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1 Introduction

We provide a unified consumption-based explanation for the widely documented asset return phe-
nomena such as the momentum and long-term contrarian profits and the value premium. To
motivate our analysis, we plot in Figure [1| the exposures to the high- and low- frequency compo-
nents of aggregate consumption growth fluctuations of 10 momentum, 10 long-term contrarian,
and 10 book-to-market portfolios.ﬂ The patterns in consumption risk exposures are striking: while
long-term losers and value firms have clearly higher exposures to the low-frequency consumption
risk than long-term winners and growth firms, the high-frequency consumption risk exposure in-
creases from momentum losers to momentum winners. These patterns are consistent with the
findings in Parker and Julliard (2005) and Hansen, Heaton, and Li (2008) who document that
value portfolios have a higher exposure to the long-run economic shocks than growth portfolios,
as well as the findings in Bansal, Dittmar, and Lundblad (2005) who demonstrate that the cash
flow beta of momentum winner stocks is significantly higher than that of the momentum loser
stocks. More importantly, the results shown in Figure [I| suggest that if the prices of risk for
both high- and low-frequency consumption risks are positive, which is true under the standard
assumptions of Bansal and Yaron (2004) (BY thereafter) and Bansal, Kiku, and Yaron (2012a),
the low-frequency consumption risk should be the main driving force for the value premium and
long-term contrarian profits, whereas the high-frequency consumption risk should be responsible

for momentum profits

[Insert Figure |1| Here]

!Specifically, we decompose consumption growth variations at 2 to 8 year frequency (referred to as business cycle
or high frequency) and 20 to 70 year frequency (referred to as technological innovation or low frequency) using
band-pass filtering. Similar decomposition has been used in Comin and Gertler (2006) to investigate the medium-
frequency oscillations between periods of robust growth versus relative stagnation. They refer to the frequencies
between 2 to 32 quarters (the standard representation of business cycles) as the high-frequency component of the
medium-term cycle, and frequencies between 32 and 200 quarters (8 to 50 years) as the medium-frequency com-
ponent. They show that the medium-frequency component is highly persistent and features significant procyclical
movements in technological change, and research and development (R&D), as well as the efficiency and intensity of
resource utilization. Dew-Becker and Giglio (2014) documents that only economic shocks with cycles longer than
the business cycle have a strong effect on asset pricing for Fama-French 25 size and book-to-market, and industry
portfolios.

2Among others, papers that study the implication of frequency domains on asset prices include: Yu (2012),
Otrok, Ravikumar, and Whiteman (2002), Daniel and Marshall (1997), Dew-Becker and Giglio (2014), Bandi and
Tamoni (2014).



In this paper, we extend the long-run consumption risk model in BY and explore its implications
for the cross section of asset returns by introducing a general but parsimonious specification
of the firm-level dividend processﬂ We maintain the specification of BY on the representative
agent preference and the aggregate consumption process. However, we introduce firms’ cash flow
processes to accommodate the variation in aggregate dividend growth, the exposures to the short-
run and long-run consumption risks, and firm-specific dividend shocks. In addition, we allow
firm cash flow exposure to the short-run and long-run consumption risks to be time-varying and
correlate with the firm-specific dividend shocks. Our firm dividend process is related to Johnson
(2002) but differs in that our firms are subject to time-varying exposures to both short-run and
long-run risks[] It differs from Lettau and Wachter (2007) and Santos and Veronesi (2010) in that
they pursue a top-down approach and model shares of individual firm dividend as a fraction of
aggregate dividend. Their specifications imply that the heterogeneity of firm cash flow risk moves
in tandem with the aggregate cash flow variability at any point in time. As a result, the risk
premium of an investment strategy depends on firms’ time-varying dividend sharesﬂ We, however,
take a bottom-up approach and start with firm-level dividend processes. In particular, we allow
firm dividend growth to have time-varying sensitivities to components of aggregate consumption
risks. This adds to the richness of firm heterogeneity and accommodates different exposures of
the momentum, contrarian and valuation ratio portfolios to different components of aggregate

consumption shocks uncovered in data.

3We use firm dividend and cash flow interchangeably in the paper. Several existing studies have provided
explanations separately for the momentum profit and the value premium using specific firm dividend growth
processes. For example, Johnson (2002) offers a rational explanation for the momentum profit using a single firm
time-varying dividend growth process with a two-state regime model. One of the regimes corresponds to the normal
state in which the dividend growth rate shocks last for a quarter to a business cycle. The other regime stands for a
fundamental technological change in which firm dividend growth innovations are more or less permanent. On the
other hand, Lettau and Wachter (2007), Santos and Veronesi (2010), among others, suggest that heterogeneity in
firm cash flow helps generating the value premium.

4In addition, Johnson (2002) uses a partial equilibrium model and has no channel to generate a large value
premium. In contrast, we use a general equilibrium model and attribute the profitability of various strategies to
different components of consumption risks.

®Santos and Veronesi (2010) allows firms’ dividend shares to be time-varying and stochastic. They show that
substantial heterogeneity in firms’ cash-flow risk yields both a value premium and some stylized facts of the cross-
section of stock returns. However, they find the cash-flow risk has to be very large to generate empirically plausible
value premiums, leading to a “cash-flow risk puzzle”.



In our model, while individual stocks are identical ex ante, they have very different character-
istics ex post after the realization of firm-specific cash flow shocks. Due to the lack of guidance
from the existing literature on the calibration of our firm-level dividend process, we employ a
simulated method of moments (SMM) approach to estimate these parameters. We avoid using
the cross-sectional average returns of the momentum, contrarian, and valuation ratio portfolios
as moment conditions. Instead, we estimate the parameters of firm dividend process using firm
characteristics and aggregate moments, and explore the asset pricing implications of our model
using the estimated parameter values. This approach mitigates the concern that the parameters of
the dividend process are directly implied by returns on the target portfolios. Using these estimates
and other widely used coefficients for the investor preferences and aggregate economic variables,
we find that when sorting stocks into portfolios based on past short-term and long-term stock
performances and the valuation ratios, we are able to generate a momentum profit of 7.35%, a
contrarian profit of 5.07%, and a value premium of 9.83%. These results are consistent with their
counterparts of 6.97%, 6.48%, and 6.91%, respectively, in the data from 1931 to 2011. While not
imposed as a moment condition in our SMM estimation, we also generate a large size effect using
the estimated parameter values.

Our analysis indicates that the different persistence of the short-run and long-run consump-
tion risk exposures plays an important role in reconciling the co-existence of momentum and
contrarian profits and the value premium. The short-run risk exposure is relatively short-lived,
whereas the long-run risk exposure is persistent. Momentum portfolios are sorted on the stock
return performance in the past several months, so they contain information about the short-run
risk exposure. In contrast, sorting variables such as the dividend-price ratio are persistent and
containing information about the long-run component of the risk exposure. Therefore, portfolios
sorted by these characteristics should create a large dispersion on the persistent exposure to the
long-run risk. Our analysis also highlights the importance of the correlation structure between the
short-run and long-run risk exposure shocks and firm cash flow shocks. A positive cash flow shock
is associated with an increase in the exposure to short-run risk leading to a positive correlation

between firm dividend and the short-run consumption risk exposure. This positive correlation is



consistent with a real option effect as studied in Sagi and Seasholes (2007). On the other hand, a
negative cash flow shock also adversely affects a firm’s equity valuation and increases the leverage
of the firm (Black (1976) and Christie (1982)). This will lead to a negative correlation between
a firm’s cash flow shock and the long-run consumption risk exposure. Our estimation provides
supporting evidence on these two correlation coefficients.

Taken together, our analyses provide a unified consumption-based explanation for the momen-
tum and contrarian profits and the value premium. For momentum strategies, short-term winners
have high dividend growth in the recent past. Dividend is persistent, generating a cash-flow effect;
at the same time, a positive correlation between firm dividend shock and the exposure to short-run
risk creates a discount effect. For our estimated parameter values, the cash flow effect dominates
the discount effect, validating the momentum winners (losers) to have a good (bad) recent perfor-
mance as well as positive differentials in expected returns. For the long-term contrarian profits and
the value premium, the long-term losers and value firms had negative dividend shocks in the long
past and high long-run consumption risk exposures due to the negative correlation between firm
dividend shocks and long-run risk exposure. The cash flow effect reinforces the discount effect,
giving rise to a high expected return relative to long-term winners and growth firms.

In addition to the unconditional asset return moments, the momentum profit is negatively
correlated with the contrarian profit, the value premium, and the size premium in our simulation.
The correlation coefficients are broadly consistent with the empirical estimates from the actual
data. The intuition behind these findings are straightforward. Momentum portfolios sorted on the
short-term stock return pick up the dispersion on the short-run risk exposure. Portfolios sorted
by the long-term stock return, the dividend-price ratio, and firm size create a large dispersion
on the long-run risk exposure. However, these portfolio sorts do not isolate the risk exposures
from one factor to the other: growth firms also tend to have higher short-term stock return than
value firms, implying a negative risk exposure to the short-run risk for the value-minus-growth
portfolio. Similarly for the momentum strategy, the winners also tend to have a lower leverage
and a lower sensitivity to the long-run risk than the losers because of good past performance.

Thus, the momentum profit loads negatively on the long-run risk. The opposite responses of



the value premium (and long-term contrarian profits) and the momentum profit to consumption
shocks (both short-run and long-run) provide a natural explanation for the correlation coefficients
between the profitabilities of these strategies.

The decomposition of risk exposures also sheds light on the performance of Capital Asset
Pricing Model (CAPM) and Consumption-CAPM in explaining the cross-sectional stock returns.
As emphasized in BY, the equity premium is mainly driven by long-run consumption variations; we
should expect that the unconditional CAPM performs better for the portfolios sorted by the long-
term past return performance and valuation ratios than the momentum portfolios. In contrast,
the major contributing component of the consumption growth is its short-run fluctuations; we
thus expect the returns of the momentum portfolios are better captured by the Consumption-
CAPM. We confirm these predictions using the sample of observations between January 1931 and
December 2011. For example, the beta to the aggregate consumption growth increases from -3.43
for short-term losers to 3.97 for short-term winners, in line with the patterns uncovered in the
average returns. To the best of our knowledge, our paper is the first to document the monotonic
pattern in consumption beta for the momentum portfolio returns when the consumption risk is
measured in such a standard way.

Despite the success of our model in reproducing salient features of asset pricing phenomena,
one should not simply take it for granted that our dividend process will necessarily generate the
momentum and contrarian profits and the value premium. In an extensive sensitivity analysis,
our main findings survive when the key parameters take economically plausible values that are
consistent with the moment conditions. However, when the perturbation is set at a value that
is far from standard confidence intervals, the model implied asset prices can vary in a significant
way. In scenarios when some of the parameters take extreme values, either the momentum profit
or value premium becomes negative. Therefore, the moment conditions from portfolio character-
istics, exposures to consumption risks, and aggregate price-dividend ratio and equity premium
provide valuable information on parameter values that governs firm dividend process, which in
turn determines the risk exposures and expected returns of portfolios sorted by short-term and

long-term past performance and valuation ratios.



Several recent papers explore a joint explanation of the value premium (or the long-term
contrarian profit) and the momentum profit. For instance, Yang (2007) attempts to relate the
momentum and the long-run contrarian profits to the long-run consumption risk in a theoretical
study. However, as we pointed out in our consumption risk decomposition analysis, the momentum
profit is primarily driven by firms’ exposure to the short-run consumption risk. In addition,
given the one-factor structure, his model is unable to reproduce the performance of CAPM and
consumption CAPM from the empirical data. Li (2014) focuses on the production side of the
economy and studies an investment-based explanation for the momentum profit and value premium
by linking asset prices to economic fundamentals such as profitability and real investments. Liu,
Zhang, and Fan (2011) explore the restrictions imposed by the momentum and contrarian profits
on the stochastic discount factors from commonly used utility functions. They provide supporting
evidence that the momentum and contrarian profits manifest the short-term continuation and
long-term reversal in the macroeconomic fundamentals. Vayanos and Woolley (2013) propose
a theory of momentum and reversal based on flows between investment funds. Albuquerque
and Miao (2014) link the momentum and long-run reversals with heterogeneous information and
investment opportunities. More recently, based on the assumption that shareholders located in
different percentiles of the wealth distribution have marginal utilities that vary inversely with the
capital share, Lettau, Ludvigson, and Ma (2015) find that a single risk factor, the capital share
risk, is able to capture momentum profits and the value premium. Instead, our paper pursues a

consumption-based explanation under the representative agent framework.ﬁ

50Qur paper contributes to a large and still growing literature studying the asset pricing implications of the
long-run risk framework. Besides the papers we previously discussed, a incomplete list of recent studies include:
Malloy, Moskowitz, and Vissing-Jorgensen (2009), Drechsler and Yaron (2011), Bansal and Shaliastovich (2013),
Bansal, Kiku, Shaliastovich, and Yaron (2014), Bansal and Shaliastovich (2011), Roussanov (2014), Croce, Lettau,
and Ludvigson (2014), Kiku (2006), among many others. Other important contributions in the literature on the
value premium from the perspective of rational expectations include, but are not limited to, Gomes, Kogan, and
Zhang (2003), Zhang (2005), and Kogan and Papanikolaou (2014).



2 The Economic Model

2.1 The Basic Setup

In this section, we specify a long-run risk model based on case (I) of BY, which excludes stochastic
volatility of consumption. The endowment economy features a representative agent and a large
number of stocks. The representative agent has Epstein and Zin (1989) recursive preference, which
allows a separation of relative risk aversion and the elasticity of intertemporal substitution (ELS).
With the recursive preference, the representative agent maximizes the discounted lifetime utility

V; by solving the following dynamic optimization problem:

2

Vi = max <(1 —8)C, T 46 (EML{*])l) ’
st. Wiy = (Wt - Ct)Ra,t—i-l

where 0 is the subjective discount factor, 1 is EIS, and ~ is the relative risk aversion. Cj is the
consumption decision to be made by the agent. The budget constraint states that the wealth at
t + 1 equals the saving (W; — C;) multiplied by the return on the consumption claim Rg 44 1.

The first-order condition implies that the stochastic discount factor (SDF) is (see, for example,

Epstein and Zin (1989) and Hansen, Heaton, Lee, and Roussanov (2007)):
0
mip1 = 010g5 — EACH_I + (9 — 1)Ta,t+1 (2)

where 0 = ﬁ’ Acy1 is the consumption growth measured as the first difference in logarithmic
consumption, and r,4; is the logarithmic return on the consumption claim which can be written

as:

Wyt +C
Foris = log (M)

Wi

= log(exp(wcyt1) + 1) — wep + Acyyq



with we; = W, /Cy being the wealth-consumption ratio. In equilibrium, the return r,,; of any

security must satisfy the Euler equation

Eilexp(myyr +7re1)] =1 (4)

Applying the Euler equation to the consumption claim and the dividend claim, we have the

following recursive forms for the wealth-consumption ratio and the price-dividend ratio (denoted

by pd; )]

we, = Jlog(Efesp(f1og6 - <§ ) Acrs + O(log(explwery) + 1)) (5)

pdf; = log(FE}[exp(flogd + (0 — 1 — g)ACtH + (0 — 1)(log(exp(weisr) + 1) — wey)
(6)

+ log(exp(pd;_ ;) + 1) + Ady,,)])

where Ad}, ; is firm ¢’s dividend growth measured as the first difference in logarithmic firm dividend
distribution which we discuss in more detail in next subsection.

Next, we discuss the dynamics for the aggregate consumption growth process. The specification
of the aggregate consumption growth process is the same as in case (I) of BY. In addition to the
i.i.d. short-run shocks (7;4+1) to the consumption growth, there is a small but persistent expected
consumption growth (x;) which, as shown in BY, helps to explain a wide-range of phenomena in

aggregate asset prices. Specifically, we have

Acii1 = e + Tt + Ot
(7)

Tip1 = PTt + PeOc€ii1

where g. and o. measures the average consumption growth and volatility of the short-run con-

"See Appendix A-1 for derivation.



sumption risk, respectively. The expected consumption growth x; follows an AR(1) process with
a persistence of p and conditional volatility of p.o.. In addition, we assume the short-run con-

sumption shock 7,7 and long-run consumption shock e;,; are independent from each other.

2.2 The Firm Dividend Process

One important innovation in our model is the firm dividend process. While aiming to reproduce
several salient empirical regularities, we use a general functional form to encompass several specifi-
cations in existing studies. In the meantime, we try to maintain the parsimony in our specification
to accomplish this objective. With this in mind, we model the firm dividend growth as comprised

of three components given below:

Ady = ga+ Oa€qper + fize + hyoenr + Yy @)
yi+1 = Pyyi + UyEZ,tH

The first component, g; + 04€q+41, governs the aggregate dividend growth, where g, is the
unconditional mean of the aggregate dividend growth process and og4€4,41 represents the short-
run innovation in aggregate dividend growth that is un-correlated to the aggregate consumption
growth. The second component, fiz; + hio i1, captures the firm’s cash flow co-movement with
the aggregate consumption growth. In particular, fiz; and hio.n.,; represent components of the
firm’s cash flow variability due to exposure to the long-run and short-run consumption risks,
respectively. For brevity of exposition, we refer to shocks to f; long-run exposure shocks; and
shocks to hj short-run exposure shocks. The last term, y;,,, captures a firm-specific dividend

growth component that is mean-reverting.
We allow the firm’s cash flow exposure to the consumption risks (f; and hi) to be time-
varying and follow AR(1) processes for simplicity, i.e., fi, = prfi + (1 — pp)f + o*fejc,t+1 and
hiiy = puhi+ (1 — pn)h + onej . We assume that all shocks are independent, except for the

correlation between the firm’s idiosyncratic cash flow shock with the long-run exposure shock, i.e.,
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pry=corr(€s, 1, € 1), and to the short-run exposure shock, i.e., ppy=corr(e, ., €, ,,1). While
stocks are identical ex ante, due to firm-specific shocks, their characteristics, including valuation
ratio and risk premium, are different ex post.

Given that the firm’s cash flow exposure to consumption risks (f; and h}) are time-varying, our
specification above is in fact very general and nests a wide range of specifications on firm dividend
processes used in other studies including Bansal, Kiku, and Yaron (2012b) and also captures the
main features of the firm dividend growth process in Johnson (2002). Our firm dividend process
also differs from that used in Lettau and Wachter (2007) and Santos and Veronesi (2010) who model
shares of individual firm dividend as a fraction of aggregate dividend. This effectively restricts the
heterogeneity of firm cash flow risk to move in tandem with the aggregate cash flow variability at
any point in time. From that perspective, our firm dividend process specification accommodates
a broader and richer structure of a firm’s cash flow responses to different types of the aggregate
economic risks. Because of the flexible nature of our firm dividend process specification, there are
few parameter values governing the dividend process readily available for a calibration analysis.
To uncover these parameter values, we use a simulated method of moments (SMM) approach to

formally estimate our economic model. We discuss the details of our estimation in the next section.

3 Data and Estimation of the Firm Dividend Process

3.1 Data

The data used in our empirical analysis are readily available and widely used in finance research.
The annual consumption data is from National Income and Product Account (NIPA). Following
the consumption-based asset pricing literature, we define consumption as the non-durable goods
minus clothing and footwear plus servicef| The returns for book-to-market, size, momentum,
long-term contrarian, Fama-French industry portfolios, as well as the standard risk factors such

as the market return are from Kenneth French’s Web site. Self-constructed portfolios are based

8To be specific, consumption is calculated as non-durable (Row 8 of NIPA Table 2.3.5 divided by Row 25 of
NIPA Table 2.4.4) minus clothing and footwear (Row 10 of NIPA Table 2.3.5 divided by Row 30 of NIPA Table
2.4.4) plus services (Row 13 of NIPA Table 2.3.5 divided by Row 47 of NIPA Table 2.4.4).

11



on the data from CRSP and COMPUSTAT, and the construction procedure is discussed in more
detail when needed. The benchmark sample is from January 1931 to December 2011, where the
starting point is restricted by the availability of the return data for constructing the long-term
contrarian portfolios.

Following the convention of the long-run risk literature, we model the representative agent’s
decision at a monthly frequency and then annualize the moments of variables of interests in order
to compare with the empirical data. To facilitate comparison of our results to those in existing
literature, we separate the parameters into two groups. The first group of parameters are chosen
to match the moments of aggregate variables in the time series. Since the economy from the
aggregate perspective is identical to case (I) of BY, we use the parameters in BY as a guidance.
For instance, the risk aversion v and the elasticity of intertemporal substitution ¢ in the benchmark
parameterization are set to 10 and 1.5, respectively, exactly the same as in BY. The subjective
discount rate is set to 0.9994, which is used to match the level of risk-free rate. The mean
consumption growth and volatility parameters ¢g. and o. determine the first and second moments
of aggregate consumption growth, and we choose the value of 0.0015 and 0.0078, respectively, to
match the data. The long-run consumption growth component is small but very persistent. We
set its conditional volatility relative to short-run risk and its persistence very close to values in BY
at 0.044 and 0.98, respectively. The benchmark parameter values for this group are summarized
in the top panel of Table [I, The second group of parameters governs the firm dividend process

and are estimated using a simulated method of moments approach detailed below.

[Insert Table 1| Here]

3.2 SMM Estimation of the Firm Dividend Process

The general specification of our firm dividend process makes it difficult to calibrate using parameter
values from existing studies. We therefore estimate the parameters governing firm dividend process
given by equation (§). We follow Duffie and Singleton (1993), Smith (1993), and Gourieroux,

Monfort, and Renault (1993) and employ a simulated method of moments (SMM) estimation on

12



these parameters.
In particular, holding the values of the first group of parameters, we search for the optimal

values of the set of parameters governing the firm dividend process I' given by

I'= {gd,Ud, f’ Pf,0f, Baph70h>pyaay>phy>pfy}/ (9)

by matching 25 empirical moments, which are listed in Table[2] We avoid using the cross-sectional
average returns of the momentum, and long-term contrarian, and valuation ratio portfolios as
matching moments. Instead, we estimate the parameters of the dividend process using firm char-
acteristics and aggregate moments, and explore the asset pricing implications of this model using
these estimated parameter values. This approach mitigates the concern that the parameters of
the dividend process are directly implied by returns on the target portfolios.

Specifically, to capture the short-run and long-run consumption risk exposures, we include the
long-run consumption betas for the contrarian loser-minus-winner portfolio and the value-minus-
growth portfolio, as well as the short-run consumption beta for the momentum winner-minus-
loser portfolio. We estimate the short-run risk exposure of the momentum winner-minus-loser
portfolio following the approach in Bansal, Dittmar, and Lundblad (2005). We estimate the
long-run risk exposures of the contrarian loser-minus-winner portfolio and the value-minus-growth
portfolio by regressing the long-term portfolio real dividend growth on the long-term real aggregate
consumption growthﬂ At the aggregate level, we include the mean and standard deviation of
aggregate dividend growth rate, the aggregate log(P/D) ratio, and the equity premium. These
moments can help pin down the values of the parameters governing the aggregate dividend process.
Given our interest in the momentum, contrarian, and value investment strategies, we choose the

defining characteristics of these strategies as part of our matching moments.ﬂ

9We regress the portfolio log real dividend growth onto the trailing 8-quarter moving average of log real aggregate
consumption growth, and the coefficient on the consumption growth term is our proxy for the short-run risk
exposure. To obtain the long-run consumption betas, since the long-run risk is small but persistent, its exposures
for the value-minus-growth portfolio and contrarian loser-minus-winner portfolio can be approximately estimated
from the long-run overlapping regression. For each portfolio, we calculate the portfolio 20-year moving average of
log real dividend growth rate, and the univariate regression coefficient of this cumulative dividend growth on the
20-year moving average of the log real aggregate consumption growth is our estimate for the long-run risk exposure.

10We include dividend yield (DP), short-term past return (R;_¢_;_2), and long-term past return (R;_go_¢_13)
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[Insert Table [2| Here]

Denote ¥4 as the vector of these moments in the actual data, and ¥¥(I') as the vector of
these moments from the simulated data. The parameter vector (I') are then estimated from the

following minimization problem:

' = arg min[¥¥(T") — U4 W [T (T) — ¥4 (10)

where W is the weighting matrix. Intuitively, the coefficients for the firm dividend process are
chosen to minimize the weighted average of squared deviations of moments from the data. The
SMM estimation requires that for a set of parameter values, we find the optimal solution to the
dynamic model. Unlike standard long-run risk models that can be solved using log-linearization
approximation, our model contains a non-linear term f/z;, so we solve the model numerically.
For consumption and dividend claims, we first calculate the valuation ratios (wc¢; and pd!) using
equations (5) and (6) by value function iterations. We then simulate 100 samples with each
sample representing 972 months and 1,000 firms. The detail of the numerical method is described
in Appendix A-2. Following Bloom (2009), we solve the above minimization problem using an
annealing algorithm to find the global minimum. We also start with different initial guesses for I"
and find that the estimates are very robust and insensitive to the initial guesses.

The bottom panel of Table [I] reports the result from the SMM estimation. The estimated
parameter values for the aggregate dividend growth g; = —0.0038 and o4 = 0.0467, implying
an average growth rate of aggregate dividend of 1.296%@ with a standard deviation of 16.22%,

very close to the empirical estimatesH We find that firm’s cash flow exposure to the long-run

of the value and growth portfolios (Portfolio 10 and 1 for the dividend price decile portfolios), the momentum
winner and loser portfolios (Portfolio 10 and 1 for momentum decile portfolios), and the contrarian winners and
losers portfolios (Portfolio 10 and 1 for the long-term contrarian portfolios) for 3 x 6 = 18 moment conditions for
portfolio characteristics.

Note that g4 is no longer equal to the average monthly dividend growth because the cross-sectional distribution
of dividend process changes the unconditional mean of aggregate dividend growth due to the Jensen’s inequality.

12Chen (2009) documents that, depending on whether monthly dividends are reinvested or not, the accumulated
annual market dividend volatility can range from 11.8% to 14.7% for the 1926-2005 sample. In this paper, we
measure annual aggregate dividend growth using the reinvestment strategy, so its volatility is higher than some
other works in the literature, including Bansal and Yaron (2004). Since our focus is on the cross section, our
main result is essentially the same if we estimate the model using the aggregate dividend growth data without
reinvestment.
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risk is very persistent (p;=0.989) with a conditional volatility of long-run risk exposure oy at
0.351. In the meantime, the persistence of firm’s cash flow exposure to the short-run risk is much
lower at p, = 0.781 with a higher conditional volatility (o, = 4.935). The estimated persistence
and conditional volatility of firm-specific dividend growth rate component are p, = 0.979 and
o, = 0.0015, respectively.

Our estimation results show that the correlation between the firm’s cash flow shock and its
exposure to the long-run consumption risk, i.e., ps,, is negative at -0.970 while the correlation
between the firm’s idiosyncratic cash flow shock and its exposure to the short-run consumption
risk, i.e., ppy, is positive at 0.875. Both coefficients have low standard errors indicating that our
estimates are quite precise. Intuitively, the estimated negative correlation between firm specific
dividend shocks and long-run exposure shocks can be understood by a firm’s leverage effect. As
stock price falls due to negative cash flow shocks, the fixed operating cost represents a larger
portion of total cost of production, driving up the operating leverage. In addition, if a firm is
financed by both equity and debt, the financial leverage will also increase. Both leverage effects
imply a larger sensitivity to the aggregate long-run growth shocks, and this can be captured
by a negative correlation between €}, , and ¢, ,,,. The estimated positive correlation between
the firm specific dividend shocks and short-run exposure shocks is consistent with a real option
effect as studied in Sagi and Seasholes (2007). Sagi and Seasholes (2007) argue that firms that
performed well in the recent past are better poised to exploit their growth options. Because
these options are risky assets that now account for a larger fraction of firm value, such firms are
riskier. From this perspective, our result provides an empirical estimation of this real option effect
quantitatively using the portfolio-level data. This positive correlation is also consistent with the
empirical evidence of Chen, Moise, and Zhao (2009), who find that the winner (loser) portfolio
has a positive (negative) revision in its cost of equity around the portfolio formation timeH

While the overidentification test rejects the model, it does a good job matching the moments

13 As a robustness check, we have also directly estimated the firm dividend process using firm-level dividend data
for a sample of firms with at least 20 years of non-missing dividends by applying the Bayesian Markov Chain
Monte-Carlo (MCMC) estimation method. We find similar estimates to those reported here and the details are
discussed in Appendix A-3.
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of key variables of our interests. The model implied aggregate and cross-sectional moments are
reported in Table[3|and Table[dl Overall, these parameter values imply an average equity premium
of 8.20% with a standard deviation of 25.44% per year for value-weighted market return, and an
average equity premium of 11.66% with a standard deviation of 28.70% for equal-weighted market
return. The observed counterparts in the data are well within the confidence interval from the
simulated data. In addition, autocorrelation of the market return from simulation is found to be

very close to zero.
[Insert Table |3| Here]
[Insert Table [4] Here]

The simulated portfolios from the model have both qualitatively and quantitatively similar
dividend yield, past short-term and long-term return performances as in the data. For instance,
the short-term return (month ¢ — 6 to ¢ — 2) of the momentum winner (loser) portfolio is 58.1%
(-30.8%) in the simulation, and 51.5% (-27.6%) in the data. For the long-term contrarian strategy,
the long-term return (month ¢ — 60 to ¢ — 13) of the loser (winner) portfolio is -57.4% (338.2%)
in the simulation, and -47.3% (315.2%) in the data. For the value strategy, the dividend yield for
the high (low) dividend-price portfolio is 0.159 (0.026) from the simulation, compared with 0.104
(0.015) in the actual data. In addition, the model is capable of capturing several salient empirical
features. First, stocks with high dividend yield tend to have a low past long-term performance.
This is consistent with the finding in Fama and French (1996) that the high-minus-low (HML)
factor is able to capture the long-term contrarian premium. Second, stocks with a high dividend
yield also have a low past short-term performance. A good past performance drives up the stock
price and lowers the dividend yield. Third, momentum portfolios pick up the short-term past
performance, but the difference in the long-term performance between winner and loser portfolios
is small. Similarly, the long-term contrarian portfolios capture the long-term performance, but
there is no strong difference in their short-term performance between the two extreme portfolios.

We discuss the intuitions of these patterns in Section 4.3.
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4 Results and Discussions

In this section, we discuss the implications of short-run and long-run consumption risks for the
cross section of stock returns. We start by comparing the momentum and contrarian profits,
the value premium, and the size effect implied by the model with their observed counterparts
in the data. We also explore the performance of the unconditional CAPM using the simulated
data. In Section 4.2, we examine the difference in economic forces driving these premiums. In
particular, we find that momentum portfolios are sorted based on more recent and high frequency
information, so they are more exposed to the short-run consumption risk, whose exposures move
at a higher frequency. However, the long-term contrarian and value portfolios are sorted based
on low frequency information, so their returns are sensitive to the long-run consumption risk,
whose exposures are persistent and moving at a lower frequency. This difference has implications
for the performance of the CAPM and Consumption-CAPM, as well as the correlations between
the momentum profit, the contrarian profit, the value premium, and the size premium, which we
explore in Section 4.3. In Section 4.4, we explore the dynamics of momentum profits and show that
our parsimonious model is capable of reproducing the short life of the momentum profitability. We
test a two-factor model with the market return and consumption growth as risk factors in Section

4.5. Finally, we conduct sensitivity analysis on the values of key parameters in Section 4.6.

4.1 Portfolio Returns

This section compares our model implied momentum and contrarian profits, value premium, size
premium and the CAPM test results to their counterparts in actual data. We report our findings
for the momentum profit, the contrarian profit, the value premium, and the size premium in Tables
[l 6l [7, and [§] respectively.

Table |5 reports the result for the momentum profit. It is well known that momentum and
value are “opposite” because momentum investing takes a long position in the past “winners” and
a short position in the past “losers”, whereas value investing does the opposite. Nevertheless, both

strategies make considerable profits. Our model is capable of generating a positive momentum
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profit at the same time of maintaining a positive value premium. Table [5[ shows that the average
value-weighted excess return of the simulated loser portfolio is 4.15%, which is 7.35% lower than
the simulated winner portfolio. The result for equal-weighted returns is very similar, albeit higher
(7.71% momentum profit). These findings are consistent with the empirical counterparts in the
data, where the momentum profit is 6.97% for the value-weighted returns, and 6.96% for the

equal-weighted returns.
[Insert Table |5| Here]

The unconditional CAPM fails to explain the momentum profit. This is particularly true for the
equal-weighted returns. The CAPM alpha remains 8.78% per year after controlling for the market
risk factor. This abnormal return spread is even bigger than the return spread (7.71%) between
the winner and loser portfolios. This can also be seen from the pattern of market betas. The
market beta for the loser portfolio is 1.02 and higher than the winner portfolio 0.91, qualitatively
consistent with what is found in the data (1.43 versus 0.86) for equal-weighted returns.

The contrarian profit for the value-weighted returns is 5.07% in the simulation versus 6.48% in
the data. While the contrarian profit remains very sizable for the equal-weighted returns at 5.07%
in the simulation, it is lower than its counterpart in the data (15.05%). The result is consistent
with the low (high) average CAPM betas for long-term winners (losers) both in the simulation
(0.89 versus 0.98 for valued-weighted returns and 0.82 versus 1.12 for equal-weighted returns) and
in the data (1.10 versus 1.35 for valued-weighted returns and 0.86 versus 1.42 for equal-weighted
returns).

However, the unconditional CAPM is not capable of explaining the contrarian profit. The
annualized abnormal return for the contrarian strategy based on the CAPM alpha is 4.30% in the
simulation versus 4.63% in the data for value-weighted and 1.96% in the simulation versus 8.07%
in the data for equal-weighted return. This suggests that the spread in the market beta is not

large enough to capture the return spread.

[Insert Table [6] Here]
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Table [7] shows that the model produces a large value premium. For the value weighted re-
turns, the average excess return increases monotonically from growth firms (4.69%) to value firms
(14.52%), and the implied average value premium is 9.83%, which is slightly higher than the em-
pirical value of 6.91%. For the equal weighted returns, our simulated value premium is about

9.09% per year, which is smaller than 15.39% for the empirical counterpart.
[Insert Table [7| Here]

When the unconditional CAPM tests are performed on these portfolios, we find that market
risk exposures are going in the right direction in capturing the value premium. Specifically, the
market beta increases from 0.85 for growth firms to 1.12 for value firms in the value-weighted
returns, and increases from 0.64 to 1.30 for equal-weighted returns. The patterns are very similar
in the data for our sample period, where growth firms have a low market beta of 0.99 versus 1.47
for value firms for the value-weighted (0.88 versus 1.32 for equal-weighted) returns. Despite the
pattern in the market betas, the abnormal return spread between value firms and growth firms
remains positive. The annualized CAPM alpha is 7.46% (t-stat = 2.16) for value-weighted returns
and 1.90% (t-stat = 0.87) for equal-weighted returns from simulations, as compared with 3.25%
(t-stat = 1.37) and 9.91 (¢-stat = 4.30), respectively, in the data.

While not imposed as moment conditions for different size portfolios in our SMM estimation,
we now explore the model prediction on the firm size effect, and the result is reported in Table[§ It
has been well documented in the literature that small firms earn a higher average return than big
firms, and this firm size premium cannot be captured by the unconditional CAPM "] Consistent
with the empirical data, the simulated size premium is more than 5% per year. Small firms have
a higher exposure to the market factor, but the average CAPM alpha for the small-minus-big
portfolio remains large and positive. Therefore, even though we do not include information from
size-sorted portfolios in the SMM estimation, the model with the estimated parameter values can

still well capture the salient features of stock returns along this dimension.

[Insert Table [§] Here]

14Gee, for example, Banz (1981), Reinganum (1981), Keim (1983), and Fama and French (1992).
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Overall, we find that the economy with short-run and long-run consumption risks and a general
but parsimonious firm dividend process is capable of jointly producing the economically sizable
momentum and contrarian profits, value premium, firm size premium, and the performance of the
unconditional CAPM. Even though firms are identical ex ante, firm dividend processes generate
different firm characteristics ex post after realization of firm specific shocks. By sorting on different
firm characteristics, the model has different predictions on firm future returns. We will explore

this mechanism in more detail in the next section.

4.2 Risk Exposures

Our economic framework has two priced risk factors: the short-run and the long-run consump-
tion risks. Any portfolio sorting that generates a spread in average returns must be due to the
heterogeneity in compensation for either short-run or long-run risk, or both. In this section, we
take a closer look at the risk exposures of the momentum, contrarian, value, and size strategies
documented in the previous section.

Table [9] presents several characteristics for these momentum, contrarian, dividend-price, and
firm size portfolios from the model simulation. The first row of each panel reports the average
dividend growth rate at the time of portfolio formation. Consistent with existing literature, growth
firms and past winners (both short-term and long-term) have higher firm-level dividend growth
rate y than value firms and past losers. However, while both past short-term and long-term
winners have high dividend growth rate, the former has high average returns but the latter has
low average returns. Thus, dividend growth rate is not a clean proxy for risk exposures. As such,
we explore the patterns of two components of dividend growth at month ¢: the short-term changes
in dividend growth (i.e., the cumulative change between ¢t —6 and ¢t —2), and the long-term changes
in dividend growth (i.e., the cumulative change between ¢ — 60 and ¢t — 13), as reported in the
second and third row of each panel in Table [9

The decomposition implies that the momentum portfolios show a strong pattern for the short-

term dividend growth with the winners having a higher short-term dividend growth than the
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losers. But their long-term dividend growth pattern is much weaker. On the other hand, the
long-term contrarian, dividend-price, and firm size portfolios have a large spread in the long-term
dividend growth, but the pattern for the short-term dividend growth is weak. Specifically, long-
term winners, growth firms, big firms have a higher long-term dividend growth than long-term
losers, value firms, and small firms. Based on our estimated correlation between dividend growth
shocks and short-run and long-run exposure shocks, these findings imply that long-term winners,
growth firms, and big firms should have a lower exposure to the long-run consumption risk than
long-term losers, value firms, and small firms, whereas short-term winners should have a higher
exposure to the short-run consumption risk than the short-term losers. This is confirmed in the
last two rows of each panel in Table [9] Indeed, the spread in the exposures to the long-run risk
is 3.39 (7.32 versus 3.93), 7.27 (9.42 versus 2.15), and 3.87 (7.74 versus 3.87) for the contrarian,
dividend-price, and size portfolios, respectively, and the spread in the exposures to the short-run
risk is 12.00 for the momentum portfolios. This finding is consistent with the empirical evidence
in the introduction that momentum, contrarian, and value strategies load differently on the high-

and low-frequency fluctuations of the consumption growth.
[Insert Table [0] Here]

The patterns in the dividend shocks and the risk exposures to the short-run and long-run
consumption risks provide a joint explanation for the profitability of the momentum and contrar-
ian strategies, value and size portfolios. Short-term winners have high dividend growth in the
recent past. The positive dividend shock realizations induce a persistent increase in their future
cash flow, while the positive correlation between the firm dividend shock and the short-run risk
exposure creates a higher discount rate. Our estimated parameter values indicate that the cash
flow effect dominates the discount effect, giving rise to the high realized returns as well as high
expected returns for these firms (momentum winners). The same channel explains the low expect-
ed returns for momentum losers experiencing negative dividend shock realizations. On the other
hand, compared to the long-term winners, growth firms, and big firms, firms with poor long-term

performance, low valuation ratios, and small market capitalization had low dividend growth in
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the long past; they have high leverage, high exposure to the long-run consumption fluctuations,
and hence high expected returns.

It is worth highlighting the difference in the persistence of the short-run and long-run risk
exposures. The short-run risk exposure is relatively short-lived, whereas the long-run risk exposure
is persistent. Intuitively, momentum portfolios are sorted on the stock performance in the past
several months, so they should pick up the less persistent component of the risk exposures, that is,
the exposure to the short-run consumption risk. On the other hand, sorting variables such as the
long-term performance, dividend-price ratio, and firm size are persistent and therefore picking up
the more persistent components of the risk exposures. Portfolios sorted by these characteristics
should create a large dispersion on the long-run risk exposure. The divergence in the persistence
of these two betas facilitate the model reproducing the coexistence of these phenomena in the

cross-sectional stock returns.

4.3 CAPM, Consumption-CAPM, and Strategy Return Correlations

So far, we have only focused on the main contributing risk factor for the profitability of the
momentum, contrarian, value, and firm size strategies. However, the other risk factor (could
be either short-run or long-run risk depending on the strategy) provides important clues to the
findings in asset pricing tests, such as the failure of the CAPM. For instance, for momentum
profits, past short-term winners have a higher exposure to the short-run risk than past losers,
but the pattern of the long-run risk exposure is exactly the opposite, because winners on average
have a lower leverage than losers. Since the equity premium is mainly driven by the long-run
risk, the exposure to the market factor follows the direction of the exposure to the long-run risk,
generating a higher market beta for losers than winners. In the meantime, the long-term contrarian
and value strategies are profitable because they load on the long-run consumption risk. However,
as shown in Table [0} long-term losers and value firms in fact have a lower exposure to short-run
consumption risk than long-term winners and growth firms. This is because, given a positive

correlation coefficient for py,, positive dividend shocks on long-term winners and growth firms
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tend to increase the firm’s exposure to short-run risk, which predicts an expected return that is
opposite to finding a positive contrarian profit and value premium. In our model, both short-run
and long-run risks positively contribute to the equity premium, so the market factor alone is not
capable of capturing the contrarian profit and the value premium.

The same argument also works for Consumption-CAPM. The consumption growth is mainly
driven by the short-run consumption variations, so we expect that momentum portfolios are more
correlated with consumption growth than portfolio sorted on long-term contrarian, valuation ratio,
and firm size that are more exposed to the long-run consumption shocksE To test this, we regress
the value-weighted excess returns of the momentum, the contrarian, the valuation ratio, and the

firm size portfolios on the time series of consumption growth, and report the results in Table [10]/'°}
[Insert Table [10] Here]

Consistent with Figure[I] the consumption beta shows a strong pattern and increases monoton-
ically from the loser to winner momentum portfolio. In the data and in the model, a 1% increase
in the consumption growth corresponds to a 3.97%-6.50% increase in the average return for the
winner portfolios and 2.40%-3.43% decrease in the average return for the loser portfolios. The
difference in short-run consumption risk exposures between winner and loser portfolios are both
economically and statistically significant, and explains more than 20% of the time series variation
of the momentum profit in the data and almost 40% in the model. On the other hand, the pattern
of consumption betas for the contrarian, valuation ratio, and size portfolios are weak. If anything,
Table [10] shows that growth firms have a higher consumption beta than value firms. Similar but

weaker findings are also observed for long-term winners versus losers and small versus big firms.

[Insert Table [11| Here]

15A similar argument is also made in Colacito and Croce (2011) who show that a decomposition of the short-run
and long-run components of consumption risk can explain a wide range of international finance puzzles, including
the high correlation of international stock markets, despite the lack of correlation of fundamentals.

16To save space, we only report the results from value-weighted returns for the Consumption-CAPM in this
section and the two-factor model analysis in Section 4.5. The results from equal-weighted returns are qualitatively
similar.
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The difference in exposures to the short-run and long-run consumption risks also provides
insights on the correlation between the momentum and contrarian profits, the value premium,
and the size premium. As shown in the first panel of Table the correlation between the
momentum profit and the value premium is -0.40 for the value-weighted returns, and -0.48 for
the equal-weighted returns. The correlation between the contrarian profit and the value premium
is 0.64 for the value-weighted returns and 0.80 for the equal-weighted returns. These patterns
are reproduced in our model. As reported in the second panel of Table [11, our model predicts a
negative correlation between the momentum profit and the value premium of -0.38 for the value-
weighted returns, and -0.44 for the equal-weighted returns, and a positive correlation between
the contrarian profit and the value premium of 0.53 for value-weighted returns, and 0.74 for the
equal-weighted returns.

The correlation between the momentum and contrarian profits from the model is also on average
similar to that in the data. In addition, the model generates a quantitatively similar result for
the correlations between the size premium and the profitability of the other three investment
strategies. Specifically, the size premium comoves positively with the contrarian profit and the
value premium, but negatively with the momentum profit. These results lend strong support to
our discussions on the risk exposures. The momentum profit has a positive sensitivity to the
short-run risk, but a negative sensitivity to the long-run risk. On the other hand, the contrarian
profit, value premium, and size premium load positively on the long-run risk, but negatively on the
short-run risk. Therefore, a shock to consumption (either long-run or short-run) induces opposite
responses of the momentum profit and the contrarian profit, value premium, and size premium,

giving rise to a negative correlation between them.

4.4 Dynamics of Momentum Profits

Existing literature documents that the momentum profit is also short-lived (Jegadeesh and Titman
(1993)). Chan, Jegadeesh, and Lakonishok (1996) show that the winner-minus-loser return is

15.4% per annum on average at the one-year horizon, but is close to zero during the second
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and the third year after portfolio formation. Our analysis above indicates that the momentum
strategies are closely related to the exposure to the short-run consumption risk. Since the latter
is short-lived, it may have implications for the dynamics of the momentum profit documented in
existing studies. To accomplish this goal, we examine the profitability of buy-and-hold momentum
portfolios from 1 to 12 months and 2 to 5 years after portfolio formation implied in our model.
Table 12 reports the buy-and-hold monthly returns for each of the first 12 months and annual
returns for 2 to 5 years of the momentum portfolios using simulated data from our model. Con-
sistent with the existing literature, momentum profits are short-lived. In particular, the average
return spread between the winner and loser portfolios remains positive up to the seventh month
after the portfolio rebalancing, and then reverses. From the second year to the fifth year after
portfolio sorts, the loser portfolio in fact consistently has a higher return than the winner portfolio,

generating the momentum reversal.
[Insert Table [12| Here]

This pattern can be readily understood in our framework. Immediately after portfolio rebal-
ancing, winner firms have a higher exposure to the short-run consumption risk than loser firms.
This large spread in the short-run risk beta explains the immediate momentum profit. However,
this short-run risk exposure is not persistent. After about seven to eight months, the difference in
the short-run risk beta between winners and losers are much smaller. At the same time, because
winners have a lower exposure to the long-run consumption risk than losers due to a lower leverage,
and this long-run risk exposure is very persistent, the effect from the long-run risk will dominate

that of the short-run risk, giving rise to a reversal in the momentum profitability.

4.5 A Two-factor Model

In our model with both long- and short-run consumption risks, the long-run innovation to con-
sumption growth is small but persistent, but it is able to explain a large fraction of the variation

in market returns. On the other hand, the short-run innovation is the major component for the
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consumption growthﬂ Therefore, we expect a significant improvement in a two-factor model with
both the market factor and the consumption growth over a one-factor model such as the CAPM
and the Consumption—CAPME In this section, we compare the performance of the three models
using a two-stage Fama-MacBeth procedure.

We use as the test assets the 10 book-to-market portfolios, 10 momentum portfolios, and 12
Fama-French industry portfolios from Kenneth French’s Web site. In the first stage (time series),
we regress the portfolio excess returns on the risk factor(s), generating the factor risk exposure(s).
In the second stage (cross-section), the average portfolio returns are regressed onto the risk ex-
posures without intercept, and the estimated coefficient(s) are the factor risk premium(premia).
The estimation results from the second stage is reported in Table [I3] As a robustness check, we
split the full sample into pre- and post-1963 subperiods. The starting year of 1963 is conventional

in majority of the literature studying the US stock market.
[Insert Table [13| Here]

The CAPM does a decent job in the full sample from 1931 to 2011. As in Panel A of Table
, the mean absolute error (MAE) for the 32 portfolios is 1.46% per year, and the estimated
price of risk for the market portfolio is 8.78% per year, close to the sample average of market
risk premium. The Consumption-CAPM fails to capture most of the cross-sectional variations in
portfolio returns: the MAE is more than 7% per year, and the OLS-R? is —416.83%H However,
we still have an estimate of the risk premium in consumption growth of 3.24% per year, and it

is statistically different from zero. When both the market and consumption growth are included,

17Tt should be noted that the model includes three aggregate factors. Besides the short-run and long-run con-
sumption variations, the aggregate dividend growth is also a factor. However, as assumed in Bansal, Kiku, and
Yaron (2012a), this factor does not correlate with consumption shocks. Therefore, it does not contribute to the
risk premium. Similar argument is used in Lettau and Wachter (2007).

18The two-factor model can also be motivated by economic models with social status concerns, e.g., Bakshi and
Chen (1996) and Roussanov (2010).

9The OLS-R? follows the definition from Jagannathan and Wang (1996) and Lettau and Ludvigson (2001):

R2 - VGTC(Ri) — V(J,Tc(éi)
N Var.(R;)

where R; represents the time-series average of the return to portfolio i, Var.(-) is the cross-sectional variance,
and &; is the average price error for portfolio i. The cross-sectional R? can be negative because we impose the
zero-intercept restriction in the second-stage regression.
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we find a large improvement in the explanatory power. The MAE decreases to 1.18% per year
from 1.46% from the CAPM, and the OLS-R? increases from -36.53% to 34.06%. Even though this
model is rejected under the Jp statistic for the overidentification restriction test, the estimated risk
premia are reasonable at 9.27% per year for the market factor and 1.2% per year for consumption
risk and statistically significant (¢-stat = 4.12 and 2.37, respectively).

When we follow the same procedure on the two subsamples, we find very similar results. In
both subsamples, the two-factor model outperforms both the CAPM and the Consumption-CAPM
by producing much higher OLS-R? and smaller MAE. Note that the CAPM is doing a better job
in the earlier subsample, and the estimated price of risk for the consumption growth is statistically
insignificant from zero. However, the point estimate is very stable across subsamples. The model
performances can also be visually compared in Figure 2] where we plot the average portfolio
returns against the model predicted returns. These plots show that the observations are much
better aligned to the 45-degree lines in our two-factor model than those from the CAPM and

Consumption-CAPM, and the improvement is most striking in the post-1963 sample.@
[Insert Figure [2| Here]

We also compare the two-stage Fama-MacBeth regression results for 40 portfolios (10 momen-
tum, 10 contrarian, 10 book-to-market or dividend-price ratio, and 10 size portfolios) between the
simulated data and the empirical datam Overall, we find that the cross-sectional test results using
the simulated data are very similar to those using the empirical data, providing further support
to our model for the cross-sectional stock returns. The better performance of the two-factor mod-
el is consistent with the findings in Roussanov (2014) who compares the conditional one-factor
consumption CAPM with a two-factor consumption-based model augmented with an aggregate
wealth growth factor. Roussanov (2014) finds that covariances of portfolio returns with long-run

consumption growth generate small and insignificant pricing errors in asset pricing tests.

20In Appendix A-4, we estimate an alternative two-factor model using the General Method of Moments (GMM)
with short-run and long-run consumption risks as the risk factors. The estimated price of risk are broadly consistent
with those used in Bansal and Yaron (2004).

2IThe results are reported in the Online Appendix.
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4.6 Sensitivity Analysis

In this section, we consider the implications of alternative parameterizations on the cross section
of stock returns. In particular, we change parameter values one at a time based on the benchmark
parameterization, and explore how moments of key variables change accordingly. The results for
this sensitivity analysis are reported in Table @ Specification (0) presents the key moments
under the benchmark parameterization, and Specifications (1) to (16) report the corresponding

moments for alternative parameterizations.

[Insert Table [14] Here|

Specifications (1) and (2) in Table |14] change the agent’s risk aversion. As shown in BY and

Bansal, Kiku, and Yaron (2012a), the price of risk for the short-run risk component is the risk

1) k:l

)Tk where kq

aversion coefficient -y, and the price of risk for the long-run risk component is (y—
is a number less than but very close to 1. Therefore, an increase in 7y increases the price of risk for
both the short-run and long-run consumption risks, and we should expect a larger equity premium,
momentum profit, and value premium. This is indeed confirmed in Specification (1). When risk
aversion coefficient increases to 15 from the benchmark value of 10, the value-weighted equity
premium goes up to 10.2% per year, whereas the momentum profit and the value premium increase
to 11.46% and 13.60% per year from 7.54% and 9.21% in the benchmark model, respectively. If we
reduce the risk aversion to 5 (Specification (2)), the corresponding equity premium, momentum
profit and value premium fall down to 5.13%, 3.71%, and 4.02%, respectively.

The elasticity of intertemporal substitution (EIS) affects the price of the long-run consumption
risk, but not the short-run consumption risk. As such, both the equity premium and the value
premium should increase with EIS, but momentum profit, which loads mainly on the short-run
risk, should be barely affected. Specifications (3) and (4) report the cases when EIS is changed
to 2 and 0.5. In the latter situation, the equity premium reduces by more than 50% to 3.51% per
year, whereas the value premium goes down by 12% to 8.07%. On the other hand, the momentum

profit stays almost the same in both specifications as in the benchmark. Therefore, even though

22Tn the Online Appendix, we report results from additional sensitivity analysis.
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the value of EIS exerts a large influence on the aggregate market such as the equity premium, its
effect on the cross section of stock returns is much weaker.

Specifications (5) and (6) assume a lower and higher correlation in absolute value between firm
dividend shocks and the long-run exposure shocks ps,. When py, is increased by two standard
deviations to -0.726 in Specification (5), a positive firm dividend shock induces a smaller decrease
in the long-run risk exposure, and we find that the average contrarian profit and value premium
are reduced to 3.41% and 6.55% due to a lower leverage, whereas the momentum profit remains
almost the same. Conversely, we observe an increase in the contrarian profit and value premium
when we change pg, to -0.99 in Specification (6). In the extreme case of a zero correlation between
firm dividend shocks and long-run exposure shocks (Specification (7)), the average momentum
profit becomes 8.12%, but the contrarian profit and the value premium are now negative (-1.12%
and -0.18%, respectively). Without a strong negative correlation py,, lower exposures of long-term
losers and value firms to the short-run risk lead to their lower expected returns compared with
long-term winners and growth firms.

The prediction is the opposite when we change the parameter value for the correlation between
firm dividend shocks and the short-run exposure shocks pp, (Specifications (8), (9), and (10)). A
two-standard deviation decrease in py, leads to a lower momentum profit and a higher contrarian
profit and value premium. When py, is set to zero (Specification (10)), short-term losers have
a higher leverage and a higher exposure to long-run consumption risk than short-term winners.
Therefore, the momentum profit becomes negative (-3.41%), whereas the contrarian profit and
value premium are now 6.07% and 13.45%. On the other hand, when pj, is increased to 0.99
(Specification (9)), a positive dividend shock induces a higher exposure to short-run consumption
risk. In this case, we have a stronger momentum profit (9.34%) but weaker contrarian profit(4.89%)
and value premium (8.74%).

To examine the impact of the persistence in the long-run risk exposure py, we examine two
standard deviation changes in this parameter value in Specifications (11) and (12). The direct
effect from an increase in py is that the dispersion in f in the cross section is greater, since the

unconditional dispersion is related to the persistence of the underlying process. This increases the
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magnitude of the contrarian profit and value premium but reduces that of the momentum profit.
The result in Specification (12) shows that the contrarian profit and value premium indeed goes
up to 7.42% and 14.4%. However, the momentum profit also increase from 7.54% to 7.76%. How
could the momentum strategy become even more profitable when the opposing force is stronger?
In fact, there is an indirect effect underlying the portfolio sorting: by increasing the persistence
of the long-run risk exposures, the difference in the frequencies/persitences of short-run and long-
run risk exposures becomes more substantial. Therefore, momentum portfolios are less affected
by the low-frequency leverage effect and the momentum strategy becomes more profitable. In
this specification, the indirect effect dominates the direct effect, indicating a slightly stronger
momentum profit.

When py is reduced to 0.95 in Specification (13), the direct effect is that unconditional disper-
sion in f is smaller, so we expect the value premium to be weaker. However, as py gets smaller,
sorting variables such as dividend-price ratio has less discerning ability of differentiating the ex-
posures to the short-run and long-run risks. Therefore, the high dividend-price ratio portfolio
includes more short-term losers, and the low dividend-price ratio portfolio contains more short-
term winners. This indirect effect strengthens the direct effect, so the value premium now becomes
even negative (-2.61%). In contrast, the direct and indirect effects offset each other for the mo-
mentum sort, so the average momentum profitability does not deviate much from the benchmark
specification.

The last three specifications of Table [14] explore the effect of the persistence of the short-run
risk exposures pj, on asset prices with Specifications (14) and (15) corresponding to two standard
deviation changes in this parameter value. The direct and indirect effects discussed above also
apply here. By increasing py, (Specification (15)), we expect a larger dispersion in the short-run
risk exposure in the cross section and a higher momentum profit. However, a higher p;, also reduces
the difference in the frequencies between the short-run and long-run exposures. The two effects
offset each other for the momentum strategy, generating an about 26.5% increase in momentum
profit to 9.54%; These effects enhance each other for the value strategy, so the value premium is

42% smaller than that in the benchmark specification. In contrast, when we decrease p; to 0.5
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in Specification (16), these two effects strengthen each other (in a negative way) for momentum
strategies, and a momentum investor can make an average return of only 1.39%, whereas a value
investor can now enjoy an average return of 11.25%.

The result from the Specification (11)-(16) in Table |14} again, highlights the importance of the
divergence in the persistence of short-run and long-run risk exposures in reproducing a coexistence
of the positive momentum and contrarian profit, and value premium. Portfolio sorting variables
with a certain persistence (or frequency range) contain relevant information regarding the risk
exposures of similar persistence (or frequency range). In our model, long-run risk exposures are
persistent, so firm characteristics such as long-term stock performance and dividend-price ratio
are likely picking up this exposure. The average returns of the investment strategies based on
these characteristics are mainly compensation for the long-run risk exposures. On the other hand,
short-run consumption risk exposure is not persistent, so the short-term past stock performance
contains information regarding the short-run risk exposures. Therefore, momentum profits are

closely related to short-run consumption risk.

5 Conclusion

We provide a unified framework to explain several widely documented asset return phenomena
including the momentum and long-term contrarian profits and the value premium. These asset
return behaviors are known to be difficult to explain in risk-based economic models. Building
upon the long-run risk model by Bansal and Yaron (2004), we introduce firms’ dividend processes
that are motivated by empirical findings on the exposures of the momentum, contrarian, and value
investment strategies to short-run and long-run components of consumption growth fluctuation-
s, and also build upon existing studies linking firm dividend processes to the momentum profit
(Johnson (2002)) and the value premium (Lettau and Wachter (2007) and Santos and Veronesi
(2010)). We find that this otherwise standard model goes a long way towards reproducing im-
portant phenomena in the cross section of stock returns including the momentum and long-term

contrarian profits, the value premium, and the size effect.
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The key insight in our model is the disentanglement of the risk exposures of different investment
strategies to the short-run and long-run consumption risks. We demonstrate that portfolios sorted
by the short-term stock returns have very different exposures to the short-run consumption risk.
On the other hand, portfolios sorted on variables such as the past long-term stock returns and
valuation ratios (e.g, book-to-market, dividend-price ratio) have a large dispersion in the long-run
consumption risk exposure. Therefore, the profitability of the momentum, contrarian, and value
strategies are compensation for bearing different components of consumption risks at different
horizons. Our model is capable of generating the coexistence of the momentum and contrarian
profits, the value premium and the size effect.

Besides the unconditional profitability of these strategies, our model also sheds light on the
performance of standard asset pricing tests such as the CAPM and the consumption-CAPM in
explaining these return phenomena. For instance, the market portfolio is mainly governed by the
long-run consumption fluctuation. Therefore, the CAPM provides a stronger explanatory power
for the long-term contrarian profit and the value premium than the momentum profit. On the
other hand, the aggregate consumption growth is mainly driven by the short-run consumption
fluctuation, so the Consumption-CAPM should better explain the momentum profit than the
long-term contrarian profit and the value premium. We find strong evidence for these predictions
both in the data and in our simulation.

While our otherwise standard intertemporal asset pricing model offers joint explanations for
widely documented asset pricing phenomena such as momentum, contrarian, value, and size pre-
mium effects, there are a few limitations of our model. For instance, our firm-level dividend
process takes a reduced form, but a deeper understanding of the underlying drivers for the divi-
dend process is important and requires a full specification of a firm’s decisions. A dynamic general
equilibrium model with firm’s financing, investment, and hiring decisions and real frictions (in
the spirit of Gomes, Kogan, and Zhang (2003), for instance) can be potentially fruitful along
this dimension. There are also other cross-sectional stock return phenomena, such as the gross
profitability premium documented in Novy-Marx (2013), which may require additional dimension

of heterogeneity to reconcile its coexistence with the value premium. Kogan and Papanikolaou
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(2013) take an important step by highlighting the difference between the profitability of assets-in-
place and that of growth options. It would be interesting for future studies to explore the relation

of this heterogeneity and the firm-level dividend process and its implications for asset pricing.
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Appendix

A-1 Valuation Ratios

With the no-arbitrage condition, the return on consumption claim must satisfy the following

equation:

0
Eilexp(mit1 + 1ar41)] = Erlexp(flogd — EAC,:_H + 0(log(exp(wegy1) + 1) — wey + Acyyq))]
0
= Eilexp(8log 6 — (17 — ) Actp + b(log(exp(wern) + 1) — wey))] (1)

=1

Rearranging the terms in the previous equation, we have
1 0
wey = 5 log(Ey[exp(flogd — (E — 0)Acyyq + O(log(exp(wegyr) + 1)))]) (2)

Similarly for dividend claim, the return on an individual stock ¢ is

‘ P 4+ Di
T(ZLt_i_l — 10g ( t+1 ;z t+1>
t
= log(exp(pd;, ) + 1) — pd; + Ad; 4

and

. 0
Eylexp(myy1 +7g441)] = Eilexp(flogd — EAQH + (0 — 1)(log(exp(weyyq) + 1) — wey + Acyq)

+ log(exp(pdiﬂ) +1) — pd; + Adi—&—l)] =1

(4)

So the recursive form for the valuation ratio of the dividend claim is:
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pd. = log(E;[exp(flogé + (6 — 1 — g)ACH_l + (0 — 1)(log(exp(weryr) + 1) — wey)
(5)
+log(exp(pdy ) +1) + Adyy,)])

A-2 Numerical Solution

Our long-run risk model is solved through value function iterations. There is one state variable in
solving the valuation ratio for consumption claims: the long-run expected consumption growth x,
and three additional state variables in solving the valuation ratio for dividend claims: firm-level
dividend growth y¢, the exposure to short-run consumption risk k¢, and the exposure to long-run
consumption risk f;. We discretize z; into 5 grids, and y!, h!, and f} into 3 grids individually.
Since the valuation ratios are smooth in the state space, the result is very robust to finer grids.
With the grids set up, we iterate the value functions by calculating the right-side of the val-
uation ratio equations (5) and (6), until the difference in the valuation ratio from the previous
iteration is smaller than a pre-specified convergence tolerance. Numerical integrations are esti-
mated by Gaussian-Hermite quadratures. After the valuation ratios are solved, we simulate 100

artificial samples with each representing 972 months and 1,000 firms.

A-3 Bayesian Estimation of Firm Dividend Process

To provide robustness check on the simulated method of moments (SMM) estimation, we also
directly estimate the dividend process at the firm level using Bayesian Markov Chain Monte Carlo
(MCMC) method. The advantage of this approach is that we can avoid stock returns and portfolio
formations, and conduct the estimation using only the information about firm-level dividend and
aggregate consumption.

Since both consumption and dividend growth show strong seasonality, we estimate the pro-
cess at annual frequency. We extract the short-run and long-run components of the aggregate

consumption growth following Bansal, Kiku, and Yaron (2012b), and use them as inputs in our
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Bayesian MCMC estimation. For the dividend growth, we include firms with at least 20 annual
observations of (non-missing) dividend growth, so that firms that pay no dividend are excluded
from our sample. The final sample is an unbalanced panel with 360 firms and 10,677 firm-year
observations.

There are 12 parameters governing the firm-level dividend process: g4, o4, f, Pf, O, h, ph, On,
Pys Oy Phys Pry- Our choice of the prior distributions are described as follows: g4 ~ N(0.02,0.25),
1/o5 ~ ~(1,0.0225), f ~ N(4,1.6), py ~ Beta(30,2), 1/03 ~ ~v(1,9), h ~ N(1,1.6), pp ~
Beta(2,4), 1/o; ~ ~(1,12), p, ~ Beta(2,2), 1/o; ~ 7(2,0.008), ppy, ~ Unif(—1,1), psy ~
Unif(—1,1), where N represents a normal distribution, v a gamma distribution, Beta a beta
distribution, and Un:f a uniform distribution. Note we do not use a very strong prior for these
parameters, so that posterior distributions are mainly driven by the firm-level dividend processes
and their correlation with short-run and long-run consumption fluctuations. We run 200,000
simulations and discard the first 30,000 to get past any initial transients.

To make comparison to monthly SMM estimates feasible and take into account the finite sample
bias, we use Monte-Carlo simulations to find the monthly parameter values for firm dividend
process so that their annual counterparts match the MCMC estimates after aggregating monthly
variables to annual frequency. The results are reported in Panel B of Table A1l. We focus on
the key parameters that we explicitly discussed in the main text. For ease of comparison, we
also reported the corresponding SMM estimates for these parameters in Panel A of Table Al.
The values in brackets represent 95% confidence interval for each estimate, respectively. On the
monthly basis, the MCMC estimated autocorrelation for the short-run consumption risk exposure
(pr) is 0.909. This is slightly more persistent than the SMM estimate of 0.781. However, the
95% confidence intervals for the MCMC and the SMM estimation overlapped. The standard
deviation of the short-run risk exposure measured by (o) are 3.498 for MCMC and 4.935 for
SMM with overlapping confidence intervals. For the autocorrelation on the long-run consumption
risk exposure (ps), while the annual estimate from MCMC is 0.354, the corresponding monthly
estimate is 0.933. This is comparable to the monthly SMM estimate of 0.989.

The MCMC estimated standard deviation of the long-run risk exposure (o) is larger than
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the SMM estimate (10.779 versus 0.351). There are data-related reasons that contributed to the
difference. First, the long-run consumption risk is estimated using annual data from 1931 and
2011 by projecting the future one-year consumption growth rate on log(DP) and real risk-free
rate. While this being a reasonable approach, it may also introduce the measurement error in the
long-run consumption risk variable used in our MCMC estimation. Second, while in reality firms’
dividend policy is affected by firm specific situations, our MCMC estimation in Panel B does not
take into consideration the firm fixed effect. We now explicitly address these two considerations
and the resulting MCMC estimates are reported in Panel C and Panel D.

Panel C of Table Al reports the monthly MCMC estimates after taking into consideration
a measurement error that is comparable to annual consumption growth standard error. The
monthly MCMC estimate for the standard deviation of the long-run consumption risk exposure
(o) reduced to 1.061. This is much closer to the monthly SMM estimate shown in Panel A. In the
meantime, the other estimates remained comparable to the estimated counterparts by the SMM.
Finally, in Panel D of Table A1, we consider both the measurement error on long-run consumption
risk and firm fixed effect on its dividend growth. Our monthly MCMC estimate for the standard
deviation of the long-run consumption risk exposure (o) further reduced to 0.316, a value very
similar to the SMM estimate. The other monthly MCMC estimates also are much closer to their
respective SMM counterparts (0.894 versus 0.781 for pj, 5.039 versus 4.935 for o, and 0.963 versus
0.989 for py).

Overall, our SMM-based estimation results reported in the paper are broadly consistent with
the Markov Chain Monte-Carlo estimation when we make the comparison on the same monthly
frequency. As a result, our firm dividend growth model has empirical support from firm-level

dividend data.
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A-4 Estimation of the price of risk for short-run and long-
run consumption risks

We conduct the cross-sectional tests on the value-weighted returns of the constructed portfolios
on a two-factor model associated with the consumption risks. The risk factors are estimated us-
ing the dividend price ratio (DP) and represent the short-run and long-run consumption growth
ﬂuctuations.[?] Table A2 shows the estimated price of risk and the estimated risk premium for the
short-run and long-run consumption risks. All estimates are positive and significant at the con-
ventional test level with a slightly weaker result on the short-term risk premium. The magnitude
of the estimated price of risks for the short-run and long-run consumption growth fluctuations are

also consistent with Bansal and Yaron (2004).

23Specifically, we follow Bansal, Kiku, and Yaron (2012b) and regress aggregate consumption growth at year
t + 1 on the natural logarithm of the aggregate dividend price ratio and real risk-free rate at year ¢ to extract the
expected consumption growth.
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Table 2: Moments in SMM estimation

This table reports the 25 moments used in the simulated method of moments estimation from the
data and from the simulation. These moments include the dividend price ratio (DP), short-term
cumulative return in the formation period (month ¢t — 6 to ¢ — 2) and long-term cumulative return
in the formation period (month ¢ — 60 to ¢t — 13) for the momentum loser portfolio, momentum
winner portfolio, contrarian loser portfolio, contrarian winner portfolio, growth portfolio, value
portfolio, the short-run risk exposure for the momentum winner-minus-loser portfolio, the long-
run risk exposure for the contrarian loser-minus-winner portfolio and the value-minus-growth
portfolio, the mean and standard deviation of aggregate dividend growth, the equity premium,
and the average log aggregate price-dividend ratio. We simulate 100 samples with each sample
representing 972 months and 1,000 firms. The cross-simulation average annualized moments are
reported.

Moments Data Model
Average DP of momentum losers 0.017  0.078
Average DP of momentum winners 0.019  0.064
Average DP of contrarian losers 0.008  0.117
Average DP of contrarian winners 0.028  0.041
Average DP of growth portfolio 0.015  0.026
Average DP of value portfolio 0.104  0.160
Average short-term returns of momentum losers -0.276  -0.306
Average short-term returns of momentum winners 0.515 0.576
Average short-term returns of contrarian losers 0.047  0.067
Average short-term returns of contrarian winners 0.038  0.043
Average short-term returns of growth portfolio 0.074  0.116
Average short-term returns of value portfolio 0.030  0.013
Average long-term returns of momentum losers 0.392  0.747
Average long-term returns of momentum winners 0.386  0.615
Average long-term returns of contrarian losers -0.473  -0.570
Average long-term returns of contrarian winners 3.152  3.335
Average long-term returns of growth portfolio 1.055  1.931
Average long-term returns of value portfolio 0.563 -0.113
Short-run risk exposure of momentum winner-minus-loser portfolio  8.875  9.048
Long-run risk exposure of contrarian loser-minus-winner portfolio 5.024  3.379
Long-run risk exposure of value-minus-growth portfolio 6.591  7.243
Average aggregate dividend growth 1.255  1.296
Volatility of aggregate dividend growth 16.189 16.219
Average market excess return 7.982  8.391
Average log aggregate price-dividend ratio 3.375  3.118
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Table 4: Portfolio characteristics

This table reports the cross-sectional characteristics in the momentum, contrarian, and dividend-
price (DP) portfolios from real data and simulated data. Following Fama and French (1988), we
calculate dividend yield in June of each year as the total dividends paid from July of previous
year to June of this year per dollar of equity in June of this year. We calculate momentum at
month ¢ as the cumulative return between month ¢ —6 and ¢ —2 to avoid the microstructure issues.
Long-term performance at month ¢ is defined as the cumulative return between month ¢ — 60 and
t — 13. For the simulation of the model, we simulate 100 samples with each sample representing
972 months and 1,000 firms. The cross-simulation average annualized moments are reported.

Data
Mom Port. Los 2 3 4 5 6 7 8 9 Win
DP 0.017 0.027 0.032 0.035 0.037 0.037 0.036 0.035 0.031 0.019

Ri_61—2 -0.276  -0.148 -0.078 -0.025 0.022 0.069 0.122 0.187 0.284 0.515
Ri_6o—»t—13 0392 0470 0498 0.496 0504 0.510 0.521 0.513 0.493 0.386

Con Port. Los 2 3 4 5 6 7 8 9 Win
DP 0.008 0.022 0.030 0.036 0.039 0.040 0.040 0.039 0.035 0.028
Ri_ 6512 0.047 0.050 0.053 0.052 0.051 0.050 0.051 0.0561 0.047 0.038
Ri_60—t—13 -0.473 -0.183 0.026 0.211 0.391 0.586 0.819 1.139 1.666 3.152

DP Port. Lo 2 3 4 5 6 7 8 9 Hi
DP 0.015 0.023 0.029 0.035 0.041 0.047 0.053 0.062 0.076 0.104
Ry 6512 0.074 0.065 0.063 0.060 0.051 0.050 0.047 0.047 0.046 0.030
Ri_60¢—13 1.066 0.875 0.752  0.688 0.625 0.548 0.532 0.499 0.534 0.563

Model
Mom Port. Los 2 3 4 5 6 7 8 9 Win
DP 0.071 0.076 0.077 0.078 0.078 0.078 0.077 0.076 0.074 0.068

Ry 6512 -0.308 -0.193 -0.124 -0.064 -0.006 0.054 0.121 0.201 0.314 0.581
Ri_60¢—13 0.745 0.613 0.575 0.550 0.538 0.534 0.537 0.539 0.557 0.624

Con Port. Los 2 3 4 5 6 7 8 9 Win
DP 0.117 0.099 0.090 0.083 0.077 0.071 0.065 0.059 0.052 0.041
Ri_¢_t_o 0.066 0.064 0.062 0.061 0.060 0.058 0.057 0.053 0.051 0.043
Ri_go-t—13 -0.574 -0.358 -0.192 -0.028 0.149 0.354 0.608 0.955 1.518 3.382

DP Port. Lo 2 3 4 5 6 7 8 9 Hi
DP 0.026 0.039 0.047 0.055 0.063 0.072 0.083 0.095 0.114 0.159
Ri_ 612 0.073 0.066 0.063 0.060 0.058 0.056 0.054 0.052 0.049 0.043
Ri_60—-t-13 1954 1.118 0.832 0.645 0.503 0.383 0.271 0.168 0.053 -0.114
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Table 5: Momentum profits

This table reports the momentum profits from real and simulated data. For the real data, the
momentum at time ¢ is defined as the cumulative return between month ¢ — 6 and ¢ — 2 to avoid
the microstructure issues. Portfolios sorted by momentum are then held for the month ¢ + 1. The
sample is from January 1931 to December 2011. The momentum portfolios from simulated data
are sorted using the exactly same strategy as in the real data. We simulate 100 samples with
each sample representing 972 months and 1,000 firms. The cross-simulation average annualized
moments are reported for the mean, standard deviation, CAPM «a, CAPM 3, and CAPM R2.
Newey-West t-stats given in parentheses control for heteroscedasticity and autocorrelation.

Data

VW Los 2 3 4 5 6 7 8 9 Win W-L
Mean 4.37 8.14 9.08 8.47 8.34 7.86 7.89 8.15 9.00 11.34 6.97
Std 34.13 27.00 24.54 23.06 20.63 20.45 18.81 18.74 19.11 22.20 27.95
oCAPM -7.53 -1.65 -0.03 -0.24 0.47 0.01 0.66 1.00 1.97 3.87 11.40

(-4.09)  (-1.27)  (-0.03) (-0.27) (0.61) (0.02) (0.97) (1.35) (2.19) (2.92)  (4.37)
peAPM 1.56 1.28 1.20 1.14 1.03 1.03 0.95 0.94 0.92 0.98 -0.58

(20.74)  (19.90) (21.39) (21.27) (29.86) (34.27) (38.20)  (46.46)  (24.65) (16.11)  (-4.44)
R2(%) 73.56 79.55 83.44 86.30 88.11 89.14 89.47 87.94 81.99 68.44 15.24
EW Los 2 3 4 5 6 7 8 9 Win W-L
Mean 8.87 12.00 12.24 12.54 11.87 11.85 11.91 12.23 12.74 15.84 6.96
Std 39.33 32.01 27.96 27.19 24.19 23.35 21.74 21.94 21.64 24.83 27.02
oCAPM -8.94 -2.86 -0.83 -0.19 0.54 0.90 1.81 2.16 3.11 5.15 14.09

(-6.65)  (-2.88)  (-1.02) (-0.25) (0.68) (1.24) (2.52) (2.84) (3.48) (4.40)  (6.39)
BCAPM 1.43 1.19 1.05 1.02 0.91 0.88 0.81 0.81 0.77 0.86 -0.57

(32.60) (27.43) (41.02) (25.23) (39.81) (36.65) (48.27)  (37.57) (23.35) (17.69) (-7.49)
R2(%) 86.88 91.25 92.57 92.92 92.92 92.99 91.54 89.19 83.88 78.44 29.48

Model

VW Los 2 3 4 5 6 7 8 9 Win W-L
Mean 4.15 6.00 7.17 7.80 8.32 8.55 9.08 9.81 10.14 11.50 7.35
Std 30.58 28.30 27.45 27.03 26.86 26.81 27.12 27.72 28.98 33.34 42.51
aCAPM -2.08 -0.70 0.28 0.72 1.12 1.25 1.63 2.21 2.34 3.31 5.39

(-0.73)  (-0.30) (0.15) (0.39) (0.62) (0.72) (0.94) (1.17) (1.17) (1.26)  (1.13)
peArPM 0.77 0.83 0.85 0.87 0.89 0.90 0.92 0.94 0.96 1.02 0.25

(20.87)  (27.16)  (30.82) (34.54) (36.77) (38.30) (38.58) (38.15) (35.29) (28.16)  (3.82)
R2(%) 35.69 48.13 54.18 58.86 61.96 63.69 65.00 64.90 62.08 52.26 2.10
EW Los 2 3 4 5 6 7 8 9 Win W-L
Mean 6.57 8.48 0.47 10.16 10.74 11.26 11.84 12.50 13.13 14.28 771
Std 31.61 28.99 27.86 27.14 26.68 26.43 26.42 26.70 27.59 30.81 37.20
oCAPM -4.40 -2.65 -1.67 -0.95 -0.32 0.28 0.96 1.76 2.61 4.38 8.78

(-2.29) (-2.12)  (-1.88) (-1.58) (-0.81) (0.78) (1.81) (2.12) (2.06) (2.00)  (2.15)
peAPM 1.02 1.03 1.03 1.03 1.02 1.01 1.00 0.99 0.97 0.91 -0.11

(40.71)  (63.36)  (89.96) (133.13) (204.80) (234.86) (149.57) (92.09) (58.35) (31.75)  (-2.04)
R2(%) 69.28 84.64 91.62 95.91 98.15 98.48 96.62 91.87 82.38 58.19 0.73
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Table 6: Long-term contrarian profits

This table reports the long-term contrarian profits from real and simulated data. For the real
data, long-term contrarian portfolio returns in the real data are from Kenneth French’s Web
site. The sample is from January 1931 to December 2011. In the simulated data, the long-term
performance at time t is defined as the cumulative return between month ¢ — 60 and ¢ — 13.
We simulate 100 samples with each sample representing 972 months and 1,000 firms. The cross-
simulation average annualized moments are reported for the mean, standard deviation, CAPM q,
CAPM B, and CAPM R2?. Newey-West t-stats given in parentheses control for heteroscedasticity
and autocorrelation.

Data
VW Los 2 3 4 5 6 7 8 9 Win L-W
Mean 13.53 11.22 11.30 8.97 9.54 8.43 8.77 8.62 6.89 7.05 6.48
Std 30.71 27.16 24.00 21.32 21.52 19.79 20.35 19.75 20.04 22.33 22.38
oCAPM 3.27 1.53 2.50 0.96 1.40 0.88 0.97 0.99 -0.82 -1.36 4.63
(1.70) (1.04) (2.09) (1.05) (1.66) (1.16) (1.34) (1.37) (-1.10)  (-1.35) (1.83)
peAPM 1.35 1.27 1.15 1.05 1.07 0.99 1.02 1.00 1.01 1.10 0.24
(17.59) (13.01) (17.34) (19.25) (18.24) (29.18) (25.08) (42.72) (36.44)  (22.67) (2.03)
R2(%) 67.59 77.05 81.30 85.36 86.66 88.21 88.93 90.16 89.69 85.91 4.14
EW Los 2 3 4 5 6 7 8 9 Win L-W
Mean 22.54 15.75 14.18 1317 13.29 11.67 11.80 11.41 10.10 7.49 15.05
Std 39.71 30.97 28.14 25.62 24.82 22.72 22.99 22.92 22.63 24.40 27.78
oCAPM 4.88 1.27 0.95 1.06 1.63 1.02 1.03 0.73 -0.22 -3.19 8.07
(3.09) (1.29) (1.14) (1.48) (2.23) (1.36) (1.44) (0.97) (-0.27)  (-2.84) (3.33)
BCAPM 1.42 1.16 1.06 0.97 0.93 0.85 0.86 0.86 0.83 0.86 0.56
(25.05) (24.80) (28.44) (31.83) (31.59) (51.78) (47.81) (32.71) (18.65)  (11.86) (4.88)
R2(%) 83.78 92.61 93.65 94.62 93.41 92.98 92.91 91.97 88.13 81.06 26.77
Model
VW Los 2 3 4 5 6 7 8 9 Win L-W
Mean 10.99 10.80 10.32 9.99 9.39 9.65 9.12 8.59 7.71 5.92 5.07
Std 29.50 28.75 28.32 28.05 27.56 27.27 26.83 26.40 25.92 25.23 24.36
aCAPM 3.03 3.00 2.62 2.34 1.84 2.16 1.74 1.30 0.52 -1.26 4.30
(1.62) (1.61) (1.44) (1.30) (1.06) (1.23) (1.01) (0.76) (0.28)  (-0.95) (1.71)
peAPM 0.98 0.96 0.95 0.95 0.93 0.93 0.91 0.90 0.89 0.89 0.09
(36.77) (36.93) (37.74) (38.38) (38.93) (39.24) (39.12) (38.67) (40.14)  (42.18) (2.81)
R2(%) 62.58 63.19 63.56 64.22 64.46 65.02 64.94 65.30 66.79 70.99 2.17
EW Los 2 3 4 5 6 7 8 9 Win L-W
Mean 12.88 12.33 11.88 11.58 11.22 10.91 10.55 10.03 9.23 7.81 5.07
Std 29.40 28.43 27.78 27.25 26.70 26.15 25.57 24.84 23.94 22.15 12.40
oCAPM 0.78 0.58 0.38 0.28 0.14 0.05 -0.07 -0.28 -0.66 -1.18 1.96
(1.53) (1.35) (0.96) (0.75) (0.38) (0.14) (-0.21) (-0.72) (-1.44)  (-1.86) (1.89)
BCAPM 1.12 1.09 1.06 1.04 1.02 1.00 0.98 0.95 0.91 0.82 0.30
(158.99)  (191.98)  (208.48) (227.61) (231.50) (232.17) (218.31) (191.85) (152.05) (97.02)  (21.00)
R?*(%) 97.38 98.03 98.29 08.46 98.49 98.45 98.29 97.87 96.88 92.83 38.48
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Table 7: The value premium

This table reports the value premium from real and simulated data. For the real data, the returns
of book-to-market portfolios are from Kenneth French’s Web site. The sample is from January 1931
to December 2011. The value premium is defined using dividend-price ratio from the simulation.
We simulate 100 samples with each sample representing 972 months and 1,000 firms. The cross-
simulation average annualized moments are reported for the mean, standard deviation, CAPM «,
CAPM 3, and CAPM R?. Newey-West t-stats given in parentheses control for heteroscedasticity
and autocorrelation.

Data

VW Low 2 3 4 5 6 7 8 9 Hi H-L
Mean 6.77 7.56 7.65 7.85 8.58 9.29 9.46 11.59 12.29 13.68 6.91
Std 19.60 18.84 18.24 21.09 19.60 21.68 23.25 24.49 26.36 32.77 23.35
aCAPM -0.77 0.19 0.56 -0.30 1.10 1.03 0.82 2.59 2.72 2.48 3.25

(-1.00) (0.31) (0.91) (-0.39) (1.29) (1.16) (0.76) (2.19) (1.97) (1.32) (1.37)
BCAPM 0.99 0.97 0.93 1.07 0.98 1.08 1.13 1.18 1.25 1.47 0.48

(50.29)  (51.73) (40.56) (25.14) (30.85) (23.01) (17.93) (15.15) (21.95) (14.72) (4.13)
R%(%) 89.68 92.72 91.56 90.25 88.20 88.00 83.45 81.79 79.66 70.71 14.86
EW Low 2 3 4 5 6 7 8 9 Hi H-L
Mean 5.76 8.61 9.83 12.21 12.60 13.42 14.44 15.62 18.66 21.15 15.39
Std 25.07 23.45 23.24 24.82 24.40 24.67 25.81 27.61 30.49 36.66 24.86
aCAPM -5.22 -2.19 -1.05 0.56 0.94 1.66 2.13 2.55 4.35 4.68 9.91

(-4.22)  (-2.77) (-1.61) (0.84) (1.86) (2.97) (3.60) (3.48) (4.82) (3.49) (4.30)
pEAPM 0.88 0.87 0.87 0.93 0.94 0.94 0.99 1.05 1.15 1.32 0.44

(13.63)  (21.53) (23.89) (50.90) (49.72) (68.83) (45.33) (31.94) (26.46) (22.29) (4.04)
R2(%) 81.25 89.79 92.90 93.26 96.81 96.13 96.30 94.87 93.41 85.40 20.58

Model

VW Low 2 3 4 5 6 7 8 9 Hi H-L
Mean 4.69 7.84 8.91 9.47 10.48 10.96 11.66 12.28 13.20 14.52 9.83
Std 24.38 24.94 26.04 26.96 27.84 28.90 30.01 31.21 32.76 35.56 33.33
aCAPM -2.09 0.89 1.64 1.97 2.79 3.05 3.50 3.89 4.52 5.37 7.46

(-1.50) (0.53) (1.03) (1.19) (1.61) (1.70) (1.84) (1.93) (2.07) (2.17) (2.16)
pgeAPM 0.85 0.87 0.90 0.93 0.95 0.98 1.00 1.03 1.07 1.12 0.27

(39.91)  (40.39) (40.20) (40.50) (39.75) (39.20) (37.70) (36.74) (35.17) (32.38) (6.08)
R%(%) 69.14 67.97 67.27 66.64 65.53 64.15 62.84 61.43 59.39 55.92 6.26
EW Low 2 3 4 5 6 7 8 9 Hi H-L
Mean 5.74 8.03 9.20 9.99 10.80 11.42 12.10 12.75 13.58 14.83 9.09
Std 19.80 21.76 23.25 24.55 25.78 27.06 28.40 29.86 31.74 35.10 26.39
aCAPM -1.19 -0.63 -0.31 -0.17 0.09 0.18 0.32 0.43 0.58 0.70 1.90

(-1.00)  (-0.86) (-0.58) (-0.42) (0.24) (0.52) (0.77) (0.79) (0.81) (0.67) (0.87)
peAPM 0.64 0.80 0.88 0.94 0.99 1.04 1.09 1.14 1.20 1.30 0.66

(45.64)  (90.54) (135.17) (187.90) (230.75) (238.78) (212.58) (174.55) (139.96) (102.22) (25.55)
R2(%) 69.77 90.25 95.45 97.61 98.42 98.52 98.10 97.21 95.75 92.50 42.59
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Table 8: Firm size effect

This table reports the firm size effect from real and simulated data. For the real data, size portfolio
returns in the real data are from Kenneth French’s Web site. The sample is from January 1931
to December 2011. In the simulated data, the firm size is measured by market capitalization.
We simulate 100 samples with each sample representing 972 months and 1,000 firms. The cross-
simulation average annualized moments are reported for the mean, standard deviation, CAPM q,
CAPM f, and CAPM R2. Newey-West t-stats given in parentheses control for heteroscedasticity
and autocorrelation.

Data
VW Sma. 2 3 4 5 6 7 8 9 Big S-B
Mean 15.13 12.88 12.76 11.91 11.44 10.96 10.46 9.64 8.81 6.82 8.30
Std 35.56 31.04 28.37 26.37 25.20 24.03 22.69 21.53 20.44 17.59 26.40
oCAPM 3.98 2.16 2.46 2.20 1.87 1.66 1.59 1.13 0.65 -0.22 4.20
(1.83) (1.32) (1.89) (1.83) (2.03) (2.01) (2.18) (1.89) (1.50) (-0.61) (1.74)
BEAPM 1.46 1.41 1.35 1.27 1.26 1.22 1.16 1.12 1.07 0.92 0.54
(13.06) (21.82) (21.69) (25.26) (29.63) (33.22) (40.94) (51.14) (65.83)  (117.74) (4.61)
R?(%) 59.50 72.18 79.76 82.06 87.38 90.61 92.50 94.75 96.47 96.99 14.66
EW Sma. 2 3 4 5 6 7 8 9 Big S-B
Mean 19.97 14.12 13.34 12.21 11.59 11.18 10.42 9.62 8.98 7.10 12.87
Std 38.44 32.55 29.38 27.37 26.00 24.73 23.29 22.20 21.22 19.02 28.92
oCAPM 2.94 -1.21 -0.63 -0.79 -0.69 -0.37 -0.38 -0.42 -0.41 -0.95 3.89
(2.17) (-1.51) (-1.03) (-1.34) (-1.15) (-0.56) (-0.55) (-0.54) (-0.45) (-0.92) (1.83)
pEAPM 1.36 1.23 1.12 1.04 0.98 0.93 0.87 0.80 0.75 0.65 0.72
(18.66) (32.99) (49.18) (60.36) (73.78) (63.38) (46.62) (33.00) (28.09) (26.86) (8.07)
R*(%) 83.12 93.86 95.85 95.57 94.56 92.47 91.08 86.60 83.03 75.92 40.79
Model
VW Sma. 2 3 4 5 6 7 8 9 Big S-B
Mean 13.68 13.12 12.53 12.11 11.63 11.22 10.82 10.35 9.60 7.14 6.54
Std 30.16 28.80 27.84 27.12 26.46 25.85 25.18 24.43 23.55 23.40 19.23
oCAPM 5.06 4.75 4.36 4.08 3.74 3.46 3.22 2.93 2.39 -0.67 5.73
(2.91) (3.03) (2.94) (2.91) (2.79) (2.71) (2.62) (2.52) (2.20) (-1.78) (2.87)
BEAPM 1.06 1.03 1.01 0.99 0.97 0.96 0.94 0.91 0.89 0.98 0.09
(43.75) (46.78) (48.74) (50.53) (51.76) (53.94) (55.09) (56.86) (58.51)  (208.81) (4.01)
R*(%) 69.16 71.58 72.92 74.10 75.05 76.04 76.89 77.85 78.92 97.87 5.53
EW Sma. 2 3 4 5 6 7 8 9 Big S-B
Mean 13.47 12.63 12.02 11.59 11.09 10.68 10.27 9.78 9.08 7.81 5.66
Std 30.72 28.98 27.98 27.23 26.55 25.91 25.22 24.45 23.53 21.94 14.15
oCAPM 0.85 0.65 0.42 0.29 0.06 -0.08 -0.19 -0.34 -0.61 -1.04 1.88
(1.44) (1.41) (1.05) (0.78) (0.19) (-0.23) (-0.53) (-0.86) (-1.27) (-1.56) (1.62)
pEAPM 1.17 1.11 1.07 1.04 1.02 0.99 0.96 0.93 0.89 0.81 0.35
(156.90)  (190.97) (214.62) (228.56) (233.22) (228.79) (215.05) (188.63) (149.13) (98.06)  (24.20)
R*(%) 96.86 97.85 98.25 98.44 98.49 98.42 98.19 97.67 96.42 92.03 42.02
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Table 9: Dividend dynamics and risk exposures

This table reports the dividend dynamics and risk exposures of the momentum portfolios, con-
trarian portfolios, dividend-price portfolios, and size portfolios from simulated data. We simulate
100 samples with each sample representing 972 months and 1,000 firms. The cross-simulation
mean are reported. y is the firm-specific dividend growth rate, which is scaled by 100 times for
convenience of exposition. Ay(l) is the cumulative change in y between ¢t — 60 and ¢ — 13. Ay(s)
is the cumulative change in y between ¢t — 6 and ¢t — 2. f is the exposure to long-run consumption
shocks. h is the exposure to short-run consumption shocks.

Mom Port. Los 2 3 4 5 6 7 8 9 Win
y x 100 -0.26 -0.22 -0.17 -0.13 -0.08 -0.02 0.04 0.12 0.23 0.49
Ay(l) 1.59 046 0.04 -0.19 -0.35 -045 -048 -0.46 -0.34 0.18
Ay(s) -3.08 -1.89 -1.25 -0.73 -0.27 0.19 0.66 1.20 1.90 3.27
f 6.25 6.31 6.26 6.18 6.09 597 583 564 535 4.68
h -5.62 -3.55 -241 -1.45 -0.60 0.28 1.18 2.25 3.61 6.38
Con Port. Los 2 3 4 5 6 7 8 9 Win
y x 100 -0.54 -0.35 -0.24 -0.15 -0.07 0.02 0.11 0.22 0.36 0.64
Ay(l) -8.29 -5.13 -342 -203 -0.78 047 1.78 326 5.16 8.98
Ay(s) 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
f 7.32 687 657 632 6.08 583 556 524 482 3.93
h -0.16 -0.10 -0.08 -0.03 -0.02 0.02 0.06 0.08 0.12 0.20
DP Port. Lo 2 3 4 5 6 7 8 9 Hi
y x 100 1.09 0.64 0.42 023 0.07 -0.08 -0.24 -0.42 -0.64 -1.07
Ay(l) 9.34 556 3.61 205 0.67 -0.67 -2.07 -3.62 -5.56 -9.31
Ay(s) 0.27 0.15 0.10 0.05 0.01 -0.02 -0.06 -0.10 -0.16 -0.24
f 2.15 368 446 5.07 562 6.15 6.69 729 8.03 942
h 1.19 0.70 0.44 024 0.07 -0.09 -0.26 -0.45 -0.68 ~-1.07
Size Port. Sma 2 3 4 5 6 7 8 9 Big
y x 100 -0.43 -0.27 -0.18 -0.10 -0.04 0.03 0.09 0.17 0.27 0.46
Ay(l) -3.41 -2.12 -140 -0.83 -0.30 0.20 0.74 135 213 3.65
Ay(s) -0.06 -0.03 -0.03 -0.02 -0.01 0.00 0.01 0.03 0.04 0.07
f 7.74 701 6.62 630 6.02 574 545 511 4.69 3.87
h -0.27 -0.17 -0.12 -0.07 -0.03 0.02 0.08 0.12 0.20 0.33
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Table 10: Consumption-CAPM: Time series regression

This table reports the test result of Consumption-CAPM on the value-weighted returns of the
momentum, contrarian, dividend-price (or book-to-market), and size portfolios from both real and
simulated data. We simulate 100 samples with each sample representing 972 months and 1,000

firms. The cross-simulation mean are reported for the C-CAPM 3 and C-CAPM R?. Newey-West
t-stats given in parentheses control for heteroscedasticity and autocorrelation.

Data

Mom Port. Los 2 3 4 5 6 7 8 9 Win W-L
pCCAPM -3.43  -1.82 -0.67  -0.60 0.52 0.69 1.10 1.92 247  3.97 7.40

(-1.56)  (-1.23) (-0.67) (-0.49) (0.52) (0.64) (1.22) (2.61) (3.49) (3.80) (3.58)
R?(%) 3.21 1.61 0.33 0.29 0.28 046 144 402 595 10.73  20.11
Con Port. Los 2 3 4 5 6 7 8 9 Win L-W
pCCAPM -1.45  -052  -0.85 -0.04 -0.33 0.07 040 044 158 143  -2.88

(-0.82) (-0.31) (-0.68) (-0.03) (-0.26) (0.06) (0.33) (0.46) (1.76) (1.49) (-1.65)
R?(%) 0.72 0.13 0.61 0.00 0.09 0.0l 014 018 248  1.43 4.13
BM Port. Lo 2 3 4 5 6 7 8 9 Hi H-L
[CCAPM 1.02 0.33 0.24 0.71 1.10 258  0.83 1.14 056 026 -0.75

(1.12)  (0.45)  (0.32) (0.64) (0.93) (2.73) (0.68) (0.87) (0.40) (0.15) (-0.46)
R*(%) 1.00 0.14 0.08 0.47 1.10 540 053 0.8 019  0.03 0.43
Size Port. Sma 2 3 4 5 6 7 8 9 Big S-B
pECAPM 0.89 0.94 0.26 0.67 068 074 045 0.02 049 124  -0.34

(0.45)  (0.58)  (0.17)  (0.53)  (0.58) (0.70) (0.41) (0.02) (0.51) (1.66) (-0.18)
R*(%) 0.22 0.33 0.03 0.23 028 036 014 000 023 192 0.06

Model

Mom Port. Los 2 3 4 5 6 7 8 9 Win W-L
pCCAPM -240  -1.01  -0.26 0.43 1.21 1.62 237 299 420  6.50 8.90

(-2.44)  (-1.04) (-0.29)  (0.41) (1.19) (1.68) (2.34) (2.99) (4.10) (5.59) (7.05)
R*(%) 7.44 2.55 1.56 1.70 3.13 467 817 11.75 19.31 31.47  39.69
Con Port. Los 2 3 4 5 6 7 8 9 Win L-W
peCAPM 1.90 1.83 1.96 1.87 1.94 195 191 1.88 199 206 -0.16

(1.67)  (1.73)  (1.87) (1.80) (1.88) (1.94) (1.97) (1.97) (2.15) (2.27) (-0.18)
R%(%) 4.70 5.08 5.57 5.28 563 572 585 584  6.65  7.43 1.59
DP Port. Lo 2 3 4 5 6 7 8 9 Hi H-L
peCAPM 2.51 2.01 1.90 1.70 1.76 1.51 1.51 1.39 1.12 075  -1.76

(2.88)  (2.25) (1.94) (1.63) (1.62) (1.37) (1.26) (1.12) (0.83) (0.51) (-1.28)
R?(%) 10.96 7.19 6.11 4.87 480 356 319 279 233 176 3.17
Size Port. Sma 2 3 4 5 6 7 8 9 Big S-B
[CCAPM 1.84 1.89 1.89 1.90 1.93 1.92 1.95 1.99 194 220  -0.36

(1.56)  (1.69) (1.77)  (1.82)  (1.92) (1.97) (2.05) (2.20) (2.24) (2.52) (-0.41)
R*(%) 4.38 4.76 5.12 5.40 582 590 634 694 730  8.87 1.73
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Table 11: Correlation for the profitability of momentum, contrarian, value, and size

strategies

This table reports the correlation coefficients between momentum profits (Mom), long-term con-
trarian profits (Con), the value premium (Value), and size premium (Size), calculated as value-
weighted (VW) and equal-weighted (EW), from the real data and the model. The data sample
is monthly from January 1931 to December 2011. For the model, we simulate 100 samples with
each sample representing 972 months and 1,000 firms. The cross-simulation average moments are

reported.
Data
VW  Mom Con Value Size EW Mom Con Value Size
Mom  1.00 -0.31 -0.40 -0.38 Mom  1.00 -0.54 -0.48 -0.57
Con -0.31  1.00 0.64 0.65 Con -0.54 1.00 0.80 0.86
Value -0.40 0.64 1.00 0.70 Value -0.48 0.80 1.00 0.77
Size -0.38 0.65 0.70 1.00 Size -0.57 0.86  0.77 1.00
Model
VW Mom Con Value Size EW Mom Con Value Size
Mom  1.00 -0.12 -0.38 -0.27 Mom  1.00 -0.16 -0.44 -0.27
Con -0.12  1.00 0.53 0.54 Con -0.16 1.00  0.74 0.78
Value -0.38 0.53 1.00 0.79 Value -0.44 0.74 1.00 0.86
Size -0.27 0.54  0.79 1.00 Size -0.27 0.78  0.86 1.00
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Table 13: Cross-sectional regressions with market returns and consumption growth

This table reports the cross-sectional tests on the value-weighted returns of 32 portfolios—10
book-to-market portfolios, 10 momentum portfolios, and 12 Fama-French industry portfolios from
Kenneth French’s Web site. The tested models include CAPM, Consumption-CAPM, and a two-
factor model with market return (MKT) and consumption growth (ConG) as the risk factors.
The data is annual from 1931 to 2011. The tests are implemented on the full sample and two
subsamples 1931-1962 and 1963-2011. For each model, the estimated risk premia, mean absolute
error (MAE), p-value for the Jr tests, and the OLS-R? are reported. Newey-West t-stats given in
parentheses control for heteroscedasticity and autocorrelation.

Panel A: 1931-2011
CAPM C-CAPM MKT+ConG

MKT 8.78 9.27
(3.89) (4.12)

ConG 3.24 1.20
(2.78) (2.37)

MAE 1.46 7.01 1.18
p(J7) 0.00 0.13 0.00
R* (%) -36.53% -416.83% 34.06%

Panel B: 1931-1962
CAPM C-CAPM MKT+ConG

MKT 11.46 11.93
(2.73) (2.88)

ConG 4.05 1.03
(1.84) (1.06)

MAE 1.56 10.06 1.35
p(Jr) 0.00 0.00 1.00
R* (%) 28.36% -539.11% 50.99%

Panel C: 1963-2011
CAPM C-CAPM MKT+ConG

MKT 6.95 7.34
(2.78) (2.90)

ConG 1.55 1.12
(3.16) (2.75)

MAE 1.82 6.14 111
p(Jr) 0.00 0.00 0.00
R* (%) -71.37%  -23.88% 55.01%
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Figure 2: Predicted versus actual returns

This figure compares the model predicted returns with the actual returns for 32 portfolios—10 book-to-market
portfolios, 10 momentum portfolios, and 12 Fama-French industry portfolios from Kenneth French’s Web site.
The tested models include CAPM, Consumption-CAPM, and a two-factor model with market return (MKT) and
consumption growth (ConG) as the risk factors. The data is annual from 1931 to 2011. The tests are implemented
on the full sample and two subsamples 1931-1962 and 1963-2011.
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Table A1l: MCMUC estimated parameters

This table compares the parameter values from alternative estimations. For each parameter in
Phy Oh, Py, and oy, we report the point estimate with 95% confidence intervals. SMM corresponds
to the estimate from the simulated method of moments. MCMC1 corresponds to the Bayesian
Markov Chain Monte-Carlo estimation with no measurement errors or firm-fixed effects. MCMC2
corresponds to the Bayesian Markov Chain Monte-Carlo estimation with measurement errors
in long-run consumption risks. MCMC3 corresponds to Bayesian Markov Chain Monte-Carlo
estimation with both measurement errors in long-run consumption risks and firm-fixed effect. All
parameters are converted into monthly frequencies for convenience of comparison.

Panel A: SMM estimation
Ph Oh Pf gf
0.781 4.935 0.989 0.351
[0.671, 0.891] [3.881, 5.989] [0.987, 0.991] [0.283, 0.419]

Panel B: MCMC1:
No measurement error or firm-fixed effect
Ph Ih Pf of
0.909 3.498 0.933 10.779
[0.833, 0.944] [3.042, 4.167] [0.898, 0.949] [9.053, 12.798]

Panel C: MCMC2:
Measurement errors in long-run consumption risks
Ph Oh Pf of
0.921 4.752 0.947 1.061
[0.854, 0.954] [4.215, 5.445] [0.920, 0.960] [0.920, 1.218]

Panel D: MCMC3:
Measurement errors in long-run consumption risks + firm-fixed effect
Ph Oh Pf of
0.894 5.039 0.963 0.316
[0.848, 0.926] [4.300, 5.972] [0.911, 0.987] [0.271, 0.370]
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Table A2: Cross-sectional regressions with short-run and long-run consumption risks

This table reports the cross-sectional tests on the value-weighted returns of 10 momentum port-
folios, 10 long-term contrarian portfolios, 10 book-to-market portfolios, 10 size portfolios, and 30
Fama-French industry portfolios from Kenneth French’s Web site. The tested model is a two-factor
model with short-run (SRR) and long-run (LRR) consumption risks as the risk factors. The data
is annual from 1931 to 2011. We follow Bansal, Kiku, and Yaron (2012b) and regress aggregate
consumption growth rate at year ¢t + 1 on log(DP) and real risk-free rate at year t to extract the
expected consumption growth. The estimated risk prices (bs), the estimated risk premia (As),
mean absolute error (MAE), p-value for the Jr tests, and the OLS-R? are reported. Newey-West
t-statistics given in parentheses control for heteroscedasticity and autocorrelation.

Coefficient ¢-statistic

bsrr 25.74 (1.61)
SRR 0.63 (1.25)
bLRR 211.27 (2.35)
ALRR 0.34 (2.30)
MAE 1.52
R*(%) 0.14
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