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Abstract

A seminal paper by Fama and Bliss (1987) showed that a simple regression model

could explain a significant portion of 1-year ahead excess returns. Cochrane and Pi-

azzesi (2005) showed that their regression model could explain a significantly large por-

tion of excess returns than Fama and Bliss’ model and that a single return-forecasting

factor essentially encompassed the predictability of excess returns for all of the bonds

considered. This paper show; the source of the in-sample predictability of Fama and

Bliss’ and Cochrane and Piazzesi’s regression models, the source of the encompassing

power of Cochrane and Piazzesi’s return-forecasting factor, why the return-forecasting

factor increases the predictability of bond yields relative to a standard 3-factor term

structure model, and why longer-term forward rates predict excess returns on short-

term securities.
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1 Introduction

The predictability of bond excess returns has occupied the attention of financial economists

for many years. Forward rates represent the rate on a commitment to buy a one-period bond

in a future date, so forward rates should provide information that is useful for predicting

excess returns. The seminal work by Fama and Bliss (1987, hereafter, FB) showed that

Fama’s (1984, 1986) regression approach could explain a significant portion of 1-year ahead

excess return on Treasuries with maturities to five years. Cochrane and Piazzesi (2005,

henceforth CP) extended FB’s work showing that a regression of excess returns on the

current 1-year bond yield and four forward rates produced estimates of R2 more than twice

as large as those from FB’s model. CP showed that a single return-forecasting factor, now

commonly referred to as the CP factor, encompassed the predictive power of their model.

CP also found that their return-forecasting factor had significant forecasting power for

bond yields that was unrelated to the ‘level,’ ‘slope,’ and ‘curvature’ factors that are used

in conventional term structure models. They suggest that the focus on such models ex-

plains why the return-forecasting factor had gone unnoticed—“if you posit a factor model

for yields...you will miss much of the excess return forecastability and especially its single-

factor structure” (p. 139). Specifically, they found that yield curve models must include

their return-forecasting factor in addition to the traditional three factors despite the fact

that the return-forecasting factor improves the conventional model’s fit only marginally.

Surprisingly, they found that long-term forward rates add significantly to the predictability

of excess returns on short-term bond. They suggest this finding is a repudiation of the

expectations hypothesis.

Given the impact of these works on the literature, it is important to understand the

source of these model’s in-sample fit.1 The paper contributes to the literature by showing

that in-sample fit of these model’s is not due to the model’s ability to predict excess returns,

but rather do to the model’s ability to predict future bond prices, in the case of CP’s excess

return model, and changes in bond prices, in the case of FB’s model. Specifically, the

paper shows that CP’s equation is econometrically equivalent to a simple equation of future

bond prices (or equivalently, future bond yields), and that FB’s excess return equation is

1For some work motivated by CP’s paper, see e.g., Buraschi and Whelan, 2012; Cieslak and Povala, 2011;
Du§ee, 2007, 2011; Huang and Shi, 2012; Ludvigson, and Ng, 2009; Wright and Zhou, 2009; Radwanski,
2010; Greenwood and Vayanos, 2014; and Hamilton and Wu, 2012.
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econometrically equivalent to an equation of the change in bond prices (or equivalently,

change in bond yields). These econometric equivalences allow CP’s and FB’s estimates of

R2 to be separated into several sources.

The paper also reveals the source of the encompassing power of CP’s return-forecasting

factor, and why the return-forecasting factor adds significantly to the forecasting perfor-

mance of conventional 3-factor term structure models. In so doing, the analysis explains

why CP found that longer-term forward rates are useful for predicting short-term excess

returns.

The reminder of the paper is divided into five sections: Section 2 replicates CP’s and

FB’s findings using CP’s data and sample period. Section 3 explains the source of the predic-

tive power of CP’s and FB’s models and separates their estimate of R2 into their respective

sources. Section 4 shows the source of the encompassing power of CP’s return-forecasting

factor. Section 5 shows why the return-forecasting factor is important for forecasting bond

yields across the term structure or, equivalently, why the long-term forward rates are impor-

tant for predicting excess returns on shorter-term bonds. Section 6 presents the conclusions

and a discussion of the importance of these results.

2 Cochrane and Piazzesi’s Model and Findings

Following CP and FB, the log yield of a n-year bond is defined as

y
(n)
t ≡ −

1

n
p
(n)
t , (1)

where p(n)t is the log price of an n-year zero-coupon bond at time t, i.e., p(n)t = lnP
(n)
t ,

and where P (n) is the nominal dollar-price of zero coupon bond paying $1 at maturity. The

forward rate of maturity n is defined as

f
(n)
t ≡ p(n−1)t − p(n)t . (2)

The excess return of an n-year bond is computed as the log holding-period return from

buying an n-year bond at time t and selling it at time t+1 less the log return on a 1-year

bond at time t, i.e.,

rx
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)t − y(1)t .2 (3)

2 It is instructive to note that with monthly data the one-year excess return on a n-year bond is computed
as rx(n)t+12 = p

(n−1)
t+12 − p(n)t − y(n)t . However, for comparability purposes, the notation adopted throughout

the paper follows the one used by CP and FB.
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CP’s excess-return forecasting model is

rx
(n)
t+1 = β0 + β1y

(1)
t + β2f

(2)
t + ...+ β5f

(5)
t + "

(n)
t+1. (4)

The 1-year ahead excess return on an n-period bond is explained by the current 1-year yield

and the four forward rates.

FB’s excess return model is

rx
(n)
t+1 = α+ β(f

(n)
t − y(1)t ) + υ

(n)
t+1. (5)

CP estimate both models using monthly data on the prices of zero coupon bonds with

maturities of one to five years. The sample period is January 1964 through December 2003.

Estimates of equations (4) and (5) using CP’s data and sample period are summarized in

Table 1. CP’s model accounts for more than 30 percent of the in sample variation in excess

returns for n = 2, 3, 4, 5; more than twice that of FB’s model. Indeed, for n = 5, CP’s

estimate of R2 quadrupoles the estimate from FB’s equation.

CP then construct their return-forecasting factor by estimating

1

4

5X

n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(2)
t + ...+ γ5f

(5)
t + v̄t+1 = γ

T ft + v̄t+1. (6)

They then estimate the equation

rx
(n)
t+1 = & + λ(γT ft) + ξ

(n)
t+1, (7)

and find that equation (7) encompasses equation (4). Estimates of equation (7) are pre-

sented in Table 2. The encompassing power of the return-forecasting factor is reflected in

a comparison of the estimates of R2 from equation (7) in Table 2 with those from equation

(4) in Table 1. The estimates from equation (7) are nearly as large as those from equation

(4). Hence, CP conclude that the “single factor explains over 99.5 percent of the variance

of expected excess returns” (p. 139).

3 The Sources of In-Sample Predictability

This section shows the sources of the in-sample fit of the two models. The analysis begins

with CP’s model. To understand the source of the in-sample predictability of CP’s model,

it is important to note that equation (4) is econometrically equivalent to an equation where
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p
(n−1)
t+1 is a linear function of the five bond prices at date t. This can be seen by rewriting

equation (4) in terms of the five bond prices which are used to construct bond yields, forward

rates, and excess returns, i.e.,

p
(n−1)
t+1 − p(n)t + p

(1)
t = β0 + β1(−p

(1)
t ) + β2(p

(1)
t − p(2)t ) + ...+ β5(p

(4)
t − p(5)t ) + "

(n)
t+1. (8)

Because −p(n−1)t and p(1)t are on both the left- and right-hand sides of equation (8), it can

be written solely in terms of p(n−1)t+1 . This is easily seen when n = 2. (p(1)t − p(2)t ) appears on

both the right- and left-hand sides of equation (8) so it can be written as

p
(1)
t+1 = β0 + β1(−p

(1)
t ) + (β2 − 1)(p

(1)
t − p(2)t ) + ...+ β5(p

(4)
t − p(5)t ) + "

(n)
t+1. (9)

While less obvious, equation (4) can be rewritten equivalently in terms of the one-year ahead

bond price for any value of n. Specifically, equation (4) can be written econometrically

equivalently as

p
(n−1)
t+1 = δ0 + δ1p

(1)
t + δ2p

(2)
t + ...+ δ5p

(5)
t + "

(n)
t+1, (10)

where δ1 = (β2− β1− 1) for all n, δi = (1− βi+ βi+1) for i equal to n, δi = (βi+1− βi) for

i = n 6= 5, δ5 = β5 for n 6= 5, and δ5 = (1− β5) for n = 5. This establishes the econometric

equivalence of equations (4) and (10), and shows that error term from both equations is

measured in terms of bond prices, not excess returns.

Of course, equation (4) can also be expressed econometrically equivalently in terms of

bond yields. This can be seen by multiplying both sides of the equation (10) by −(1/n−1),

to obtain

y
(n−1)
t+1 = τ0+δ1((1/n−1)y

(1)
t )+δ2((2/n−1)y

(2)
t )+...+δ5((5/n−1)y

(5)
t )+(−1/ (n− 1))"(n)t+1),

which can be written more compactly as

y
(n−1)
t+1 = τ0 + τ1y

(1)
t + τ2y

(2)
t + ...+ τ5y

(5)
t + (−1/ (n− 1))"(n)t+1. (11)

Note that the error term of equation (11) is merely the error term of equation (4) or (10)

expressed in terms of bond yields rather than bond prices. Hence, equation (11) is econo-

metrically equivalent to equations (4) or (10). Econometric equivalence means that there

is no information that can be obtained from any one of these equations that cannot be ob-

tained from the others. Moreover, it means that despite CP’s claim that “we’re forecasting

one-year excess returns, and not the spot rates” (p.140), their conclusions about excess re-

turns depend solely on the model’s ability to predict the future spot prices (or equivalently,
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yields): The estimates of R2 reported in Table 1 are simply residual sum of squares in terms

of bond prices relative to the total sum of squares of excess returns.

An analogous econometric equivalence result holds for FB’s excess return model. Specif-

ically, equation (5) is econometrically equivalent to

p
(n−1)
t+1 − p(n−1)t = α

0
+ θ(f

(n)
t − y(1)t ) + υ

(n)
t+1, (12)

or, equivalently, in terms of bond yields,

y
(n−1)
t+1 − y(n−1)t = α

0
+ θ(f

(n)
t − y(1)t ) + (−1/ (n− 1))υ(n)t+1.

3 (13)

Consequently, equation (5) econometrically equivalent to equation (12) or equation (13).

The error term in equation (13) is merely the error term from either equation (5) or equation

(12) expressed in terms of the change in bond yields, rather than the change in bond prices.

The fact that CP’s and FB’s models are econometrically equivalent to models of bond

prices (or equivalently, yields), means that neither CP’s nor FB’s model provides information

about excess returns, per se. Alternatively stated, these equations provide information about

excess returns only to the extent that they provide information about the future bond price

(in the case of CP’s model), or about the change in the bond’s price (in the case of FB’s

model).

The surprises is that FB’s model explains virtually none of the change in bond prices or,

equivalently, changes in bond yields. The estimates of R2 from equation (12) (or equation 13)

are 0.000, 0.014, 0.031, and 0.004, for n = 2, 3, 4, 5, respectively. This raises an interesting

question: How can the residuals from this model generate estimates of R2 in terms of

excess returns ranging from 0.085 to 0.184? The answer lies in the fact that rx(n)t+1 and

(p(n−1)t+1 −pn−1t ) are highly correlated; the correlations range from 83.8 percent to 91.8 percent.

The high correlation is due to the fact that p(n)t t p(n−1)t , so that, (p(n−1)t+1 − p(n)t − y(1)t ) t

(p(n−1)t+1 − p(n−1)t − y(1)t ). Consequently, rx(n)t+1 is highly correlated with (p
(n−1)
t+1 − p(n−1)t ). In

the case of FB’s model, the high correlation between rx(n)t+1 and (p
(n−1)
t+1 − pn−1t ) accounts

3FB are aware of this. Indeed, they begin their analysis by writing their model as shown in equation (14),
noting that “evidence that b1 (θ in equation 14) is greater that 0.0 implies that the forward-spot spread
observed at time t has power to forecast the changes in the 1-year spot rate” (p. 682). They then note that
equation (14) is “complimentary” to equation (5) and present estimates of equation (5). What they fail to
note is that equations (13) or (14) explains almost none of the variation of changes in bond prices or bond
yields.
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for essentially all of the estimates of R2 reported in Table 1.4

The high degree of correlation between rx(n)t+1 and (p
(n−1)
t+1 − pn−1t ) also accounts for a

significant percentage of the estimates of R2 from CP’s model. To understand why, consider

a simple AR(1) model of bond prices, i.e.,

p
(n−1)
t+1 = φ0 + φ1p

(n−1)
t + η

(n−1)
t+1 , (14)

which is a restricted form of equation (10). Now if equation (14) provides no information

about the future bond price beyond its current level, i.e., φ0 = 0 and φ1 = 1, the residu-

als from equation (14) would be (p(n−1)t+1 − pn−1t ). This means that estimates of equation

(4) would generate relatively high estimates of R2 in terms of excess returns even though

bond prices (or, equivalently, bond yields) could not be predicted beyond their current level.

Consequently, the estimates of R2 from equation (4) can be partitioned into three source;

the estimates that would occur if their equation had no predictability for bond prices, i.e.,

could not predict bond prices beyond their current level, the increase in R2 due to the fact

that the restrictions φ0 = 0 and φ1 = 1 do not hold perfectly, and the increase in R2 as-

sociated with cross correlation of bond prices–the estimate of R2 obtained from equation

(4). Table 3 reports the estimates of R2 from these three sources. For n = 2, 3, and 4

the no-predictability model accounts for about half of the estimates of R2 from equation

(4). For n = 5, no-predictability model accounts for about 25 percent of CP’s estimate

of R2. The estimates of R2 are increased if bond prices are modeled as a simple AR(1)

process; however, the percentage increases are modest. The relatively small increases are

not surprising because bond prices are well represented by an I(1) process. The remaining

increases in the estimates of R2 are due to the cross correlation of bond prices. The per-

centage increases in the estimates of R2 due to the cross correlation of bond prices are much

larger than the marginal contributions due to serial correlation. Moreover, the marginal

contributions increase monotonically with n, ranging from about 10 percentage points for

n = 2 to 20 percentage points for n = 5.

Which bond prices contribute most to the increase in the estimates of R2 for CP’s

model? This question can be answered by regressing pn−1t+1 on all possible combinations of

the five bond prices and calculating the R2 in terms of excess returns. These estimates,

4Fichtner and Santa-Clara (2012) note that the FB model generates estimates of R2 up to 15 percent
despite the fact that it performs no better than the random walk model, but fail to explain the source of
the anomaly.
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presented in Table 4, show that bond prices across the entire term structure appear to make

an important contribution to the estimates of R2 reported by CP. For all maturities the

estimates are very close to those of CP’s model, but only if four of the five bond prices

are included. Interestingly, the estimates indicate that long-term bond prices are relatively

more important than short-term bond prices. For n = 2 or 3 the estimates get close to those

of CP’s model when p4t and p
5
t are included. For n = 4 or 5 the estimates of R

2 gets close

to those of CP’s model when p1t and p
5
t or p

2
t and p

5
t are included.

4 The Encompassing Power of CP’s Factor

The analysis in the previous section shows that the relatively large estimates of R2 that

CP obtain are due to the fact that bond prices (or yields) are very persistent and highly

cross correlated. It is perhaps not surprising to find that the high degree of serial and

cross correlation in bond prices also accounts for the encompassing power of CP’s return-

forecasting factor. To see this, it is useful to note that the return-forecasting factor can also

be expressed econometrically equivalently in terms of bond prices. Specifically, equation (6)

is econometrically equivalent to

1

4
(p4t+1 + p

3
t+1 + p

2
t+1 + p

1
t+1) = γ0 + φ1p

(1)
t + φ2p

(2)
t + ...+ φ5p

(5)
t + v̄t+1. (15)

Moreover, the return-forecasting factor can be expressed econometrically equivalently in

terms of bond yields. Specifically,

(y4t+1 + .75y
3
t+1 + .5y

2
t+1 + .25y

1
t+1) = −γ0 +  1y

(1)
t +  2y

(2)
t + ...+  5y

(5)
t − v̄t+1. (16)

Note that the error terms in equations (6), (15) and (16) are identical except that the sign in

(16) is negative. Also note that the equation (16) is econometrically equivalent to equation

(6) only for this particular weighted sum of bond yields. For example, it would not hold

if the left hand side of equation (16) was the average of the four bond yields, because the

residuals would be measured in terms of bond yields rather than bond prices. Nevertheless,

because of the high correlation between the weighted sum of bond yields on the left-hand-

side of (16) and the simple average of bond yields (0.9988), there is a correspondingly high

correlation between the residuals from equation (16) and the residuals from a model where

the left-hand-side of (16) is the simple average of bond yields (0.9980). The high correlation
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occurs in spite of the fact that, strictly speaking, the residuals from the two equations are

not comparable–the former is expressed in bond prices, while the latter is in bond yields.

In any event, CP’s return-forecasting factor is equivalently the least squares projection

of the average of the future price of the four bonds onto the space spanned by the five bond

prices or the least squares projection of a particular weighted average of four future bond

yields onto the space spanned by the five bond yields. It should also be noted that while these

three equations are econometrically equivalent, the return-forecasting factors are expressed

in di§erent units of measure: the factor corresponding to equation (6) is expressed in excess

returns while the factors corresponding to equations (15) and (16) are expressed in bond

prices. This does not negate their econometric equivalence; however, because any of these

return-forecasting factors can be express as any other by a simple linear transformation.

Regardless of how the factor is expressed, the encompassing power of the CP factor stems

from the fact that the projection of the average of future bond prices (yields) is highly corre-

lated with each of the bond prices (yields) that make up the average. Consequently, models

using the factors based on equations (15) or (16) encompass the results given by equations

(10) or (11), respectively. Table 5 shows the estimates of R2 from equations (10) and (15).

The estimates from the two equations are nearly identical–CP’s return-forecasting factor

express in bond prices encompasses CP’s excess return forecasting model expressed in bond

prices. Because of the econometric equivalence shown above, CP’s return-forecasting factor

expressed in excess returns must encompass equation (4). This demonstrates that the com-

passing power of the return-forecasting factor solely due to the serial and cross correlation

of bond prices.

5 Predicting Bond Yields

CP note that their return-forecasting factor significantly improves forecasts of yields relative

to the standard 3-factor term structure model that use the level, slope, and curvature. They

note that this occurs despite the fact that the return-forecasting factor “does little to improve

the model’s fit for yields” (p. 139). Specifically, the five principal components of bond yields

“explain in turn 98.6, 1.4, 0.03, 0.02, and 0.01 percent of variance of yields,” but explain quite

di§erent fractions of the variance of their return-forecasting factor, 9.1, 58.7, 7.6, 24.3, and

0.3 percent, respectively. They suggest that “24.3 means that the fourth factor, which loads

heavily on the four- to five-year yield spread and is essentially unimportant for explaining
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the variation of yields, turns out to be very important for explaining expected returns”(p.

147, italics in the original). As noted above, these di§erences in explanatory power are

due to the fact that their return-forecasting factor is expressed in excess returns while the

principal components are expressed in bond yields. If they had both been expressed in

the same units of measure, which they easily could have been because of the econometric

equivalence shown above, the reason for the marked increase in explanatory power of the

return-forecasting factor would have been obvious.

This section shows that the return-forecasting factor improves the forecasting ability of

the standard 3-factor term structure model because the fourth principal component of bond

yields is relatively important for the in-sample fit of bond yields across the term structure

in spite of the fact that it accounts for only a tiny fraction of the generalized variance of

bond yields–0.02 percent.

To understand this, note that because equation (4) is really a equation for predicting

future bond prices or yields, it is equivalent to

rx
(n)
t+1 = κ0 + κ1pc

1
t + κ2pc

2
t + ...+ κ5pc

5
t + "

(n)
t+1, (17)

where pc(i)t denotes the ith principal component based on the five bond yields. That is,

equation (17) is econometrically equivalent to

y
(n−1)
t+1 = φ0 + φ1pc

1
t + φ2pc

2
t + ...+ φ5pc

5
t + (−1/(n− 1))"

(n)
t+1. (18)

Estimates R2 from equation (18) is identical to those from equation (17) when expressed in

terms of excess reserves. Note, however, that the observational equivalence holds only for

the unrestricted equations. For example, if the restrictions κ5 = φ5 = 0 are imposed, the

R2 from equation (18), expressed in excess returns, would not be equal to that obtained

from equation (17). The reason, of course, is principal components are are not simple linear

combinations of the five bond yields. Nevertheless, the estimates are very close for the

restrictions κ5 = φ5 = 0. With these restrictions, the estimate of R
2 from equation (17) is

0.3456, while that based on equation (18) is only a tiny bit smaller, 0.3455. However, if only

the first principal component is included, the estimates are 0.0232 and 0.2067, respectively.

The marked di§erence when only the first principal component is included stems from

the fact that the level factor is essentially uncorrelated with excess returns, but is highly

correlated with future bond yields. This is also why this estimate (0.2067) is somewhat

higher than the estimate based on an AR(1) model reported in Table 3 ( 0.142).
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Because the return-forecasting factor reflects information in all five bond prices (and cor-

respondingly bond yields), including it in a standard 3-factor model of bond yields naturally

increases the in-sample fit for bond yields and, consequently, the estimate of R2 expressed

in excess returns. But this is an artifact of the results in Table 4; namely, the high estimates

of R2 require four of the five bond prices. This fact also accounts for CP’s finding (p. 139)

that equation (7) is rejected relative to equation (4) for all values of n, in spite of the fact

that the return-forecasting factor encompasses their model.

Whether at least four of the five bond yields are important for forecasting future bond

prices can investigated by estimating

y
(n)
t+1 = &0 + &1y

(1)
t + &1y

(2)
t ...+ &1y

(5)
t + !

(n)
t+1, n = 1, 2, ...5 (19)

and testing the restriction &j = 0 for each value of n for each maturity.5 The chi-square sta-

tistics and corresponding p-values are reported in Table 6. The column headings denote the

maturity of the dependent variable and the rows denote the omitted yield. With exception is

the 3-year yield (where all of the tests are rejected), at least the 5 percent, four the five bond

yields are necessary. Moreover, for the remaining four bond yields, the results are consistent

with those presented in Table 4, suggesting that long-term yields are more important than

short-term yields: It is always the case that the restriction on 1-year or 2-year yields is not

rejected. Moreover, the 4- and 5-year yields are relatively important for forecasting all five

yields. Indeed, this accounts for PC’s finding that long-term forward rates add significantly

to the predictability of excess returns on short-term bonds. The critical question is not why

is the return factor important for forecasting bond yields across the term structure, but why

are four of the five bond yields (or nearly equivalently, the first four of the five principal

components) necessary for the in-sample fit of future bond yields across the term structure.

5.1 Robustness Check

This section preforms a robustness check on the results presented in the previous section.

Specifically, the sample period is extended to June 2007 and zero coupon bond yields from

1 to 10 years are used.6 The ten principal components were calculated and the equation

y
(n)
t+1 = #0 + #1pc

(1)
t + #2pc

(2)
t + ...+ #10pc

(10)
t + ξ

(n)
t+1, n = 1, 2, ..., 10 (20)

5The covariance, for these and all other tests reported in this paper, are estimated using the Newey-West
procedure to account of the overlapping data.

6These data are available on FRED and are due to Gurkaynak et al, (2006).
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was estimated. The restrictions #10 = 0, #10 = #9 = 0, #10 = #9 = #8 = 0, and so on, are

tested sequentially until the null hypothesis was rejected at the 5 percent significance level.

For bond yields with maturities from 1 to 4 years, the null hypothesis was rejected when

the last four principal components were deleted—six principal components were necessary.

For bonds yields with maturities of 5-years or longer the null hypothesis was rejected when

the last 6 principal components were deleted–four principal components were necessary.

Hence, the previously reported results appear to be robust. Despite the widespread use

of 3-factor models, at least four factors are required for predicting bond yields in sample

for longer-term yields and more than four factors appear to be necessary for the in-sample

predictability of shorter-term yields.

6 Conclusions

The results presented here explain why FB’s and CP’s models account for a significant

portion of in-sample variation in excess returns. In the case of FB’s model the explanatory

power is due solely to the high correlation between excess returns and changes in bond

prices. In the case of CP’s model, the estimates of R2 are due to this fact and to the high

degree of cross correlation among bond prices. The high degree of cross correlation of bond

prices also explains why CP’s return-forecasting factor encompasses their model, and why

their return-forecasting factor significantly improves the in-sample fit of three-factor term

structure models.

However, as is often the case in research, answering one question merely raises others:

Why are four bond yields (or nearly equivalently, the first four principal components) neces-

sary for the in-sample predictability of bond yields? Why do long-term bond yields improve

the in-sample fit for both short- and long-term bond yields more than short-term bond

yields? Are the answers to these questions related? Thornton (2006) has shown that corre-

lation between future short-term rates and current long-term rates is a necessary, but not

su¢cient condition, for the expectation hypothesis to hold. Hence, the expectations hypoth-

esis could account for the importance of long-term yields for the in-sample predictability of

short-term yields. However, the expectations hypothesis is massively rejected using a variety

of rates, sample periods, and tests (e.g., Mankiw and Miron, 1986; Campbell and Shiller,

1991; Roberds et al., 1996; Thornton, 2005; Sarno et al., 2007; and Della Corte et al., 2008).

Moreover, the importance of long-term yields is also consistent with the standard classical
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theory of interest rate, which asserted that the long-term rate is determined by economic

fundamentals and that short-term rate is anchored to the long-term rate (Thornton, 2014).

There are a number of excess return models where the dependent variable is excess

returns, e.g., Huang and Shi, 2012; Ludvigson, and Ng, 2009; Wright and Zhou, 2009;

Radwanski, 2010; Greenwood and Vayanos, 2014; and Hamilton and Wu, 2012. The results

presented here raise questions about how much of the estimates of R2 in these models is due

to the high correlation between excess returns and changes in bond prices and the extreme

serial and to cross correlation of bond prices. This is question is particularly relevent because

out-of-sample forecasts of excess returns based on such models are necessarily out-of-sample

forecasts of future bond yields, not excess returns: By identity (3) out-of-sample forecasts

of excess returns are out-of-sample forecast of future bond prices (or yields) because p(n−1)t+1

is the only variable that is unknown at the time the forecast is made. Hence, it seems likely

that estimates of R2 reported in these studies may be due to the model’s ability to predict

future bond prices rather than the model’s ability to predict excess returns per se. In any

event, information that improves the in-sample fit of excess returns in these models can

be useful for out-of-sample forecasting if and only if it is useful for forecasting future bond

yields out-of-sample. Moreover, the out-of-sample forecasting performance of such models

can and should be compared with models that are specifically designed for out-of-sample

forecasting of bond yields (e.g., Diebold and Rudebusch, 2013).

Another reason that CP’s findings and the results present here may be relevant only

for in-sample fit and not for true out-of-sample forecasting is in-sample fit is not a good

indicator of out-of-sample forecasting performance (Inoue and Kilian 2004, 2006). Hence,

while additional factors significantly improve in-sample fit, they may not significantly im-

prove out-of-sample forecasts of future bond yields. Indeed, Krippner and Thornton (2013)

find that the contribution of the third factor to out-of-sample forecasts of bond yields is

relatively minor and, in most of the cases they considered, not statistically significant.7 For

out-of-sample forecasting, a 2-factor model appears to be su¢cient. Nevertheless, know-

ing the answers to the questions posed above will improve our understanding of the term

structure and may be useful for out-of-sample forecasting.

7Krippner and Thornton (2013) make out-of-sample forecasts using a simple principle components fore-
casting model and the DNS model proposed by Diebold and Rudebusch (2013). Du§ee (2011) reports a
similar finding.
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Table 1: Estimates of the CP and FB Models, 1964:01 – 2002:12 
Cochrane - Piazzesi Model, 

 n = 2 n = 3 n = 4 n = 5 
 Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 

0β  -1.622 0.525 -2.671 0.980 -3.795 1.353 -4.887 1.706 

1β  -0.982 0.175 -1.781 0.312 -2.570 0.423 -3.208 0.530 

2β  0.592 0.364 0.533 0.638 0.868 0.845 1.241 1.050 

3β  1.214 0.298 3.074 0.538 3.607 0.735 4.108 0.920 

4β  0.288 0.227 0.382 0.421 1.285 0.579 1.250 0.728 

5β  -0.886 0.210 -1.858 0.396 -2.729 0.551 -2.830 0.695 
2R  0.321  0.341  0.371  0.346  

Fama – Bliss Model 
 n = 2 n = 3 n = 4 n = 5 
 Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 
Estimated 

Coefficient 
Standard 

Error 
! 0.072 0.094 -0.134 0.177 -0.401 0.248 -0.086 0.313 
β  0.993 0.106 1.351 0.137 1.612 0.157 1.272 0.193 
2R  0.158  0.174  0.184  0.085   

#

Table 2: Cochrane - Piazzesi Factor Model, sample period 1964:01 – 2002:12 
 n = 2 n = 3 n = 4 n = 5 
 Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 
! 0.125 0.154 0.112 0.277 -0.007 0.367 -0.229 0.446 
λ  0.449 0.047 0.852 0.088 1.236 0.122 1.463 0.156 
2R  0.314  0.337  0.370  0.345  

#

#

#

Table 4: Sources of In-Sample Fit of Cochrane and Piazzesi’s Model 
 2n =  3n =  4n =  5n =  

No 
Predictability 0.158 0.162 0.157 0.082 

AR(1) 
Model 0.223 0.219 0.212 0.142 

CP model 
Equation (4) 0.321 0.341 0.371 0.346 
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Table 4: Estimates of 2R  for All Possible Combinations of Bond Prices 
2
1txr + #

3
1txr + #

4
1txr + #

5
1txr + #

Maturity 
combination   

2R  Maturity 
combination   

2R  Maturity 
combination   

2R  Maturity 
combination   

2R  

AR(1) 0.223 AR(1) 0.219 AR(1) 0.212 AR(1) 0.142 
1,2 0.228 2,1 0.244 3,1 0.270 4,1 0.219 
1,3 0.236 2,3 0.258 3,2 0.279 4,2 0.222 
1,4 0.237 2,4 0.255 3,4 0.244 4,3 0.199 
1,5 0.230 2,5 0.234 3,5 0.219 4,5 0.148 

1,2,3 0.257 2,1,3 0.258 3,1,2 0.279 4,1,2 0.223 
1,2,4 0.254 2,1,4 0.255 3,1,4 0.271 4,1,3 0.219 
1,2,5 0.230 2,1,5 0.244 3,1,5 0.320 4,1,5 0.332 
1,3,4 0.237 2,3,4 0.259 3,2,4 0.279 4,2,3 0.224 
1,3,5 0.258 2,3,5 0.287 3,2,5 0.315 4,2,5 0.321 
1,4,5 0.295 2,4,5 0.323 3,4,5 0.275 4,3,5 0.249 

1,2,3,4 0.259 2,1,3,4 0.259 3,1,2,4 0.279 4,1,2,3 0.225 
1,2,3,5 0.280 2,1,3,5 0.296 3,1,2,5 0.330 4,1,2,5 0.333 
1,2,4,5 0.309 2,1,4,5 0.328 3,1,4,5 0.360 4,1,3,5 0.338 
1,3,4,5 0.296 2,3,4,5 0.335 3,2,4,5 0.362 4,2,3,5 0.333 

CP Model 0.321 CP Model 0.341 CP Model 0.371 CP Model 0.346 
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Table 5: Encompassing Power of the CP Factor in Bond Prices 
 Equation (15) Equation (10) Equation (15) Equation (10) 

 
coef. s.e. coef. s.e. coef. s.e. coef. s.e. 

(1)
1tp +  (2)

1tp +  
Const. -1.622 0.275 0.430 0.254 -2.671 0.496 0.505 0.449 

(1)
tp   0.573 0.374   1.314 0.674   
(2)
tp  1.622 0.396   2.541 0.714   
(3)
tp  -0.926 0.318   -1.692 0.574   
(4)
tp  -1.174 0.223   -2.240 0.402   
(5)
tp  0.886 0.136   1.858 0.245   
( )pCPF    0.403 0.014   0.811 0.025 
2R   0.658  0.643  0.702  0.700  
. .s e   1.600  1.627  2.885  2.882  
 (3)

1tp +   (4)
1tp +   

Const. -3.795 0.671 -0.028 0.606 -4.887 0.839 -0.907 0.762 
(1)
tp   2.438 0.911   3.449 1.140   
(2)
tp  2.739 0.965   2.867 1.207   
(3)
tp  -2.322 0.776   -2.858 0.970   
(4)
tp  -3.013 0.544   -4.081 0.681   
(5)
tp  2.729 0.331   3.830 0.414   
( )pCPF    1.202 0.033   1.584 0.042 
2R   0.738  0.738  0.758  0.755  
. .s e   3.902  3.886  4.880  4.886  

 

 

Table 6: Tests of Bond Yield Restrictions 
 (1)

ty  (2)
ty  (3)

ty  (4)
ty  (5)

ty  

 2χ  p-value 2χ  p-value 2χ  p-value 2χ  p-value 2χ  p-value 
(1)
1ty +  1.272 0.259 2.162 0.141 4.189 0.041 5.405 0.020 6.470 0.011 

(2)
1ty +  8.568 0.003 6.901 0.009 4.608 0.032 3.297 0.069 2.510 0.113 

(3)
1ty +  4.760 0.029 4.690 0.030 4.578 0.032 4.494 0.034 5.095 0.024 

(4)
1ty +  12.157 0.000 12.665 0.000 12.227 0.001 14.048 0.000 12.906 0.000 

(5)
1ty +  17.877 0.000 21.962 0.000 24.565 0.000 30.354 0.000 31.179 0.000 

 


