of production in the United States. Since the 1950s, the income share of 

ICT saw a seven-fold increase, while it has remained trendless for other types of capital. In 

parallel, we document substantial reallocation of labor income from occupations relatively 

substitutable with ICT (routine) to ones relatively complementary (non-routine). In a general 

equilibrium model that matches these trends, automation accounts for half of the decline in the 

labor share and for 27% of growth in output per person since 1990. 
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Aart Kraay, Aitor Lacuesta, Juan Rubio-Ramirez, Ayşegül Şahin, Michael Sposi, Nancy Stokey, Alan Taylor as well as seminar
participants at the World Bank, Vanderbilt University, Duke University, the Stockholm School of Economics (SITE), the ABCDE
Conference on the Role of Theory in Development Economics, the 2014 NBER Summer Institute (CRIW), the 2014 SEA Meetings,
the 2016 LAEF Macroeconomics and Business CYCLE conference (UCSB), the 4th WB-BE Research Conference on “Labor mar-
kets: Growth, Productivity and Inequality”, and the 2016 Econometric Society Summer Meetings for extremely helpful comments
and suggestions.

1

mailto:meden@worldbank.org
mailto:pgaggl@uncc.edu


1. Introduction

The advent of information and communication technologies (ICT) is widely viewed to have had trans-

formational effects on the distribution of income across factors of production. The discussion of this topic

has centered around two mechanisms: first, ICT may have lowered the demand for tasks that can easily be

automated relative to those that cannot, thus leading to a reallocation of labor income across occupations

(e.g., Autor and Dorn, 2013).1 Second, the automation of certain tasks may have led to a decline in the

overall demand for labor, thus reallocating income from labor to ICT capital and lowering the labor income

share (e.g., Karabarbounis and Neiman, 2014).2

Within a framework that allows for both of these channels to operate, we ask how the adoption of ICT

since the 1950s has affected the distribution of income across factors of production, as well as growth in per-

capita output and consumption in the United States. We begin with documenting the evolution of income

shares since the 1950s, disaggregating capital and labor inputs based on their relationship with ICT. We

then offer a structural interpretation of the observed trends, which allows us to comment on the effects

of automation. In particular, our quantitative analysis suggests that ICT accumulation since the 1950s is

responsible for sizable output and consumption gains and about half of the decline in the labor income share.

Moreover, we highlight that the direct output and consumptions gains from ICT accumulation are amplified

substantially by concurrent non-ICT investments—a general equilibrium effect that is absent in traditional

growth accounting exercises. In fact, we show that this indirect effect has become more prominent in recent

years, especially since the 2000s, a period in which we find that ICT explains about 1/3 of US growth in

output per person.

We distinguish four factors of production: ICT and non-ICT capital, as well as “routine” and “non-

routine” labor, following the organizing framework of Acemoglu and Autor (2011), which is based on

extensive research documenting the relative substitutability of ICT with different types of tasks.3 On the

1While many older contributions provide mostly conditional correlations, Akerman, Gaarder and Mogstad (2015) as well as
Gaggl and Wright (2016) are two recent examples providing estimates for the causal effects of ICT investments on the employment
and wage distribution. Their estimates confirm many of the earlier results (based mostly on conditional correlations) surveyed by
Acemoglu and Autor (2011).

2Further examples are Elsby, Hobijn and Sahin (2013) as well as Bridgman (2014).
3Acemoglu and Autor (2011) survey an extensive literature in labor economics sourounding the classification of occupations

according to their task content and their interactions with ICT. The very aggregate classification we choose here is based on what
they consider the “consensus aggregation” emerging out of this literature.
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Figure 1: The Division of Income in the US
(A) Labor’s Income Share (B) Capital’s Income Share
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Notes: Occupation specific income shares are based on CPS earnings data from the annual march supplement (1968 and after) and
rescaled to match the aggregate income share in the Non-Farm Business Sector (BLS). The underlying earnings data are top-code
adjusted using Piketty and Saez’s (2003) updated estimates of the US income distribution. Non-routine workers are those employed
in “management, business, and financial operations occupations”, “professional and related occupations”, and “service occupations”.
Routine workers are those in “sales and related occupations”, “office and administrative support occupations”, “production occupa-
tions”, “transportation and material moving occupations”, “construction and extraction occupations”, and “installation, maintenance,
and repair occupations” (Acemoglu and Autor, 2011). For details see Section 3. The construction of capital-type specific income
shares is described in Section 2. The underlying data are nominal gross capital stocks and depreciation rates, drawn from the BEA’s
detailed fixed asset accounts.

capital side, we find that the ICT capital income share has increased by almost a factor of 7 since 1950

(Panel B of Figure 1 and Table 1), while the non-ICT capital income share remained trend-less. On the labor

side, our decomposition suggests that there has been a steep decline in the income share of “routine” labor,

which performs tasks that are relatively prone to automation, countered by an equally rapid increase in the

income share of “non-routine” labor (Panel A of Figure 1 and Table 1).

To interpret these findings, we calibrate a production function that matches the observed trends in the

relative income shares of ICT capital and both routine and non-routine labor. By focusing on relative rather

than absolute income shares and excluding non-ICT capital, our calibration strategy attributes only the rise

in the ICT capital income share to automation, allowing for part of the decline in the aggregate labor income

share to reflect other factors. Given that our measurement of relative income shares is insensitive to the

measurement of the aggregate labor income share, this strategy is immune to the recent critiques regarding

the potential mis-accounting of self-employment income, which may potentially be driving the bulk of the

decline in the measured labor income share (Elsby et al., 2013). Through the lens of our model, we can

gauge the effects of automation without taking a strong stance on this measurement issue.
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Table 1: The Division of Income in the US

Labor Share Capital Share
Labor Share Capital Share Routine Non-Routine ICT Non-ICT

1950 63.95 36.05 0.57 35.48
1968 63.44 36.56 38.61 24.82 1.2 35.37
2013 57.15 42.85 23.58 33.57 3.86 38.99

Percentage Point Change
1968-2013 -6.29 6.29 -15.04 8.75 2.67 3.62
1950-2013 -6.8 6.8 3.29 3.5

Notes: The table summarizes the long run trends in labor and cpaital shares as depicted in Figure 1.
See the notes to Figure 1 for details on the data construction. Since our earnings data based on the
CPS start in 1968 we report the disaggregated labor shares only for the period 1968-2013.

At the same time, our calibration strategy attributes the entire reallocation of labor to automation, ig-

noring the potential contributions of other factors. There has been some debate regarding the quantitative

relevance of different factors to the changing occupational composition. While some papers argue that

technology has been the driving force behind the shift from routine to non-routine occupations (e.g., Autor

and Dorn, 2013), others suggest the importance of offshoring and international trade (e.g., Autor, Dorn and

Hanson, 2013). We emphasize that our paper does not provide new evidence in support of one view or

another. Rather, our paper contributes to this debate by deriving new testable predictions associated with the

technology-based view. In particular, we compute the elasticities of substitution between different factors

of production that are necessary in order to generate the trends in the data in a general equilibrium model

of automation. Our results show that if one is to subscribe to the view that automation is the sole driver of

the reallocation of labor income, then one must accept that routine and non-routine labor are highly sub-

stitutable, and that both routine and non-routine labor are substitutable to varying degrees with ICT. While

testing these predictions is beyond the scope of this paper, we hope that their derivation will further the

debate by providing a benchmark for interpreting the general equilibrium implications of different empirical

estimates of elasticities of substitution.

In addition, the distinction between routine and non-routine labor is useful for decomposing the sources

of the declining routine labor income share, under the assumption that the reallocation of labor across oc-

cupations is caused by differences in substitutability with ICT. Our calibration suggests that of the 15pp

measured decline in the routine labor income share over the period 1968-2013 (see Table 1), 13.9pp can be

attributed to automation (while 1.1pp are due to factors outside the model): 3.3pp reflect an increase in the
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income share of ICT capital while 10.6pp reflect an increase in the income share of non-routine labor. In

addition, of the 6.3pp decline in the aggregate labor share over the same period (see Table 1), our model

suggests that ICT accounts for 3.3pp, while the remaining 3pp are explained by factors outside the model.

Thus, we conclude that ICT accounts for about half of the decline in the aggregate labor share over the

period 1968-2013.

Our framework further allows us to comment on the contribution of ICT toward aggregate output and

consumption growth. Given the low income share of ICT, traditional growth accounting exercises tend to

attribute only a small portion of growth to the accumulation of ICT capital.4 Using steady-state comparative

statics in our model, we illustrate that such growth accounting exercises understate the overall output gains

from ICT by about 50%, as they fail to account for the effect of ICT accumulation on the accumulation of

non-ICT capital. On the one hand, our model predicts that ICT explains about 8% (0.17pp of 2.02% per year)

of the average growth in per-capita real GDP over the period 1950-2016. On the other hand, our simulations

also highlight that ICT contributed less than 4% to overall growth until the 1980s but comprised more than

40% (0.46pp of 1.1% per year) of US growth during the 2000s and more than 30% since 2010 (0.38pp of

1.22% per year). Interestingly, we find that the growth contribution of indirect non-ICT investments has

become increasingly important starting in the 1980s—a general equilibrium effect typically not accounted

for by traditional growth accounting exercises.

Finally, we note that our calibration implies an elasticity of substitution between ICT capital and labor

of about 1.85. However, since ICT capital is a relatively small share of the aggregate capital stock (about

2.5% on average within our sample), this elasticity is consistent with an elasticity of substitution between

aggregate capital and labor that is close to unity (1.09). We note that this value is in line with a number of

previous studies that estimate an aggregate elasticity of close to one (e.g., Berndt, 1976).

This paper is most closely related to the literature on the general equilibrium effects of declining capital

prices (e.g., Krusell, Ohanian, Rı́os-Rull and Violante, 2000; Autor and Dorn, 2013; Karabarbounis and

Neiman, 2014). Our main departure from this literature is an explicit focus on the distinction between ICT

and non-ICT capital. Karabarbounis and Neiman (2014) and Autor and Dorn (2013) consider an aggregate

4There is a long literature trying to assess the growth impact of ICT. For some recent examples see Colecchia and Schreyer
(2002), Basu, Fernald, Oulton and Srinivasan (2003), Jorgenson and Vu (2007), Bloom, Sadun and Van Reenen (2012), as well as
Acemoglu, Autor, Dorn, Hanson and Price (2014) and references therein.
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capital input. Closer to our decomposition, Krusell et al. (2000) distinguish between equipment and struc-

tures.5 The ICT capital class considered in this paper is a subset of the broader class of equipment. Our

focus on this narrower category is motivated by the rich literature emphasizing that ICT features unique

interactions with different types of labor (Acemoglu and Autor, 2011; Akerman et al., 2015; Gaggl and

Wright, 2016). Consistent with Krusell et al. (2000), our analysis suggests that technology has more trans-

formative effects on the distribution of labor income than on the distribution of income between capital and

labor. However, while the analysis in Krusell et al. (2000) does not find an effect on the labor income share,

our model suggests that ICT also changes the distribution of income between capital and labor, consistent

with Karabarbounis and Neiman (2014). However, we note that our calibration implies a substantially lower

elasticity of substitution between aggregate capital and labor (close to unity).

2. Decomposing The Capital Income Share

Conceptually, the payment to each type of capital is comprised of both a unit payment (the rental rate of

capital) and the (real) stock of capital—analogous to the wage rate and the physical amount of labor provided

by the worker. Both of these items are challenging to measure, especially when the relative prices of the

various types of capital are changing over time. To accomplish this, we build on two standard assumptions,

that have been used to measure the returns to capital at least since the seminal work by Hall and Jorgenson

(1967) and Christensen and Jorgenson (1969) and will allow us to directly measure capital type specific

income shares from the BEA’s current cost values for the stocks of detailed assets in the US.6 Specifically,

we impose the standard constant returns assumption and a no-arbitrage condition for investment in different

types of assets.7

Suppose that there are several types of capital, denoted K

i

, with i = 1, ..., I . If the aggregate production

5In a similar analysis, vom Lehn (2015) also distinguishes between equipment and structures.
6Official documenation for the BEA’s methodology to construct these estimates is available at

http://www.bea.gov/national/pdf/Fixed Assets 1925 97.pdf. Most macroecnomic studies using capital stocks utilize a sim-
pler version of the perpetual inventory method than the BEA’s estimates, usually based on linear constant depreciation and
aggregate real investment rates. We prefer the BEA’s estimates for several reasons: first, they are provided at the detailed asset
level; second, they allow for time varying non-linear depreciation patterns; finally, these estimates allow us to directly use nominal
stocks at current cost, rather than chain-weighted quantity indexes.

7For a few more recent contributions that use the same basic strategy to compute the return to specific types of captial in various
contexts see for example Jorgenson (1995), O’Mahony and Van Ark (2003), and Caselli and Feyrer (2007). We outline the basic
idea of our implementation to measure capital type specific income shares here and provide detailed derivations in Appendix A.
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technology exhibits constant returns to scale in all factors, the share of payments to capital must satisfy the

following equilibrium relation:

s

K,t

=

IX

i

R

i,t

K

i,t

P

t

Y

t

= 1� s

L,t

, (1)

where s

K,t

and s

L,t

denote the aggregate capital and labor income shares, respectively, Y
t

is final output

with associated price P

t

, and R

i,t

denotes the (nominal) rental rate of capital type i. Note that, if factor

markets are competitive, the real rental rate (R
i,t

/P

t

) is equal to the physical marginal product of a unit of

capital. However, our approach does not require this assumption.

Suppose an investor buys a unit of capital type i at the going price P
i,t

and rents it out for a period at the

real rental rate R

i,t

. The gross return after production and re-sale of this piece of capital is then given by

R

i,t

+ P

i,t+1(1� �

i,t

)

P

i,t

, (2)

where �

i,t

is the depreciation rate for capital type i.

In an equilibrium in which investors can choose between different assets, the return (2) on each type

of capital must equal the prevailing gross return on investment. It is important to note, however, that this

does not require the (physical) marginal product of each type of capital to be equalized. In the standard

neoclassical growth model, marginal products need to equalize since capital has a constant price relative to

output and there is only one rate of depreciation. In our context, both the price as well as the depreciation

rate of ICT is changing drastically relative to output and all other forms of capital (see Figure 2). Thus,

no-arbitrage in investment requires the gross return (2) to be equalized across all types of capital.

We show in Appendix A how equations (1) and (2) allow us to compute the income share for each type

of capital, defined as s
i,t

=

Ri,tKi,t

PtYt
, using the labor income share, nominal current cost values for each type

of capital, capital specific depreciation rates, and a price index for ICT capital as data inputs.

To measure the current cost values of different types of assets we use the BEA’s detailed fixed asset

accounts. We aggregate the BEA’s detailed industry level estimates into three types of capital, classified

according to the BEA’s definition: residential assets, consumer durables and non-residential assets. Within

the non-residential and consumer durables categories we separate ICT and NICT assets.

Within non-residential assets we consider an asset to be ICT if the BEA classifies it as software (clas-
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Figure 2: Relative Prices & Depreciation
(A) Relative Capital Prices (B) Depreciation Rates
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depreciation rates constructed directly from the BEA’s fixed asset accounts. See Tables G.8 and G.9 in Appendix G and the text for
our grouping of assets. The dashed vertical lines indicate the year 1968.

sification codes starting with RD2 and RD4) or as equipment related to computers (classifications codes

starting with EP and EN). See Tables G.8 and G.9 in Appendix G for complete lists of the detailed assets

grouped into the two types of non-residential capital. Within consumer durables we classify the following

assets as ICT: PCs and peripherals (1RGPC); software and accessories (1RGCS); calculators, typewriters,

other information equipment (1RGCA); telephone and fax machines (1OD50).

The construction of capital income shares requires estimates of the depreciation rates, �
i,t

, as well as

estimates of expected capital gains, E [P

i,t+1/Pi,t

]. We measure depreciation rates directly form the BEA’s

nominal values of depreciation for each type of detailed asset.8 We then employ implicit price deflators that

we construct for each type of capital based on chain type price indices provided by the BEA.9

Panel A of Figure 2 depicts the path of prices for ICT and NICT assets relative to the GDP deflator.10

This figure immediately reveals two important insights: First, the price of NICT capital relative to output

8In particular, we measure depreciation rates based on the BEA’s nominal values for depreciation and net capital stocks. That
is, we compute �i,t = (Pi,tDepi,t)/(Pi,t(NetStock i,t + Depi,t). Since both measures are reported in year-end nominal values,
the price terms cancel.

9Notice that this involves constructing appropriate chain type quantity aggregates and associated implicit price deflators for each
capital type, derived from the BEA’s estimates of stocks and prices for the detailed assets listed in Tables G.8 and G.9 in Appendix
G.

10See Appendix C for alternative aggregation schemes, highlighting the distinction between residential and non-residential capital
as well as equipment and structures, which all reveal the same qualitative result.
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is essentially constant throughout the entire sample. This regularity will allow us to ignore changes in the

NICT capital price, and focus our analysis on changes in the ICT capital price. Second, the relative price of

ICT falls substantially, especially during the 1970s and 1980s. Since a real quantity index holds productive

capacity constant, this price decline reflects technological improvements in the production of computing

power and ICT capital. Our quantitative analysis will focus on the general equilibrium effects of these

technological improvements, as measured by this trend.

Panel B of Figure 2 graphs the respective depreciation rates for each type of capital. The depreciation

rate of ICT capital is substantially higher than the depreciation rate of NICT capital. This will tend to imply

that ICT capital goods constitute a larger share of investment than of the aggregate capital stock. These

divergent trends therefore imply that an aggregate capital price index weighted by investment shares will

have a sharper decline than a price index weighted by capital shares. Despite the fact that “investment

prices” (i.e., investment weighted price indexes) are more common and easier to measure, a stock weighted

index is the relevant price to study investment behavior within a neo-classical framework, as we do here.

Based on these measures, we use the derivations in Appendix A to construct the income share for each

type of capital and panel B of Figure 1 illustrates the resulting estimates (also see Table 1). One can clearly

see that the income share of NICT capital does not show any significant trend throughout the entire sample.

During the same period, the income share of ICT capital was on a steady upward trend and has increased

roughly seven-fold, from 0.57% in 1950 to 3.86% by 2013. This implies that the introduction of ICT did

not significantly crowd out other forms of capital, whose income share fluctuated around a trend-less long

run average of around 35%.

This accounting exercise suggests that roughly half of the decline in the labor income share is attributable

to the rise in the ICT income share. The remainder is due to a rapid rise in the NICT income share, particu-

larly after 2001. Consistent with the findings of Rognlie (2015), a further decomposition of the increase in

the NICT capital income share in the post 2001 period reveals that this rise is accounted for entirely by a rise

in the income share of structures and residential capital (see Appendix C for further details). After removing

structures and residential capital income, the NICT capital income share is stationary. If one assumes that

trends in real estate income are unrelated to automation, this measurement exercise suggests that about half

of the decline in the labor income share is potentially attributable to the declining ICT price.

Given the stark trends in income shares (Figure 1 and Table 1), we find it instructive to decompose the

9



Figure 3: Capital and its Rental Rate
(A) Capital Stock Relative to 1968 (B) Rental Rate of Capital
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payments to capital, (R
i,t

/P

t

)K

i,t

, into a price and quantity component. To this end, we construct chained

quantity indexes for the stocks of ICT and NICT capital based on the BEA’s fixed asset accounts. Panel A of

Figure 3 shows that the stock of ICT capital in 2012 is more than 40 times its 1950 level. Panel B illustrates

that the rental rate of ICT capital—measured in units of final output—fell substantially over the same period.

This price-quantity decomposition suggests that the increase in the income share of ICT capital is due to the

accumulation of ICT capital that outpaced the decline in its rental rate.

Finally, in our calibration, we will postulate a one-sector aggregate production structure that matches

the trends depicted in panel A of Figure 1. To justify such an approach, we illustrate that the disaggregated

trends in the capital income shares are not merely a result of changes in the industrial composition but rather

a within-industry phenomenon. To this end, Appendix D presents the measurement of industry-specific

ICT and NICT shares based on the BEA’s detailed fixed asset accounts and establishes that the aggregate

trends in ICT and NICT income illustrated in Figure 1 and Table 1 are robust to the inclusion of industry

fixed-effects.
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3. Decomposing The Labor Income Share

An extensive literature in labor economics has recently identified unique interactions between ICT and

two types of labor as one of the main sources for dramatic shifts in the earnings distribution within virtually

all developed countries around the world (Acemoglu and Autor, 2011). The first type of labor executes

primarily “routine” tasks, that require following exact, pre-specified decision trees (or routines). By their

very nature, these tasks are prone to automation and numerous empirical studies have shown that investments

in ICT tend to replace such tasks, and therefore jobs (e.g., Autor and Dorn, 2013, and references therein).

On the other hand, the second type of labor is intensive in non-routine tasks, that require substantial amounts

of judgement, creativity or interpersonal skills, which are less readily automated. This assertion is backed

by an equally large body of empirical evidence shwoing that investments in ICT complement these tasks

and tend to increase the demand for jobs specializing in such tasks (e.g., Akerman et al., 2015; Gaggl and

Wright, 2016, and references therein).

To incorporate this distinction into our production framework, we measure the income shares of routine

and non-routine labor. To do so, we consider two alternative measures of earnings at the occupation level in

the U.S. Current Population Survey (CPS): annual earnings from the march supplements (MARCH) starting

in 1968 (provided by IPUMS, Ruggles, Alexander, Genadek, Goeken, Schroeder and Sobek, 2010), and

weekly earnings for the outgoing rotation groups (MORG) starting in 1979 (provided by the NBER). We use

the CPS sampling weights and construct an estimate of the aggregate wage bill at the detailed occupation

level, which requires several non-trivial adjustments to the raw data. First, since the U.S. Department of

Labor’s (DOL) classification of occupations changes several times during our sample period, we aggregate

individuals into a panel of 330 consistent occupations, designed by Dorn (2009).11 Second, and more crucial

for our analysis, we follow Champagne and Kurmann (2012) and adjust top coded earnings based on Piketty

and Saez’s (2003) updated estimates of the cross-sectional income distribution.

Based on these adjusted earnings numbers, we then compute the aggregate annual wage bill and divide

it by nominal GDP, to construct the share of wage and salary earnings in aggregate income. As illustrated

in panel A of Figure 4, the aggregate labor share based on earnings data in the CPS-MORG accounts for

11We thank Nir Jaimovich for providing a crosswalk between Dorn’s (2009) occupation codes and the latest Census classification
that is used in the CPS since 2011. This crosswalk is the same as in Cortes, Jaimovich, Nekarda and Siu (2014).
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Figure 4: Labor’s Share in Income
(A) Aggregate Labor Income Share (B) Piketty-Saez Adjustment
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NBER. The data are seasonally adjusted with the U.S. Census X11 method. Panel B contrasts the raw earnings reflected by CPS
topcoded values and our series that adjust top-coded earnings with the appropriate (updated) estimates by Piketty and Saez (2003).

stable 70% of the one based on total non-farm business labor income (which includes benefits, pensions,

self employed income, etc.). Moreover, the two series are almost perfectly correlated over time.

To compute the routine and non-routine income shares we define routine and non-routine workers as sug-

gested by Acemoglu and Autor (2011). That is, we consider workers employed in “management, business,

and financial operations occupations”, “professional and related occupations”, and “service occupations” as

non-routine; and we define routine workers as ones employed in “sales and related occupations”, “office

and administrative support occupations”, “production occupations”, “transportation and material moving

occupations”, “construction and extraction occupations”, and “installation, maintenance, and repair occupa-

tions”. Note that this classification emerges out of an extensive literature, surveyed in Acemoglu and Autor

(2011), that originated from the seminal work by Autor, Levy and Murnane (2003). They and many other

contributions in this line of research use detailed information on the task content of at least 300 detailed

occupations (depending on the study) obtained from the Dictionary of Occupational Titles (DOT) and its

successor O*Net. The classification used here is the “consensus aggregation” suggested by Acemoglu and

Autor (2011) that captures the key insights from the more detailed micro analyses. We drop farm workers
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for all our analyses for comparability with the BLS measure of the labor income share.12 To compute the

income shares corresponding to each occupation group, we simply compute the aggregate annual wage bill

within each occupation group and divide it by nominal GDP.

Finally, we proportionately rescale both group specific income shares (which originally add up to the

series labeled “CPS(R+NR)” in panel A of Figure 4) so that they match the share of (non-farm business)

labor income in GDP, as estimated by the BLS (top line in panel A of Figure 4). The resulting routine and

non-routine income shares using the MARCH earnings measure are displayed in panel A of Figure 1 and

Figure A.11 in Appendix B illustrates that income shares based on the MORG earnings measure reveal a

virtually identical picture. Consistent with the literature in labor economics, we find that, in the U.S., the

decline in the aggregate labor share is entirely accounted for by routine occupations, while the income share

of non-routine labor has been rising (also see Table 1).

For our calibration, it will be useful to decompose these trends in income shares into trends in wages

and trends in labor inputs. The declining routine labor income share relative to the non-routine labor income

share could be driven either by a change in relative wages, a change in relative labor inputs, or both. We find

that both an increasing non-routine wage premium and an increase in non-routine labor inputs contribute to

this trend.

As a baseline reference, we start with estimating simple averages of log real earnings for each type of la-

bor. Panel A of Figure 5 illustrates these estimates and gives a first indication of a steadily increasing wedge

between non-routine and routine pay. Since routine occupations comprise primarily of middle-income jobs,

this regularity is consistent with a large body of literature that documents an increase in wages for high- and

low-paying jobs relative to middle-income jobs.13

To ensure that this wedge is not simply driven by a changing composition of characteristics of routine

and non-routine workers, we estimate the following set of cross-sectional wage regressions separately for

each year, t:

lnw

i,t

= �0,t + �1,tNR

i,t

+ �2,tXi,t

+ ✏

i,t

for t 2 {1968, . . . , 2013}, (3)

12We note that the aggregation into the two groups of routine and non-routine occupations is also supported by separate evidence
provided by Gaggl and Kaufmann (2015), who use cyclical employment dynamics to classify detailed occupations into clusters
with common dynamic trends.

13See Acemoglu and Autor (2011) for a comprehensive summary of this literature.
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Figure 5: The Non-Routine Wage Premium in the US
(A) Routine vs. Non-Routine Wages (B) Non-Routine Wage Premium
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Notes: Panel A plots the unconditional mean of log real annual earnings in each occupation group. Panel B graphs the coefficients
from annual regressions of individual level log real earnings on a non-routine dummy and a host of demographic control variables,
including flexible functional forms in industry, age, and education. Occupation and individual specific earnings are based on the the
annual march supplements in the CPS (MARCH) provided by IPUMS (Ruggles et al., 2010). We deflate eranings data with the chain
type implicit price deflator for personal consumption expenditures. Non-routine workers are those employed in “management, busi-
ness, and financial operations occupations”, “professional and related occupations”, and “service occupations”. Routine workers are
those in “sales and related occupations”, “office and administrative support occupations”, “production occupations”, “transportation
and material moving occupations”, “construction and extraction occupations”, and “installation, maintenance, and repair occupations”
(Acemoglu and Autor, 2011).

where NR

i,t

is a dummy variable indicating that individual i works a non-routine job in year t and X

i,t

includes a variety of control variables. In particular, we include gender, race, and full time employment

dummies, we control for the weeks worked, a full set of industry fixed effects (50 industries constructed

from SIC industry codes by the NBER), as well as forth order polynomials in age, education, and the

interaction of education and age.

We estimate regressions (3) based on individual level data from the annual CPS march supplements and

weight by the CPS sampling weights.14 Panel B of Figure 5 plots the resulting time series of estimates ˆ

�1,t

and the associated 95% confidence intervals based on standard errors that are clustered on industry. These

estimates highlight that the rising relative wage for non-routine labor is not entirely driven by the rising skill

premium or by specific industries. The latter observation is of particular importance, as it highlights that

the wage premium is not simply due the steady decline in manufacturing as the estimates ˆ

�1,t are identified

14Note that in an earlier version we estimated these regressions at the quarterly level based on the CPS MORG. The results are
qualitatively equivalent but we prefer the longer time horizon provided by the annual march supplements. The CPS MORG results
are available form the authors upon request.
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Figure 6: Routine & Non-Routine Employment
(A) Effective Employment (B) Importance of Non-Routine Labor
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Notes: Panel A plots employment levels in routine and non-routine jobs as reflected in the CPS. The graph plots both the raw CPS
numbers as well as our imputed “effective” units based on equations (6) and (7). Panel B illustrates the relative importance of
non-routine jobs.

from within industry variation. These estimates therefore suggest that part of the increase in the non-routine

income share is driven by a steadily increasing gap between routine and non-routine pay.

Our estimates suggest that the non-routine wage premium rose from around 6.5% in 1968 to 16% in

2013. Given the sheer size and persistence of this premium we find it unlikely to be driven by frictions (like

barriers to entry). In our calibration exercise, we will therefore assume flexible labor markets and attribute

the non-routine wage premium to some form of unobserved ability (e.g. managerial skills, “people” skills,

etc.).

Similarly, to measure the trends in labor inputs we distinguish between raw labor (employment) and

“effective” units of labor, which take into account differences in worker attributes. In a frictionless world,

an “effective” unit of labor needs to be paid a fixed wage w
t

and therefore, the ratio of non-routine to routine

labor in effective units is given by

s

r,t

s

ln,t

=

w

r,t

L

r,t

w

nr,t

L

nr,t

=

w

t

(e

r,t

L

r,t

)

w

t

(e

nr,t

L

nr,t

)

=

L

e

r,t

L

e

nr,t

, (4)

where e

r,t

and e

nr,t

are effective units of labor embodied in routine and non-routine workers, respectively.

Panel B of Figure 6 illustrates the time path of this ratio, revealing that non-routine labor inputs have in-

creased relative to routine labor inputs, both in terms of raw labor and in terms of effective units of labor.
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Figure 7: Real Baseline Wage
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Notes: The figure plots ŵt = �̂0,t based on estimates from regression model (3)
with Xit = 0 for our baseline worker: a 19-year-old, white, male, full-time, rou-
tine, manufacturing worker with a high school degree, who works 50-52 weeks
per year. Real earnings are based on the U.S. GDP deflator with 1979=1.

For our calibration exercise below, it will be useful to construct the time paths of routine and non-routine

labor in effective units, as well as a sequence of real wages per effective unit of labor. We obtain an estimate

for w
t

directly from regression model (3). To do so, we normalize X
it

such that X
it

= 0 corresponds to our

“reference worker”: a 19-year-old, white, male, full-time, routine, manufacturing worker with a high school

degree, who works 50-52 weeks per year. This allows us to interpret our estimated constant in regression

(3) as the baseline wage, that is ŵ
t

=

ˆ

�0,t. Figure 7 illustrates the resulting baseline real wage series and we

note that our estimates are in line with a vast literature in labor economics that finds stagnating real wages

for the “middle class” starting in the early 1970s (Levy and Murnane, 1992).

Based on the identity w

t

L

e

t

=

P
i

w

it

L

it

, aggregate effective employment is then given by

L

e

t

=

P
i

w

it

L

it

w

t

(5)
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which allows us to compute the effective levels of routine and non-routine employment as

L

e

nr,t

=

1

1 +

sr,t

sln,t

L

e

t

(6)

L

e

r,t

= L

e

t

� L

e

nr,t

(7)

Panel A of Figure 6 illustrates the time paths for routine and non-routine employment, both in actual and

effective units of labor.

Figures 5 and 6 clearly illustrate that the increase in non-routine labor’s share in income is due to a

substantial increase in both the non-routine wage premium as well as non-routine employment relative to

routine employment.

4. A Calibrated Production Function

This section lays out a procedure for calibrating an aggregate production function based on observed

trends in income shares. Given the relative stability of the non-ICT capital income share, we postulate a

production function that is a Cobb-Douglas aggregate of non-ICT capital and a CRS production function in

the remaining inputs. The calibration targets long-run trends in the relative income shares of ICT capital,

routine- and non-routine labor. Specifically, using lower case letters to indicate variables expressed in per-

worker terms, we assume an aggregate production function given by:

y = k

↵

n

x

1�↵, (8)

where y is output, k
n

is non-ICT capital and x is an input produced by ICT (k
c

) as well as routine (`
r

) and

non-routine (`
nr

) labor inputs. To parametrize this composite input we consider two alternative specifica-

tions that have been proposed in the literature. Frist, Autor and Dorn (2013) consider the following nested

CES specification:

x = (µ(�k

⇢

c

+ (1� �)`

⇢

r

)

'
⇢
+ (1� µ)`

'

nr

)

1
' (9)

where µ,� 2 [0, 1] and ⇢,'  1. The interpretation is one in which non-routine labor interacts with “routine

inputs”, which can be produced by either routine labor or ICT capital. For example, a (non-routine) applied
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economist is more productive if there is more data available; it is immaterial whether the data is collected

by (routine) human surveyors or by an online survey. ICT affects the productivity of non-routine labor only

through increasing the supply of routine inputs, while routine labor is directly substitutable with ICT.

An alternative specification, in the spirit of Krusell et al. (2000), is a nested CES in which non-routine

labor interacts directly with ICT:

x = (⌘`

✓

r

+ (1� ⌘)(�k

�

c

+ (1� �)`

�

nr

)

✓
�
)

1
✓ (10)

where, again, ⌘, � 2 [0, 1] and ✓,�  1. Here, non-routine labor interacts directly with ICT capital, and

routine labor interacts with a “non-routine” input that is produced jointly by ICT capital and non-routine

labor. For example, secretaries producing printed documents using typewriters are substitutable with writers

directly producing their documents using word processors. In this case, the direct interaction between

non-routine labor and ICT capital makes routine labor redundant. More generally, this functional form

captures technologies that directly affect the productivity of non-routine labor, performing tasks that would

be less feasible for routine labor. For example, complicated computations such as a multivariate regressions

would require a lot of patience and brainpower without a computer, rendering them practically unfeasible

for routine labor. Similarly, communication technologies that allow for instantaneous sharing of ideas and

information provide a service that is not feasibly provided by human messengers.

The two specifications parameterize the various interactions between labor and ICT in slightly different

ways. Equation (9) postulates a constant elasticity of substitution between ICT and routine labor, 1/(1� ⇢),

while the elasticity between ICT and non-routine labor is an endogenous, time varying object. Conversely,

equation (10) postulates the opposite, i.e., that the elasticity of substitution between ICT and non-routine

labor is constant, 1/(1 � �), while the elasticity of ICT and routine labor may vary over time. Despite

these subtle differences, both specifications allow for substitutability between routine labor and ICT, and

complementarity (or relatively less substitutability) between non-routine labor and ICT. We are therefore

a-priori agnostic and propose a calibration strategy to choose the specification that best fits trends in relative

income shares. However, it turns out that our calibration for specification (9) requires implausible parameter

values (⇢ > 1) to fit the targeted trends. In the interest of space, we therefore restrict the discussion below

to specification (10) and relegate the analogous calibration of specification (9) to Appendix F.
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Specifically, we use a two-step procedure based on the first order conditions of a competitive firm pro-

ducing output y with technology (8). Taking wages and rental rates as given, the firm’s optimality conditions

for the case of specification (10) imply that the following conditions must hold:15

ln

✓
s

c

s

nr

◆
= ln

✓
�

1� �

◆
+ � ln

✓
k

c

`

nr

◆
(11)

ln

✓
s

r

s

xnr

◆
= ln

✓
⌘

1� ⌘

◆
+ ✓ ln

✓
`

r

x

nr

◆
(12)

where s
i

is the income share of input i 2 {k
c

, `

nr

, `

r

, x

nr

}, with x

nr

= (�k

�

c

+(1��)`

�

nr

)

1
� and associated

income share s

xnr = s

c

+ s

nr

. Analogous expressions hold for specification (9) and details are shown in

Appendix F. We then use measured trends in income shares and quantities from the previous sections to

calibrate the four parameters �, �, ⌘, and ✓ using the following two steps:

1. Estimate � and � using OLS and compute the implied time series for x
nr

= (�k

�

c

+ (1� �)`

�

nr

)

1
�

2. Estimate ⌘ and ✓ using OLS, conditional on the implied series for x
nr

from step 1

Table 2 reports the results based on this procedure for specification (10) in four alternative versions.

Panel A uses all data as measured in the previous sections, panel B uses a fitted log linear trend rather than

the measured data, while panels C and D fit only the first and last data/trend point, respectively. While our

goal is a calibration based on trends, ignoring short-term fluctuations, notice that the estimated parameter

values are extremely similar across the four alternative specifications. We prefer specification B as it is based

on a log linear trend rather than the measured data and it is not exclusively based on the two end-points of

our sample, which may introduce bias in both two-point regressions shown in panels C and D.

Notice that these calibrated parameters imply an elasticity of substitution between ICT capital and non-

routine labor to be around 1.56 and an elasticity of substitution between routine labor and x

nr

(a CES

composite of ICT and non-routine labor) of around 8.3. While the latter elasticity is not necessarily an

object of particular interest, we will devote Section 5.2 to comment on the implications of these estimates

for two elasticities that have received significant attention in the recent literature: the elasticity of substitution

between aggregate capital and labor (e.g., Karabarbounis and Neiman, 2014; Oberfield and Raval, 2014) as

15See Appendix E for more details.
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Table 2: Calibration of Production Parameters

A. Data: 1968-2013 B. Trend: 1968-2013 C. Data: 1968/2013 D. Trend: 1968/2013

(A.1) (A.2) (B.1) (B.2) (C.1) (C.2) (D.1) (D.2)

ln
⇣

s
c

s
nr

⌘
ln

⇣
s
r

s
x

nr

⌘
ln

⇣
s
c

s
nr

⌘
ln

⇣
s
r

s
x

nr

⌘
ln

⇣
s
c

s
nr

⌘
ln

⇣
s
r

s
x

nr

⌘
ln

⇣
s
c

s
nr

⌘
ln

⇣
s
r

s
x

nr

⌘

ln (kc/`nr) 0.367*** 0.358*** 0.354 0.358
(0.038) (0.000)

ln (`r/xnr) 0.879*** 0.880*** 0.884 0.879
(0.007) (0.003)

Constant -5.763*** 0.119*** -5.685*** 0.124*** -5.717 0.113 -5.685 0.130
(0.333) (0.002) (0.000) (0.001)

Obs. 46 46 46 46 2 2 2 2

Estimated Parameters & Implied Elasticities
� 0.003 0.003 0.003 0.003
� 0.367 0.358 0.354 0.358
EOS(kc, `nr) 1.579 1.558 1.549 1.558

⌘ 0.530 0.531 0.528 0.532
✓ 0.879 0.880 0.884 0.879
EOS(xnr , `r) 8.269 8.307 8.596 8.263

Notes: The table shows OLS estimates of the parameters in equations (11) and (12) and the two-step procedure described in the text:
in step one, we estimate (11); in step two, we estimate (12) conditional on the results from step one. Newey-West standard errors are
reported in parethesis below estimated coefficients in panels A and B. Significance levels are indicated by * p < 0.1, ** p < 0.05, and
*** p < 0.01.

well as the elasticity of ICT and routine labor (e.g., Autor and Dorn, 2013). We note that, in our framework,

both of these elasticities are endogenous, time varying objects.

5. Counterfactual Analysis

We embed our calibrated production structure in a neoclassical growth model to study the effects of

the declining ICT price. Formally, we consider a representative agent model, in which an infinitely lived

household solves the following optimization problem:

max

ct,ki,t+1,li,t

1X

t=0

�

t

u(c

t

)
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Table 3: Calibration of Remaining Parameters

Parameter Calibration

� 0.9747
u(c) ln(c)

�n .059 (mean of non-ICT depreciation, BEA data)
↵ 0.349 (mean of non-ICT share)
�l 0.028 (trend US population growth)

pc,t 2 [0.254, 1.727] (BEA data, 1950-2013)
�c,t 2 [.134, 0.208] (BEA data, 1950-2013)

Notes: The ICT price and depreciation rates are measured directly based on the
BEA’s fixed asset accounts.

subject to `

r,t

+ `

nr,t

= 1, y
t

= Ak

↵

n

x

1�↵

t

, equation (10), and the budget constraint

c

t

+ (1 + �

l

)

X

i

p

i,t

k

i,t+1 = y

t

+

X

i

p

i,t

(1� �

i,t

)k

i,t

. (13)

All variables are in per-worker terms: c

t

is consumption per-worker, k
i,t

is the capital stock per-worker

of type i, y
t

is output per-worker and `

r,t

and `

nr,t

are the employment shares in routine and non-routine

occupations. The parameter �
l

is the growth rate of labor, while A is a scaling parameter.

In our quantitative analysis we allow for two sources of exogenous variation. The first and most relevant

is the decline in the price of ICT capital, p
c,t

. As also mentioned by Karabarbounis and Neiman (2014),

while prices are conceptually endogenous variables, in this context the price of ICT can be interpreted as

the real transformation rate of output into ICT capital. Thus, a declining ICT price captures technological

progress in the production of ICT capital.16 The second source of exogenous variation that we consider is

time variation in the depreciation rate of ICT capital, which, as we document, is quite substantial (see Figure

2).17

To assess the implications of the declining ICT price, we can therefore compare our baseline simulation

with a counterfactual scenario in which the ICT price remains constant at its 1950 level. Our simulations

are based on the calibration of the core production parameters (panel B of Table 2) and the values reported

16Formally, assume that kc,t+1 � (1 � �c)kc,t = aty
c
t , where yc

t is the output spent on ICT investment. A competitive market
for the production of ICT capital goods would imply an ICT price of pc = 1

a .
17We do this to improve the fit in our calibration but this does not materially affect our main results concerning the impact of the

declining ICT price. We will illustrate this point below.
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Figure 8: Counterfactuals: Income Shares

(1) Constant ICT Price (2) Constant ICT Depreciation
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Notes: Each figure shows our baseline simulation (solid red and blue), data (thin black), and counterfactual simulations (dashed red
and blue). All Simulations are initialized in a steady state consistent with the ICT price and depreciation in 1948.
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Figure 9: Counterfactuals: Quantities

(1) Constant ICT Price (2) Constant ICT Depreciation

A. Routine & Non-Routine Employment
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Notes: Each figure shows our baseline simulation (solid red and blue), data (thin black), and counterfactual simulations (dashed red
and blue). All Simulations are initialized in a steady state consistent with the ICT price and depreciation in 1948.

23



in Table 3. The value of �, the discount factor, is calibrated based on our estimates of the returns to cap-

ital.18 Given our focus on long run trends, we assume log utility, or a unitary inter-temporal elasticity of

substitution, which is consistent with the wide range of empirical estimates (see, for example, the discussion

and references listed by Guvenen, 2006). Moreover, log utility is a useful benchmark for expositional pur-

poses, as income and substitution effects cancel out. For the depreciation rate of non-ICT capital we take the

average value of our BEA-based estimates. Likewise, we calibrate the non-ICT capital intensity, ↵, using

the average of our estimated non-ICT capital income share, ignoring any short term fluctuations around this

average. As initial conditions for capital, we compute a steady state that is consistent with the 1950 values

of the price and depreciation rate of ICT.

Figures 8 and 9 illustrate our simulated transition paths. All simulations are initialized in a steady

state that is consistent with the price and depreciation rate of ICT in 1950. Each figure then displays two

alternative transition paths alongside the data series used to calibrate the production function (1968-2013).

Our baseline simulation takes the relative price and depreciation rate of ICT as estimated by the BEA and

assumes that these series remain constant from 2013 on. That is, the final steady state is consistent with

the 2013 price and depreciation rate of ICT. Column 1 of Figures 8 and 9 then contrasts the baseline with a

counterfactual in which the relative price of ICT remains fixed at its initial (1950) level but the depreciation

rate varies as measured in the data, again remaining fixed after 2013. A comparison of these two transition

paths provides an estimate for the direct impact of the declining ICT price on predicted outcomes.

These simulations reveal a number of interesting insights. At around 1980, the price of ICT capital

starts falling rapidly. In response, agents accumulate ICT capital, and the path of ICT starts diverging from

its counterfactual. Since non-ICT capital is complementary to x, the accumulation of ICT capital raises

the returns to non-ICT capital, and the stock of non-ICT capital increases as well. As a result of ICT and

non-ICT capital accumulation, output increases relative to its counterfactual. Section 5.1 highlights the

quantitative importance of indirect non-ICT investments for growth accounting exercises.

Table 4 shows that the falling ICT price leads to a divergence in the income shares of routine and non-

routine labor, roughly consistent with the magnitudes observed in the data. The net effect on the aggregate

18The steady state Euler equation implies that �(1 + r) = 1, where r is the return to capital. We assume that the returns to
capital before 1980 are roughly at their steady state level and calibrate � based on this relation.
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Table 4: The Effects of the Declining ICT Price

A. Output & Consumption

Log. Output Log. Consumption

Baseline Counterf. Diff. Baseline Counterf. Diff.

Initial SS 9.9383 9.9383 0 9.648 9.648 0
Final SS 10.0751 9.9259 0.1492 9.7351 9.6388 0.0963
% Change +13.6848 -1.2319 +14.9167 8.7156 -0.9186 +9.6342

B. ICT and NICT Capital

Log. ICT Log. Non-ICT

Baseline Counterf. Diff. Baseline Counterf. Diff.

Initial SS 6.99 6.99 0 11.3313 11.3313 0
Final SS 9.9843 6.3622 3.6221 11.4655 11.319 0.1464
% Change +299.4309 -62.7841 +362.215 +13.4186 -1.224 +14.6427

C. Labor Share

Agg. Labor Share Routine Share Non-Routine Share

Baseline Counterf. Diff. Baseline Counterf. Diff. Baseline Counterf. Diff.
Initial SS 63.69 63.69 0 38.42 38.42 0 25.27 25.27 0
Final SS 59.77 64.03 -4.26 22.25 40.44 -18.19 37.51 23.6 13.91
Change -3.92 0.34 -4.26 -16.17 2.02 -18.19 +12.24 -1.67 +13.91

D. Capital Share

ICT Share

Baseline Counterf. Diff.

Initial SS 1.46 1.46 0
Final SS 5.38 1.12 4.26
Change +3.92 -0.34 +4.26

Notes: The table shows steady state changes for the baseline and counterfactual (constant ICT price) simulations. To gauge the
impact of ICT on output, consumption, the stocks of ICT and non-ICT capital, labor and capital shares we compute the difference
between the initial and final steady state for both simulations, along with the difference in differences.

labor income share is a 4.26 percentage point decline between 1950 and the final steady state, countered by

an increase in the ICT capital income share of equal magnitude. In the data, we measured a 6.8 percentage

point decline between 1950 and 2013 (see Table 1), suggesting that the falling price of ICT alone explains

about half of the measured decline in the aggregate labor share (3.3pp over the period 1950-2013 in our

baseline simulation).

25



In terms of welfare, the model suggests that the declining ICT price has lead to net steady state consump-

tion and output gains of 9.7% and 14.9%, respectively. The output gains reflect larger ICT and non-ICT cap-

ital stocks, together with appropriate adjustments in the allocation of labor across routine and non-routine

occupations. In Section 5.1 we will further discuss this observation, highlighting the quantitative importance

of complementary non-ICT investment for the overall long run growth effect of the falling price of ICT.

To gauge the influence of the substantially increasing depreciation rate of ICT capital, column 2 of

Figures 8 and 9 illustrates an alternative counterfactual simulation, in which we let the price of ICT follow

its observed path but keep the rate of ICT depreciation fixed at its 1950 level. This exercise confirms that

rising ICT depreciation works in the opposite direction of the effects of falling ICT prices, but quantitatively

dampens the effects by a relatively small margin.

5.1. Growth Accounting & The General Equilibrium Multiplier

Economists have long sought to gauge the overall contribution of information and communication tech-

nologies (ICT) to output and consumption and most existing estimates are based on growth accounting

exercises in the spirit of Solow (1957)—a decomposition of the growth in output into the marginal contribu-

tions of each production input. However, due to the low aggregate income share of ICT, this technique tends

to attribute only a small portion of output growth to the accumulation of ICT capital (e.g., Colecchia and

Schreyer, 2002; Basu et al., 2003; Jorgenson and Vu, 2007; Acemoglu et al., 2014). In this section, we start

with an illustration based on steady state comparative statics, highlighting that traditional growth accounting

exercises understate the long-run aggregate output gains from ICT by about 50%, in large part because they

fail to account for an important general equilibrium effect: investments in ICT capital tend to trigger com-

plementary non-ICT (NICT) investments.19 While the steady state comparative statics are instructive, we

we will also use our simulations to illustrate the quantitative importance of this general equilibrium effect

19Note that the work by Stiroh (2002) as well as Brynjolfsson and Hitt (2003) have found comparatively large gains from
ICT by resorting to growth accounting exercises at the firm or industry level. However, the discrepancies between micro and macro
estimates based on traditional growth accounting exercises are not surprising and possibly have a different interpretation. Intuitively,
a growth accounting exercise at the industry (or firm) level will attribute a larger growth contribution of ICT to more ICT intensive
industries, even if all industries had the same amount of ICT investment. The implied aggregate effects will then depend on the
cross-sectional distribution of the output share of industries (or firms) with various ICT intensities. The argument we make in this
paper is that even in industries with a low ICT intensity, the growth contribution of ICT may be substantial if there are sufficient
complementarities with non-ICT.
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along the transition path and put it in relation to observed growth in output per-capita in the US.

A growth accounting exercise is an accounting framework that attributes changes in output to changes

in inputs. The growth accounted for by a marginal unit of ICT capital is:

@ ln y

@ ln k

i

= (1� ↵)

@ lnx

@ ln k

i

(14)

To assess the indirect effect of ICT on non-ICT capital accumulation, recall that, in our neoclassical

growth model, the steady state condition for NICT capital is given by:

↵k

↵�1
n

x

1�↵

= const ) ln k

n

= const+ lnx (15)
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This expression suggests the following simple relationship between the direct accounting effect and the

general equilibrium effect:

GE growth contribution of k
i

=

Direct growth contribution of k
i

1� ↵

(17)

Given that non-ICT capital accounts for the bulk of capital income, our calibration suggests that ↵ ⇡

0.3485. Thus, the general equilibrium contribution of ICT will be roughly 1.5 times its direct accounting

contribution. In our simulation, the income share of ICT is roughly 0.03, and the growth in ICT capital is

close to 300%. The direct effect is therefore approximately 0.03 ·300% = 9%. The contribution of non-ICT

capital accumulation is 0.3485 · 13% ⇡ 4.5%. The GE contribution of ICT to growth is the sum of the two

contributions, amounting to approximately 13.5%.

It is also possible to decompose the general equilibrium welfare gains from ICT into a direct contribution

from ICT capital accumulation and an indirect contribution from NICT capital accumulation. At the steady
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state, consumption is given by:
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The direct marginal contribution of ICT capital accumulation to steady state consumption is:

@ ln c

@ ln k

i

=

✓
@y
@ki
pi

� �

i

◆
p

i

k

i

c

(19)
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Using this steady state condition to substitute for the expression in equation (19) and using a first order

Taylor approximation, the direct contribution of ICT capital accumulation to steady state consumption is

approximately:
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Deriving a similar expression for the contribution of NICT capital, the general equilibrium contribution

is:
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denotes the value of the aggregate capital stock, and the final expression uses the first

order Taylor approximation for ln k
n

with respect to changes in ln k

i

.

A back-of-the-envelope calculation suggests that the GE welfare gains from automation are roughly

2.8 times higher than the direct welfare gains. Assuming that ICT capital is 2.5% of the capital stock (the

average value in our simulation), the first term in brackets is p
i

k

i

/K = 0.025. The second term in brackets

is approximately equal to k

n

/K = 0.975 times the ICT capital income share out of f , which is roughly

s

i

/(1� ↵) = 0.03/(1� 0.35) = 0.046; thus the second term is roughly 0.045.

It is worth noting that it is possible to do this calculation using data rather than simulated variables.
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Table 5: Contribution of ICT to Output Growth

Growth Contribution of ICT

USA % of USA
Decade % growth perc. points total pp. due to NICT

(1) (2) (3) (4)

1950s 1.01 0.03 2.50 0.13
1960s 3.66 0.03 0.88 0.09
1970s 2.29 0.06 2.72 0.59
1980s 2.80 0.09 3.33 1.30
1990s 2.21 0.23 10.26 2.58
2000s 1.10 0.46 42.26 8.54
2010s 1.22 0.38 31.24 11.37

1950-2016 2.02 0.17 8.17 2.04

Notes: Column 1 shows the implied, constant, annual growth rate of real
GDP per capita for various time periods in the US. Column 2 shows model
predicted growth in GDP per capita due to the falling price of ICT. Column
3 expresses ICT’s contribution (column 2) as a percent of USA (column
1). Column 4 is based on an alternative counterfactual simulation in which
the stock of NICT capital is fixed at it’s initial steady state value. The
difference in the growth contribution between the baseline simulation and
this counterfactual can be attributed to complementary NICT investments.

Since our simulated ICT stocks and income shares closely align with the data, the results would be similar.

The added value of the simulation is in attributing the accumulation of ICT to falling capital prices, and

justifying the plausibility of the steady state assumptions used in this analysis.

While the above steady state comparative statics illustrate the potential impact of the GE multiplier for

long-run gains from ICT, we also find it instructive to illustrate its importance along the transition between

steady states. Based on our baseline simulation illustrated in Figure 9, Table 5 puts the ICT-induced output

growth (as predicted by our simulation) in relation to observed growth in real GDP per-capita in the United

States. This comparison suggests that ICT accounted for at best 3% of US growth until the 1980s, while

ICT was responsible for roughly 1/3 of US growth since 2000 (see column 3 of Table 5). Moreover, our

framework also allows us to assess what portion of this growth contribution is due to the indirect accumu-

lation of NICT capital. We accomplish this by simulating another counterfactual, in which we exogenously

keep the NICT stock at its initial (1950) steady state level. The difference between this counterfactual and

our baseline simulation illustrates the portion of ICT induced growth that is strictly due to complementary

NICT investments. Column 4 of Table 5 shows that this contribution was relatively minor prior to the 1980s

but significantly contributed to the substantial growth contribution of ICT in the most recent decades.
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5.2. The Elasticity of Substitution Between Capital and Labor

A large literature, going back at least to Blanchard (1997) and Caballero and Hammour (1998), has

discussed the central role of capital-labor substitutability for the division of income between capital and

labor. However, despite its importance, the elasticity of substitution between these two factors is hard

to estimate in practice, and the values reported in the literature range anywhere between 0.5 and 1.5.20

Thus, we find it useful to discuss this elasticity within the context of our model. Like in the framework of

Miyagiwa and Papageorgiou (2007) or Oberfield and Raval (2014) the aggregate elasticity of substitution is

an endogenous, time-varying object. To compute the elasticity of substitution between capital and labor, we

specify an aggregate production function in two inputs as:

F (K,L) = y(`

⇤
r

, `

⇤
nr

, k

⇤
i

, k

⇤
n

) (23)

where (`

⇤
r

, l

⇤
nr

, k

⇤
i

, k

⇤
n

) = arg max

`r,`nr,ki,kn

y + (1� �

n

)k

n

+ (1� �

i

)p

i,t

k

i

s.t. L = `

r

+ `

nr

and K = p

i,t�1ki + k

n

Note that the optimality conditions with respect to capital and labor inputs imply that the rates of return

to capital are equalized and that the marginal products of labor are equalized. We can thus solve for the

marginal products, MPL(K,L) and MPK(K,L). The elasticity of substitution between capital and labor

can then be obtained by numerically solving for the change in relative income shares, [MPL(K,L) ⇥

L]/[MPK(K,L) ⇥ K], induced by a change in relative quantities, L/K. Using a similar representation

based on the same logic, we can also compute the elasticities of substitution between ICT and different labor

inputs.

Interestingly, we find an (average) aggregate elasticity of very close to unity, not far from the original

estimates found by Berndt (1976). As Figure 10 illustrates, the implied aggregate elasticity starts at 1.03 in

1950 and rises to 1.1 in 2013, with an average value of 1.09. We note that Karabarbounis and Neiman (2014)

illustrate, that a model with homogeneous aggregate labor and capital inputs requires an aggregate elasticity

20See for example, Berndt (1976), Antràs (2004), Klump, McAdam and Willman (2007), Karabarbounis and Neiman (2014),
Piketty (2014), Oberfield and Raval (2014), or Alvarez-Cuadrado, Long and Poschke (2015), Herrendorf, Herrington and Valentinyi
(2015).
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Figure 10: Implied Elasticities of substitution
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Notes: The Figure reports four elasticities of substitution within our model. The
elasticity between ICT and non-routine labor is constant by construction. The
elasticities between ICT and both types of labor, as well as aggregate capital
and labor are computed using the procedure explained in Section 5.2.

of about 1.25 in order to predict approximately half of the observed fall in the aggregate labor share.21 In

contrast, we present a model in which technological progress is driven exclusively by falling ICT prices,

which predicts about half of the observed fall in the aggregate US labor share, despite an approximately

unitary elasticity of substitution.

Finally, our calibrated model also predicts that ICT is relatively more substitutable with routine labor

compared to non-routine labor (see Figure 10), consistent with the task framework advocated by Acemoglu

and Autor (2011).

21We note that, while similar, the two exercises can’t be compared directly. For example, Karabarbounis and Neiman (2014) use
investment prices (i.e., an investment share weighted aggregate price index) while we use the price of the ICT and non-ICT stocks.
Investment weighted price indexes produce a much larger drop in the aggregate price index than stock weithed indexes. Thus, a
direct, stock-weighted aggregation of our prices would require an even larger elasticity of substitution in order to rationalize half of
the fall in the labor share in a model with aggregate capital and labor as the only production inputs. However, given the structure of
our neo-classical growth model, the price of the ICT stock is the relevant price measure to conduct steady state comparative statics.
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6. Concluding Remarks

The discussion of the social costs and benefits of automation can roughly be divided into two issues: the

effects on aggregate consumption and the distributional implications. The general consensus is that, while

there is likely a positive effect on aggregate consumption, there are some adverse distributional implications.

The net welfare implications depend on the relative quantitative importance of the two.

In this paper we set out to derive a ballpark estimate for the overall quantitative benefits of automation,

by employing a representative agent model in which redistribution of income is frictionless. We assess

the long-run welfare gains from automation at about 14.9% gain in output per worker and 9.6% gain in

consumption per worker. This welfare gain takes into account the transitional costs of accumulating ICT

capital, but not the R&D costs associated with generating the decline in the ICT capital price, which we

treat as exogenous. Moreover, our framework allows us to trace the quantitative importance of ICT in

contributing to output an consumption growth at each point in time since 1950. We find that the growth

contribution of ICT was relatively minor until the 1980s but accounts for about one third of growth in output

per-capita since the 2000s. It is also important to note that complementary non-ICT investments—a general

equilibrium effect that is hard to measure directly—substantially contributed to the overall growth impact of

the “ICT Revolution”.

Even though our representative agent framework is unable to account for distributional costs, it is in-

formative regarding potential distributional implications. Our analysis suggests that while ICT may have a

large effect on the distribution of labor income, it has only a moderate effect on the distribution of income

between capital and labor.

Our results further suggest that automation is unlikely to be the sole cause of the declining labor income

share. In particular, our measurement suggests that only half of the decline in the labor income share is

directly countered by an increase in the ICT capital income share. The remainder is due to an increase in the

non-ICT capital income share, particularly in the post-2001 period and primarily driven by housing. This

suggests that, in order to fully understand the sources of the declining labor income share, it is necessary to

study the mechanisms driving changes in non-ICT capital income, in particular residential capital income.

We leave this challenge for future work.
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Appendix A. Construction of Capital Income Shares

This appendix outlines our approach to measure income shares directly from the BEA’s nominal current

cost values of detailed asset categories. As discussed in Section 2, our measurement exercise relies on two

assumptions: First, no-arbitrage in capital markets requires the gross return (2) to be equalized across all

types of capital, which can be written more compactly as
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Second, we impose constant returns to scale in aggregate production (equation (1)), and thus the follow-
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. Based on (A.3) and (A.4) we then compute the
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income shares for each type of capital as
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where we use the following data inputs:

1. (1 + ⇡

i,t

) ICT/non-ICT prices based on the BEA’s fixed asset accounts

2. (1� �

i,t

) depreciation rates from the BEA’s fixed asset accounts accounts

3. P
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K
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nominal capital stocks from the BEA’s fixed asset accounts accounts
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t
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t

nominal GDP from the BEA

5. s

K,t

measured as the reciprocal of the official BLS labor share

Figure A.11: Labor’s Income Share: MORG vs. MARCH
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Notes: Occupation specific income shares are based on CPS earn-
ings data from the annual march supplement (1968 and after) and
the monthly outgoing rotation groups (MORG, starting in 1979) ex-
tracts and rescaled to match the aggregate income share in the
Non-Farm Business Sector (BLS). The underlying earnings data for
both series are top-code adjusted using Piketty and Saez’s (2003)
updated estimates of the income distribution (PS). The MORG se-
ries shows annual averages of monthly data that was seasonally
adjusted using the U.S. Cenusus X11 method. The graphs are con-
structed analogously to panel A in Figure 1. For details see Section
3.
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Appendix B. CPS Outoing Rotation Groups vs. March Supplements

Figure A.11 illustrates a comparison of the disaggregate labor income shares based on two alternative

measures of earnings. The details for the data construction are discussed in Section 3. The thick lines are

the shares reported in panel A of Figure 1 and are based on the march supplements in the CPS (MARCH).

The thin lines use usual weekly earnings from the outgoing rotation groups (MORG).

Figure B.12: Capital’s Income Share
(A) Equipment vs. Structures (B) Residential vs. Non-Residential
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Notes: Panel A decomposes the non-ICT share into equipment and structures. Panel B decomposes the non-ICT share into resi-
dential and non-residential capital. The computations are based on the methodology described in Section 2 and the underlying data
are nominal gross capital stocks and depreciation rates, drawn from the BEA’s detailed fixed asset accounts. The vertical dashed
line indicates the year 2001.

Appendix C. The Role of Housing

Rognlie (2015) has recently argued that housing may be the main driver for an increase in the net capital

share—the capital income share, net of depreciation—since 1970. In light of this, we briefly discuss the

role of housing within the context of our analysis. To this end, we use the methodology described in Section

2 to decompose the NICT share into residential and non-residential assets and alternatively equipment and

structures.

Figure B.12 illustrates the resulting decompositions, again based on the BEA’s fixed asset accounts, and

highlights a number of important observations: first, NICT equipment (panel A) as well as non-residential

NICT assets (panel B) are completely trend-less; second, consistent with the findings of Rognlie (2015), the
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Figure C.13: Relative Prices & Depreciation (Housing)
(A.1) Relative Capital Prices (B.1) Depreciation Rates
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(A.2) Relative Capital Prices (B.2) Depreciation Rates
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Notes: Panels A.1 and B.1 graph implicit price deflators by capital type relative to the GDP deflator, which were constructed directly
from the BEA’s detailed fixed-asst accounts. The BEA GDP deflator is taken from FRED. Panels A.2 and B.2 depicts asset-specific
depreciation rates constructed directly from the BEA’s fixed asset accounts.

increase in the NICT capital income share in the post 2001 period is accounted for entirely by structures

(panel A) and residential capital (panel B). Since the “housing share” is unlikely to be reflective of automa-

tion, our calibration in Section 4 assumes that the part of the decline in the labor share which is attributable

to ICT accumulation is only the portion that is directly countered by an increase in the ICT share.

In addition, the decomposition in panel A also emphasizes that a decomposition into equipment and

structures, which ignores the distinction between ICT and NICT, as suggested by Krusell et al. (2000), will

blur this picture, as the income share of NICT equipment is trend-less throughout the entire sample.

Finally, we note that this more disaggregated decomposition takes into account heterogeneous prices and
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Table D.6: Within Industry Trends in Capital Income Shares

ICT Share Non-ICT Share

(1) (2) (3) (4)

Ann. Trend Growth (%) 3.873*** 3.873*** 0.0692 0.0692
(0.327) (0.193) (0.205) (0.0601)

Industry FEs yes yes
Observations 1197 1197 1197 1197

Notes: The table shows regressions of 100 times the log ICT and non-ICT shares
on a time trend for an annual panel of 19 broad sectors over the period 1949-
2012. Columns 1 and 3 report pooled regressions while columns 2 and 4 con-
dition on a complete set of fixed effects for 19 broad sectors. Sector specific
income shares are based on the BEA fixed asset accounts and the BEA’s es-
timates of sector specific value added and constructed as in Eden and Gaggl
(2015). Standard errors are HAC robust and significance levels are indicated by
* p < 0.1, ** p < 0.05, and *** p < 0.01.

depreciation rates for the different types of assets as measured by the BEA and depicted in Figure C.13. This

price decomposition further emphasizes that essentially all of the fall in equipment prices is concentrated in

ICT, further justifying our focus on falling ICT prices, rather than those of equipment as a whole.

Appendix D. The Role of Industrial Composition

In Section 4, we calibrate a one-sector aggregate production structure that matches the trends depicted

in panel A of Figure 1. To justify such an approach, we illustrate that the disaggregated trends in the

capital share are not merely a result of changes in the industrial composition but rather a within-industry

phenomenon, by constructing industry specific ICT and NICT shares as in Eden and Gaggl (2015) based on

the BEA’s detailed fixed asset accounts. We then estimate the average annual growth rates in these income

shares both with and without industry fixed effects. Table D.6 illustrates that the ICT share was growing at

about 3% annually while the NICT share showed no significant trend growth over the period 1948 - 2012.

Importantly, columns 3 and 4 illustrate that this finding does not change after we control for a complete

set of industry fixed effects. In fact, we find that the levels of ICT intensity vary vastly across the various

industries, but the differential trends in ICT and NICT income shares are predominantly a within industry

phenomenon.
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Appendix E. Marginal Products

In this section we illustrate the first order conditions of a profit maximizing producer facing our produc-

tion structure for the case of specification (10). The production function is then given by
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A profit maximizing produce will therefore face the following first order conditions:
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These conditions directly imply the following two relations
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or equivalently
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Taking logs yields expressions (11) and (12) in the main text.

Appendix F. Autor-Dorn Calibration

Analogously to our preferred specification discussed in the text (10) we illustrate the analogous two-step

calibration procedure for equation (9). In this case, the following conditions must hold for a competitive

producer:
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. Again, we use measured trends in income shares and quantities from the

previous sections to calibrate the four parameters �, ⇢, µ, and ' using the following two steps:

1. Estimate � and ⇢ using OLS and compute the implied time series for x
r

= (�k

⇢
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⇢

2. Estimate µ and ' using OLS, conditional on the implied series for x
r

from step 1

Analogously to the table shown in the main text, Table F.7 reports the results based on this procedure

for specification (9) in four alternative versions. Again, Panel A uses all data as measured in the previous
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Table F.7: Calibration of Production Parameters

A. Data: 1968-2013 B. Trend: 1968-2013 C. Data: 1968/2013 D. Trend: 1968/2013

(A.1) (A.2) (B.1) (B.2) (C.1) (C.2) (D.1) (D.2)
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ln (kc/`r) 0.527*** 0.525*** 0.512 0.525
(0.025) (0.000)

ln (xr/`nr) 1.204*** 1.203*** 1.207 1.218
(0.019) (0.015)

Constant -7.240*** -0.123*** -7.224*** -0.124*** -7.126 -0.131 -7.224 -0.148
(0.222) (0.007) (0.000) (0.004)

Obs. 46 46 46 46 2 2 2 2

Estimated Parameters & Implied Elasticities
� 0.001 0.001 0.001 0.001
⇢ 0.527 0.525 0.512 0.525
EOS(kc, `r) 2.113 2.105 2.050 2.105

µ 0.469 0.469 0.467 0.463
' 1.204 1.203 1.207 1.218
EOS(xnr , `r)

Notes: The table shows OLS estimates of the parameters in equations (F.1) and (F.2) and the two-step procedure described
in the text: in step one, we estimate (F.1); in step two, we estimate (F.2) conditional on the results from step one. Newey-West
standard errors are reported in parethesis below estimated coefficients in panels A and B. Significance levels are indicated by
* p < 0.1, ** p < 0.05, and *** p < 0.01.

sections, panel B uses a fitted log linear trend rather than the measured data, while panels C and D fit only

the first and last data/trend point, respectively. While step 1 implies an elasticity of substitution between

routine labor and ICT of around 2, which is slightly higher than what is implied by our main specification

discussed in the text (see Section 5.2), step two implies a value of ' > 1 violating one of the parameter

restrictions within the CES framework (which requires '  1). We therefore conclude that, using our

calibration strategy, specification (9) cannot rationalize the trends we observe in the data.
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Appendix G. Classification of ICT and Non-ICT Assets

Table G.8: ICT Assets
Share of Aggregate Capital (%) Average Growth in Share (%)

ICT Assets 1960-1980 1980-2000 2000-2013 1960-1980 1980-2000 2000-2013

EP20: Communications 2.73 3.91 3.39 2.87 1.78 -2.63
ENS3: Own account software 0.24 0.75 1.56 27.26 6.68 2.58
ENS2: Custom software 0.11 0.61 1.40 34.82 8.49 2.06
EP34: Nonelectro medical instruments 0.35 0.76 1.08 4.87 2.97 2.30
EP36: Nonmedical instruments 0.51 0.92 0.92 0.62 2.41 -1.08
ENS1: Prepackaged software 0.02 0.33 0.83 32.28 14.63 -1.04
EP35: Electro medical instruments 0.11 0.36 0.66 7.25 3.43 4.28
EP1B: PCs 0.00 0.31 0.45 12.12 0.96
RD23: Semiconductor and other component manufacturing 0.05 0.23 0.43 6.58 8.21 2.75
RD22: Communications equipment manufacturing 0.26 0.21 0.27 3.27 0.89 0.24
EP31: Photocopy and related equipment 0.53 0.75 0.26 6.75 -2.11 -7.70
EP1A: Mainframes 0.19 0.36 0.24 24.00 1.91 -4.97
EP1H: System integrators 0.00 0.03 0.23 42.85 3.45
RD24: Navigational and other instruments manufacturing 0.05 0.19 0.22 3.20 5.78 -1.59
EP1D: Printers 0.07 0.22 0.19 20.75 7.20 -9.76
EP1E: Terminals 0.02 0.14 0.16 71.14 5.48 -4.62
EP1G: Storage devices 0.00 0.17 0.12 7.55 -9.55
EP12: Office and accounting equipment 0.48 0.32 0.12 -3.09 -5.00 -6.13
RD40: Software publishers 0.00 0.05 0.09 16.91 -1.13
RD21: Computers and peripheral equipment manufacturing 0.16 0.09 0.07 3.68 -3.07 -0.60
RD25: Other computer and electronic manufacturing, n.e.c. 0.01 0.01 0.02 0.91 3.24 -0.34
EP1C: DASDs 0.09 0.13 0.00 30.38 -36.26 -78.36
EP1F: Tape drives 0.06 0.03 0.00 22.77 -40.33 -186.06

Notes: The data are drawn from the BEA’s detailed fixed asset accounts. ICT assets are defined as BEA asset codes starting
with EP, EN, RD2, or RD4. Notice that the EP category incorporates two assets that are strictly speaking likely not ICT: EP34 and
EP36. Our results do not critically hinge on these two assets and we therefore stick with the more standard BEA aggregation of EP.
Assets are ranked by their average share in aggregate capital during 2000-2013. The share of aggregate captial is the value of each
individual asset, as estimated by the BEA at current cost, as a fraction of the value of all assets in Tables G.8 and G.9. Panel A
reports averages of these shares for three time periods. Panel B reports the average annual growth in these shares over same three
time periods.
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Table G.9: Non-ICT Assets
A. Average Share of Aggregate Capital (%) B. Average Growth in Share (%)

Non-ICT Assets 1960-1980 1980-2000 2000-2013 1960-1980 1980-2000 2000-2013
SOO1: Office 4.75 6.99 8.28 1.59 2.14 0.12
SI00: Manufacturing 8.27 8.07 6.96 0.22 -0.44 -1.39
SM01: Petroleum and natural gas 3.91 3.63 5.20 0.12 -2.30 6.54
SU30: Electric 6.44 5.48 4.73 -0.18 -1.79 0.89
SC03: Multimerchandise shopping 2.21 2.77 3.05 1.46 0.69 0.59
EI50: General industrial equipment 3.42 3.40 2.95 0.32 -0.60 -0.75
SB31: Hospitals 1.70 2.52 2.86 3.69 1.06 0.51
SU20: Communication 2.80 2.51 2.66 0.70 -1.09 1.79
SC02: Other commercial 1.55 2.00 2.47 1.43 1.41 0.38
SB41: Lodging 1.58 1.83 2.32 1.40 1.76 0.47
EI60: Electric transmission and distribution 2.87 2.50 2.16 -0.79 -0.64 -0.21
EI40: Special industrial machinery 2.63 2.52 1.95 -0.36 -0.07 -3.33
SB20: Educational and vocational 1.56 1.36 1.92 -0.26 0.68 2.78
SC01: Warehouses 1.18 1.40 1.89 0.54 1.57 1.03
ET30: Aircraft 1.17 1.59 1.79 5.36 0.94 0.37
EO80: Other 1.09 1.44 1.75 2.30 1.18 0.71
EO12: Other furniture 1.37 1.67 1.74 -0.45 1.68 -1.35
SB42: Amusement and recreation 1.84 1.67 1.70 -0.46 0.54 -1.44
SN00: Farm 3.48 2.46 1.69 -0.63 -2.66 -2.11
RD11: Pharmaceutical and medicine manufacturing 0.23 0.65 1.68 4.70 6.63 5.22
SU40: Gas 2.70 1.89 1.66 -1.66 -1.72 0.35
SC04: Food and beverage establishments 1.19 1.51 1.58 1.47 0.84 -0.51
SB10: Religious 2.11 1.57 1.51 -0.70 -0.73 -0.82
EI30: Metalworking machinery 2.32 2.10 1.49 0.46 -1.25 -3.31
ET11: Light trucks (including utility vehicles) 0.93 1.05 1.42 0.45 2.48 -2.56
RDOM: Other manufacturing 1.47 1.50 1.19 0.00 0.04 -1.13
ET20: Autos 1.80 1.67 1.14 -1.79 -0.33 -4.27
ET12: Other trucks, buses and truck trailers 1.59 1.46 1.02 0.54 -1.43 -3.04
SU11: Other railroad 4.14 1.86 0.97 -4.62 -3.94 -3.77
SU12: Track replacement 2.66 1.39 0.97 -4.22 -2.69 -1.34
SOO2: Medical buildings 0.57 0.83 0.95 1.55 1.90 0.25
EO40: Other construction machinery 1.16 1.02 0.94 1.79 -2.11 1.37
AE10: Theatrical movies 0.97 0.67 0.86 -4.28 2.37 0.00
AE20: Long-lived television programs 0.69 0.79 0.86 0.39 1.91 -0.55
EO60: Service industry machinery 1.14 0.94 0.85 -1.61 -0.49 0.00
EI12: Other fabricated metals 1.42 1.20 0.75 0.83 -3.88 -0.19
RD80: All other nonmanufacturing, n.e.c. 0.09 0.75 0.72 3.04 8.28 -3.34
SB32: Special care 0.41 0.62 0.71 3.70 1.59 -0.74
ET50: Railroad equipment 2.12 1.09 0.66 -1.97 -4.52 -0.75
EO30: Other agricultural machinery 1.58 1.11 0.63 0.61 -4.71 -0.74
EI21: Steam engines 0.75 0.57 0.46 0.16 -3.01 0.43
SU50: Petroleum pipelines 0.95 0.57 0.45 -2.76 -3.29 1.69
AE30: Books 0.40 0.42 0.43 -0.37 1.02 -0.54
ET40: Ships and boats 0.92 0.68 0.40 -0.91 -3.72 -1.18
RD92: Other nonprofit institutions 0.22 0.35 0.38 3.94 2.25 0.23
RD31: Motor vehicles and parts manufacturing 0.40 0.44 0.36 0.45 0.79 -4.90
SM02: Mining 0.31 0.40 0.35 2.12 -1.30 1.93
RD12: Chemical manufacturing, ex. pharma and med 0.59 0.47 0.34 0.04 -0.98 -1.58
EO50: Mining and oilfield machinery 0.54 0.39 0.31 0.73 -5.74 7.21
SO01: Water supply 0.23 0.28 0.28 0.22 1.25 -0.60
EO21: Farm tractors 0.69 0.44 0.28 -0.08 -4.65 -0.28
SO02: Sewage and waste disposal 0.24 0.29 0.28 0.26 1.16 -1.21
RD32: Aerospace products and parts manufacturing 0.33 0.41 0.25 2.09 -0.28 -2.54
AE40: Music 0.21 0.20 0.20 0.14 1.37 -4.21
RD70: Scientific research and development services 0.00 0.06 0.19 11.29 4.20
SO04: Highway and conservation and development 0.15 0.18 0.18 0.27 1.20 -0.44
SB43: Air transportation 0.15 0.15 0.17 0.74 1.03 -0.69
AE50: Other entertainment originals 0.18 0.17 0.17 -1.71 1.53 -2.58
SU60: Wind and solar 0.00 0.01 0.16 12.44 25.22
EO72: Other electrical 0.12 0.19 0.14 2.74 -0.20 -1.74
SO03: Public safety 0.14 0.10 0.11 -0.96 0.17 -0.55
RD60: Computer systems design and related services 0.00 0.03 0.11 22.31 2.68
EO11: Household furniture 0.16 0.13 0.10 0.19 -2.30 -1.38
EO22: Construction tractors 0.28 0.18 0.09 0.39 -5.15 -3.98
EI22: Internal combustion engines 0.09 0.08 0.08 -0.80 -1.19 0.43
SB44: Local transit structures 0.51 0.17 0.07 -6.06 -5.15 -4.84
EI11: Nuclear fuel 0.03 0.10 0.06 27.52 -3.93 -1.86
RD91: Private universities and colleges 0.03 0.04 0.06 0.95 2.71 3.68
SOMO: Mobile structures 0.05 0.07 0.05 0.35 1.29 -3.77
SB46: Other land transportation 0.04 0.03 0.05 -0.72 1.04 2.80
RD50: Financial and real estate services 0.00 0.02 0.05 22.33 -0.88
EO71: Household appliances 0.09 0.05 0.03 -2.09 -4.08 -2.35
SB45: Other transportation 0.02 0.02 0.02 -0.70 0.56 -0.71
Notes: The data are drawn from the BEA’s detailed fixed asset accounts. Assets are ranked by their average share in aggregate
capital during 2000-2013. The share of aggregate captial is the value of each individual asset, as estimated by the BEA at current
cost, as a fraction of the value of all assets in Tables G.8 and G.9. Panel A reports averages of these shares for three time periods.
Panel B reports the average annual growth in these shares over same three time periods.
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