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Abstract. We contribute to the mutual fund performance literature by letting investors learn how skill is
distributed over the entire universe of mutual funds. Instead of assuming a known normal distribution
whose average and standard deviation is unknown for the population, in this paper, a investor learns how
skill is distributed over funds by observing the performance history of all past and present mutual funds.
As the panel of returns is observed, the investor reduces his level of ignorance about the population by
grouping together similarly skilled funds into sub-populations where the funds belonging to a particular
sub-population all have the same average level of ability and variation in this ability. Applying this to the
gross returns of a panel of 5,136 domestic equity funds, our investor finds the skill level among mutual funds
to be distributed across three different sub-populations. The sub-population with the lowest probability
of membership is a group of highly skilled funds whose average performance exceeds a passive four-factor
portfolio by approximately six percent per annum. The next sub-population whose proability of membership
is in between the other two groups is a group of unskilled funds who on average underperform the passive
portfolio by 0.4 percent a year. Lastly, the sub-population with the highest likelihood of membership is
a group of break-even fund that beat the passive portfolio by roughly the average fee charge by funds.
On average the returns from this break-even group exceeds the passive portofolio by 1.8 percent a year.
Knowledge about how skill is distributed across mutual funds leads to our investor predicting that any fund
lacking a track record of performance is likely to possess just enough skill to on average cover the fees it
charges. He knows there is a very small chance the fund will be highly skilled and capable of beating the
market on average by six percent a year. However, he also knows there is a greater chance that the fund
will underperform the market and not cover the fees it charges.
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Evaluating the performance of actively managed mutual fund has enjoyed a long and

productive research agenda, but only a few of these studies investigate how stock-picking

ability is distributed over the population of mutual funds. Kosowski et al. (2006), Barras

et al. (2010), Fama & French (2010) and Ferson & Chen (2015) take a classical approach

and estimate the population distribution by bootstrapping every fund’s estimated skill level.

Jones & Shanken (2005) address the distribution question from a Bayesian perspective

by estimating the mean and variance of a normal, cross-sectional, distribution of skill.

Estimation of the population mean and variance of skill by Jones & Shanken (2005) within

a cross-sectional, normal distribution is advantageous because it overcomes the overfitting

and imprecision found in classical estimates of fund performance. They do this by tying

together every fund’s stock-picking skill to the population mean and variance. However, no

mutual fund research has asked how an investor can dispense with the normality assumption

and use a panel of mutual fund returns to learn in its entirety how skill is distributed across

the universe of mutual funds. That is our goal here along with determining each fund’s

ability under the unknown population distribution of skill. To do this we propose a Bayesian

learning approach where the key contribution is estimating how skill is distributed over the

entire population of mutual funds so that the cross-sectional performance is consistent with

the performance of the individual funds. We refer to a fund’s skill and/or stock-picking

ability in terms of the alpha a mutual fund adds to an investment before incurring any

costs during the production of returns.

Most estimates of alpha either assume something about the nature of the cross-sectional

distribution of skill or completely ignore it. In his seminal paper on mutual fund perfor-

mance, Jensen (1968) implicitly assumes the cross-sectional distribution of alpha does not

exist by estimating each funds alpha individually with the ordinary least squares (OLS)

estimator. Pástor & Stambaugh (2002b) explicitly assume the alphas do not come from

a common cross-sectional distribution when they choose a uniform distribution over the

entire real line for the prior of alpha. Baks et al. (2001) and Pástor & Stambaugh (2002a)

both investigate mutual fund performance using a cross-sectional distribution that is set a

priori and find a fund’s alpha to be sensitive to this choice for the cross-sectional distri-

bution. Avramov & Wermers (2006) investigate fund performance and their predictability

using three different beliefs about the cross-sectional distribution of skill; a degenerative

distribution where funds only cover their costs; a normal population distribution with a

unit variance, centered at the breakeven point; and those who do not believe the alphas

come from a population distribution. More recently, both Berk & Green (2004) and Jones

& Shanken (2005) assume the cross-sectional distribution of skill is normally distributed
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and estimate the unknown population mean and variance.1

In this paper a investor knows nothing about the distribution family the cross-sectional

distribution of skill comes from, hence, in addition to not knowing the population mean

and variance, the investor is initially ignorant about the population moments and the mul-

timodality of the distribution. Instead, the cross-sectional distribution of mutual fund

performance will be inferred by the investor as he observes a cross-section of mutual fund

returns. The investor relies on a Bayesian learning scheme where he assigns each mutual

fund to a sub-population of similarly skilled funds. If a funds performance is truly ex-

traordinary the investor assigns the fund to a new sub-population consisting of only the

extraordinary fund. By assigning a fund’s performance level to a new or existing sub-

population the investor flexibly models the number of unknown sub-populations that exist

within the universe of mutual funds and also allows for unforeseen sub-populations created

by future abnormal mutual funds performance.2

After learning how skill is distributed over the population of mutual funds, the investor

borrows information from the other funds belonging to same sub-population to gain a more

precise estimate about a particular fund’s alpha. As in Jones & Shanken (2005), our investor

“learns across funds” about each mutual funds ability by linking together alphas through the

underlying population distribution, except our investor is more refine. Here the investor only

learns from funds belonging to the same sub-population. In other words, it is common sense

for our investor to ignore the history of returns from poorly managed funds like the Potomac

OTC/Short fund when evaluating the skill of an highly skilled fund like the Schroeder Ultra

fund. Estimates of a fund’s alpha partially depends on the performance of the other funds

in the same sub-population through the average skill level and the variability of the sub-

population the particular fund belongs to. This refined learning by the investor reduces

the uncertainty around his understanding about a fund’s stock-picking ability, especially

for a fund with a short performance history who belongs to a large sub-population of funds.

It also polices against biasing a fund’s alpha towards the average skill level of the entire

mutual fund population when unskilled and high-skilled sub-populations exist within the

population.3 Unfortunately for our investor, these sub-populations provide no economic

1Although our interest is centered on estimating the population distribution of alpha, in order to better
understand the stock-picking ability of a particular mutual funds, our approach could also be used to compare
asset pricing models and to test the predictability of stock returns as in Pástor & Stambaugh (2000) and
Kandel & Stambaugh (1996), respectively.

2Learning the cross-sectional distribution of skill through the assignment of funds to sub-populations is
similar to the idea of judging a fund by the company it keeps (see Cohen et al. (2005)). However, unlike
Cohen et al. (2005) definition of funds holding a common set of stocks, the company a fund keeps here is a
subgroup of funds having the same average level of skill and variability or uncertainty in its skill.

3For an example of this shrinkage towards the population average see the performance estimates in Jones
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meaning to him about the individual mutual fund. Each sub-population is non-parametric

in nature, and hence, they cannot be labeled with any economic meaning for the type of

funds belonging to them.

Applying this learning approach to the monthly gross return histories of the 5,136 do-

mestic equity, mutual funds that existed for at least twelve month between January of 1961

and June of 2001, our investor concludes that the performance level of mutual funds is best

described by a cross-sectional distribution with three distinct sub-populations. Our investor

finds an extremely rare, highly skilled, sub-population of funds whose average performance

exceeds a passive four-factor portfolio by approximately six percent per annum. The next

most likely sub-population is a group of unskilled funds who on average underperform the

passive portfolio by 0.4 percent a year. The third and most probable sub-population beats

the passive portfolio by an average of 1.8 percent a year, which is roughly the average fee

charged by an actively managed mutual fund. Hence, our investor’s understanding of the

cross-sectional performance of mutual funds lends support to the theoretical findings of Berk

& Green (2004), that an arbitrary mutual fund with no performance history is most likely to

possess just enough skill to on average cover the fees it charges its investors. The investor’s

cross-sectional distribution also supports Barras et al. (2010) and Ferson & Chen (2015) ex

ante conjecture that the population of mutual funds consists of three sub-populations, those

that are skilled, those that are unskilled, and those that just cover their fees. Since there

is only a very slime chance a arbitrary fund possesses the extraordinary skill level needed

to beat the market on average by six percent a year, it is most likely that, if the arbitrary

fund is not a Berk & Green (2004) breakeven fund, it will be an unskilled fund that reduces

the return the investor could have earned on a passive portfolio and charged the investor

for this “expertise”.

1 Investors decision

We analyze mutual fund performance from the perspective of the investment decision of an

investor who can choose between a risk-free asset, a set of benchmark assets, and a number

of actively managed mutual funds. This investment choice is slightly different from that

made in Baks et al. (2001) (here after BMW) where the investors decision to invest in a

particular fund is treated separately from their investment decision in other funds. Instead,

our investor follows Jones & Shanken (2005) (here after JS) and chooses from across a

number of actively managed mutual funds, drawing on each funds return performance to

& Shanken (2005) and Cohen et al. (2005).
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learn about the stock picking ability and skill of past, present, and future mutual funds.

Like Jensen (1968), excess gross returns for J mutual funds are assumed to follow the

linear factor model

ri,t = αi + β′iFt + σiεi,t, (1)

where ri,t, i = 1, . . . , J and t = 1, . . . , Ti, are the excess returns before expenses and fees for

the ith fund in month t.4 The innovations εi,t are independent and identically distributed

normal with mean zero and a variance of one. Independence here means each fund has its

own stock-picking strategy and does not mimic or borrow from the other funds.5

The vector of passive benchmark returns Ft are observed by the investor at the end of

each month t. Later, in our empirical analysis, Ft will consist of four passive factor returns;

the three-factor model of Fama & French (1993) and the momentum portfolio of Carhart

(1997). Hence, in our empirical analysis the risk-factor equation will be

ri,t = αi + βi,R · RMRFt + βi,S · SMBt + βi,H ·HMLt + βi,M ·MOMt + σiεi,t, (2)

where RMRFt is the excess market return in the tth month, SMBt and HMLt are the size

and book-to-market factors, and MOMt is the monthly momentum return.

In Eq. (1) and (2), the magnitude of alpha is assumed to reflect the ith fund’s ability

to select superior stocks and is the only parameter of stock-picking skill in the model.

BMW show that a mean-variance investor will invest in an existing fund if and only if the

expected value of the fund’s posterior distribution of alpha is greater than zero and covers

the fees; i.e., the mutual fund is expected to outperform a costless portfolio comprised of

the benchmark returns, F . Investing in an arbitrary fund with no return history will be

economical if and only if the expectation over the the population distribution of past and

present mutual fund skill is positive and exceeds the average fee charged by funds. How

much the investor chooses to invest in a particular mutual fund will depend on the investors

level of uncertainty around the expected value of alpha as measured by the respective fund’s

posterior standard deviation of alpha.

Because alpha is not observed by the investor, he must formulate an initial set of beliefs

about the potential level of skill held by each fund by choosing a prior distribution π(αi).

4Expenses and fees vary across funds and over time and are generally set by the management company,
not the fund manager. For example, the economic model of fund behavior by Berk & Green (2004) predicts
the economic rents generated by a skilled fund will be captured by the fund’s management company through
higher fees.

5This assumption could be relaxed as in JS, which would help increase the precision of our estimate of
a funds alpha, but it shouldn’t affect our findings for the cross-sectional distribution of skill because of the
size of our panel.
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The investor believes that if the alphas were observable each fund’s alpha would be a

random realization from the cross-sectional distribution of alpha. Both JS and Berk &

Green (2004) assume the alphas from past and present mutual funds are realizations from

this cross-sectional distribution. However, the alphas and their cross-sectional distributions

are both initially unknown to our investor, but as posterior views on the value of the alphas

are developed the investor forms his posterior beliefs about the cross-sectional distribution

and vice-a-versa. In this manner, each mutual funds alpha is linked to the other mutual fund

alphas because the investor borrows information from the posterior population distribution

when forming his posterior understanding about the skill of a particular mutual fund.

Before observing the empirical performance of any fund, the investor’s best guess about

how skill is distributed across the universe of mutual funds is his prior π(αi). Even though

we have assumed each funds stock-picking ability to be independent from the other funds,

the investor’s knowledge about the ith fund’s ability and how skill is distributed across the

population of mutual funds increases as the investor observes the risk adjusted gross returns

of any fund. If the returns are for the ith fund, the investor directly updates his prior for

αi to the posterior π(αi|ri) ∝ π(αi)f(ri|αi), where f(ri|αi) is the likelihood the value of

αi leads to the realized history of returns ri = (ri,1, . . . , ri,Ti)
′. Alternatively, if the returns

are for any other fund or funds, the investor first updates his beliefs about the population

distribution, in other words, the prior π(α), to the updated prior, π(α|r−i), where r−i are

the returns histories of any fund other than the ith fund. This updated prior is the investors

new guess for the cross-sectional distribution of skill and it becomes the investors updated

prior for the alpha of any fund whose return history has not been observed. In our example

here, that fund is the ith mutual fund. After observing ri, our investors understanding

about the ith funds level of skill becomes π(αi|ri, r−i) ∝ π(αi|r−i)f(ri|αi). Hence, the

investor has borrowed information from the performance of other funds and incorporated

that information into his posterior cross-sectional distribution, π(α|r−i), and then used this

guess of the cross-sectional distribution to increase his knowledge about the potential skill

of any fund lacking a track record of performance.6

JS investors assume the population distribution of alpha is normally distributed with an

unknown population mean and variance.7 The symmetrical normal distribution does not

allow for sub-populations of extraordinary skilled or unskilled funds. Instead, every fund

6Investors could use the cross-section of return histories to update their prior beliefs for βi and σi. How-
ever, since our focus is on mutual fund performance we let the priors for βi and σi be ex ante noninformative
priors; i.e., we assume there is no population distribution for the risk loadings, β, nor the risk level, σ.
Future research calls for investigating how investors learn about these distributions.

7It is well known that the normal distribution is a poor population distribution for latent variables like
alpha. Normality often result in misleading estimates of the latent variables (see Verbeke & Lesaffre (1996)).
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is assumed to come from a population where the average ability and variance is the same

for every fund. For example, suppose as Barras et al. (2010) and Ferson & Chen (2015)

do, that there are three distinct sub-populations within the universe of mutual funds; a

skilled, unskilled and zero-alpha group of funds, where the stock picking abilities of those

funds in a particular sub-population vary but on average have a similar level of skill. If

the cross-sectional distribution of skill is assumed to be normal by the investor, the three

distinct sub-populations get pooled into one overall population. Posterior beliefs by the

investor about either a skilled or unskilled fund’s alpha will end up being biased towards

the average level of skill of the entire population of mutual funds and away from the average

ability of its sub-population. In the end the investor posterior beliefs about a truly rare,

highly, skilled mutual fund gets lost among the “average” mutual funds.

Here we let the investor’s beliefs about the cross-sectional distribution of skill be com-

pletely flexible and allow him to learn about the distribution from the information found

in a panel of returns. We now make the investors initial beliefs and his learning of the

unknown cross-sectional distribution of skill concrete.

2 Investors initial beliefs

We assume the investor’s prior beliefs for the distribution of alpha is independent from the

funds risk-factors and return variance by letting π(αi, βi, σ
2
i ) = π(αi)π(βi, σ

2
i ).

8 The ith

funds likelihood is N(ri|αiιTi + Fiβi, σ
2
i ITi), i = 1, . . . , J , where ri is the Ti length return

history vector for fund i, ιTi is a Ti length vector of ones, Fi is a Ti × 4 matrix of factor

returns, and ITi is an Ti × Ti identity matrix. Each funds likelihood is independent from

the other funds implying the investment choices of a particular fund conveys no information

about any other fund’s investment strategy.

Assume that mutual fund stock picking abilities are normally distributed, N(αi|µα, σ2α),

i = 1, . . . , J , and are conditional on knowing the population mean skill level, µα, and

population variance, σ2α. Since µα and σ2α are unobservable to our investor, he will have

an inherent prior belief for them. We denote this initial belief with the prior distribution

G(µα, σ
2
α).9

To ease with the presentation of the investors understanding of the cross-sectional dis-

tribution we begin by assuming the αis are observable. Later we will relax this assumption

8One could assume investors have a joint prior for (αi, βi, σ
2
i ). However, learning this distribution would

require him to assign a fund to a sub-population based on all the unknown parameters and not just alpha.
Grouping funds into sub-populations of ability would no longer be the investors objective, so, we assume
the investor has a separate prior for beta and sigma.

9Jones & Shanken (2005) assume G to be a normal, inverse-gamma distribution.
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and allow the investor to form posterior beliefs about the alphas, betas, and sigmas, along

with µα and σα, as he observes mutual fund returns and integrate out the uncertainty

underlying each funds unknown parameters. After observing the stock-picking ability of

J mutual funds through the values of α1, . . . , αJ , our investor decides to invest or not in

a new mutual fund by computing the posterior cross-sectional distribution of mutual fund

performance, π(α|α1, . . . , αJ , G). This posterior understanding of the cross-sectional mu-

tual fund performance by our investor is the same as the posterior predictive distribution

of the alpha for a fund with no performance history. It consists of integrating out the pa-

rameter uncertainty found in the prior N(α|µα, σ2α). The formal definition of the posterior

predictive or cross-sectional distribution is

π(α|α1, . . . , αJ , G) =

∫
N(α|µα, σ2α) dG(µα, σ

2
α|α1, . . . , αJ). (3)

In other words, the predictive distribution of skill consists of a mixture of normal distri-

butions over the population mean and variance, µα and σ2α, whose mixture weights and

locations are determined by the posterior distribution, G(µα, σ
2
α|α1, . . . , αJ).

Conditional on the investors choice for G(µα, σ
2
α), the alpha of a mutual fund having

no empirical record will be a realization from the above posterior predictive distribution.

In practice, a Gibbs sampler is used to draw the latent alphas conditional on the betas,

sigmas and µα and σ2α, and then given the alphas, sample the betas, sigmas and µα, and

σ2α conditional of the alphas, all conditional on r1, . . . , rJ and the investors choice of G.

BMW, Pástor & Stambaugh (2002b), and Busse & Irvine (2006) type investors assume

they know in its entirety the population distribution of mutual fund skill, π(α), but with

each assuming something different about it. Since they assume their investors know how

skill is distributed, investors do need to learn, nor borrow from the empirical performance

of other funds, to update their beliefs about either the cross-sectional mutual fund per-

formance, the average fund’s ability, or the variation around this average. Under these

circumstances the investors understanding about a particular funds skill will only depend

on the performance history of the fund, but it will be sensitive to what the investor assumed

about the population distribution, π(α). Different beliefs about the cross-sectional distri-

bution will lead to different beliefs about the skill level of a particular fund. Hence, the

reason for the wide variety of findings for skill in the mutual fund performance literature.10

For example, past research has found positive alphas (see Kosowski et al. (2006), Pástor

& Stambaugh (2002a), Fama & French (2010)). Since these findings run counter to some

10BMW explicitly show how sensitive the inference about the skill level of a particular fund is to the choice
of π(α).
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peoples belief that actively managed funds should not out perform a passive market based

investment strategy, it has been argued that investors should rely less on the return data

and more on a prior that is skeptical of stock-picking skill. In other words, employ a

more informative cross-sectional distribution. In our representation of the cross-sectional

distribution, a investor heeding this advice would choose a G where µα and σ2α are influenced

less by the return data and more by the investors initial beliefs about skill. At the extreme,

the investor would let G equal 1{m0,s20}(µα, σ
2
α), where G is the degenerative distribution at

the point (m0, s
2
0). Such an investor is certain m0 is the average skill level over the entire

population of funds and s20 is the variation around this average. Given G ≡ 1{m0,s20}(µα, σ
2
α),

the posterior population distribution in Eq. (3) is the normal distribution

π
(
α
∣∣∣α1, . . . , αJ , G ≡ 1{m0,s20}(µα, σ

2
α)
)

= N(α|m0, s
2
0),

with mean m0 and variance σ2α. Because this investor assumes he knows that the population

mean and variance equals m0 and s20, respectively, his posterior is his prior when inferring

every fund’s alpha. This dogmatic belief is implicitly assumed in BMW, Pástor & Stam-

baugh (2002a) and Pástor & Stambaugh (2002b) and by any Bayesian investor whose prior

for alpha has no unknown hyperparameters; e.g., any time values for µα and σ2α have been

set a priori. For instance, a ordinary least square estimate of a mutual funds alpha implicitly

sets µα ≡ 0 and σ2α ≡ ∞ so that π(α) is uniform over the entire real line; i.e., the investor

strongly believes that the alphas do not come from a common population distribution of

skill, but instead, skill is completely idiosyncratic.

In JS seminal article on mutual fund performance an investor learns about the skill of

a particular fund by observing the performance of other funds. They do this by learning

about the values of µα and σ2α from the aggregate performance of every fund and using this

population information to make inference about a particular funds stock-picking ability.

Because the JS investor learns about the population mean and variance of skill he is initially

uncertain about the value of µα and σ2α. This uncertainty is represented by his prior for σ2α,

which is an Inverse-Gamma distribution, and his prior for µα, which is normally distributed.

In our context, a JS type investor sets G(µα, σ
2
α) ≡ NIG(m0, σ

2
α/κ0, ν0/2, s

2
0, ν0/2), where

m0 and σ2α/κ0 are the mean and variance to the conditional normal distribution of µα, and

ν0/2 and s20ν0/2 are respectively the scale and shape of the Inverse-Gamma distribution

of σ2α. Applying the definition of the prior for the cross-sectional distribution of alpha in

Eq. (3), a JS type investor initially believes skill is distributed over the entire universe of

mutual funds as a Student-t since

π(α) =

∫
N(α|µα, σ2α)NIG(µα, σ

2
α|m0, σ

2
α/κ0, ν0/2, s

2
0ν0/2) d(µα, σ

2
α), (4)
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= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
. (5)

Unique to our investigation of mutual fund cross-sectional performance, our investor

does not condition his posterior understanding about alpha on a fixed known G. Instead,

our investor assumes G is an unknown, random, distribution function, whose uncertainty

will be taken into consideration by the investor in his posterior beliefs about mutual fund

performance. Being a unknown distribution, a prior is needed for G. Investors will then

learn about G and reduce their uncertainty about G as they observe the performance of

mutual fund belonging to the population. Because the predictive distribution in Eq. (3) is

conditional on G, an unknown G means the cross-sectional distribution π(α) is a unknown,

random, population distribution function.

We propose and investigate a Bayesian nonparametric predictive distribution for mutual

fund skill and performance. Initial beliefs about G are modeled with a Dirichlet process

prior distribution (see Ferguson (1973)). To be specific, we model the investors prior beliefs

about alpha with Lo (1984) and Escobar & West (1995) Dirichlet process mixture prior

(DPM) where the prior for G is a Dirichlet process distribution denoted by DP (B,G0).

The DP distribution is defined in terms of the base distribution, G0, which is the investor’s

best guess for G. Here G0 will be the bivariate, base distribution, G0(µα, σ
2
α). Being the

investor’s best guess for G it follows that E[G] = G0.
11 An investors level of confidence in

his guess G0 is the value of the positive scalar, B, known as the concentration parameter.12

Before our investor observes any return-based information concerning mutual fund

performance, he forms his expectations about the stock-picking ability of mutual funds.

If he is certain about the average skill and variance of mutual funds he might choose

G0 ≡ 1{m0,s20}(µα, σ
2
α), for the Dirichlet process base distribution. As pointed out ear-

lier, degenerative distribution represent strong prior beliefs. Given the degenerative nature

of the base distribution, 1{m0,s20}(µα, σ
2
α), the investors initial cross-sectional distribution of

alpha is

EG[π(α)] ≡ EG

[∫
N(α|µα, σ2α)dG(µα, σ

2
α)

]
, (6)

=

∫
N(α|µα, σ2α)dG0(µα, σ

2
α), (7)

=

∫
N(α|µα, σ2α)1{m0,s20}(µα, σ

2
α)d(µα, σ

2
α), (8)

11See Kleinman & Ibrahim (1998), Burr & Doss (2005), Ohlssen et al. (2007), Dunson (2010) and Chapter
23 of Gelman et al. (2013) and references therein for the mathematical details of the Dirichlet process.

12B will play an important role in the number of sub-populations, which we explain when we discuss the
clustering properties of the DP prior.
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= N(α|m0, s
2
0), (9)

For brevity, we let π̂1{m0,s
2
0}

(α) ≡ EG[π(α)] when G ∼ DP (B,1{m0,s20}).

At the other extreme are investors who have no preconceived notion about the dis-

tribution of skill over the population of mutual funds. These investors have a diffuse,

uninformative G0 and rely on return-based information of mutual funds to help them form

their posterior beliefs about the distribution of alpha.

We choose to endow our investor with initial beliefs that are flexible enough to an-

swer the question: How do prior beliefs about the population distribution of mutual fund

skill impact the posterior performance of past, present and future mutual funds? To

establish the Bayesian learning that occurs, we assume the conjugate base distribution,

G0 ≡ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0ν0/2), where µα is normally distribution with mean m0 and

variance, σ2α/κ0, and σ2α is distributed as a Inverse-Gamma distribution with shape, ν0/2,

and scale, s20ν0/2. Before observing any mutual fund data, our investors thoughtfully deter-

mines values for the mean, variance, shape and scale of G0; i.e., our investor selects values

for the hyperparameters, m0, κ0, ν0, s
2
0, based on his subjective beliefs. Equipped with

G0 the investors belief about skill can range from dogmatic when κ0 → ∞, ν0 → ∞, and

s20 →∞,13 to uninformative when κ0 → 0, ν0 → 0 and s20 → 0.

When an investors initial belief for G is represented by a DP distribution with a base

distribution, G0, equal to the Normal, Inverse-Gamma distribution, his best guess for the

population distribution of mutual fund skill is the Student-t distribution

EG[π(α)] =

∫
N(α|µα, σ2α)NIG(µα, σ

2
α|m0, σ

2
α/κ0, ν0/2, s

2
0ν0/2) d(µα, σ

2
α), (10)

= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (11)

with ν0 degrees of freedom, mean m0 and scale
(
κ0+1
κ0

)
ν0s

2
0. In the absence of any informa-

tion investors will initially invest in a actively managed fund if their choice for m0 exceeds

fees and expenses. Going forward we will use the notation π̂NIG(α) to represent EG[π(α)]

when G ∼ DP (B,NIG). Just to be clear π̂NIG(α) ≡ tν0(α|m0, (κ0 + 1)ν0s
2
0/κ0) is the

initial guess about how skill is distributed over the population of mutual funds.

Later in the empirical section of the paper we set the hyperparameters for G0 ≡
NIG(m0, σ

2
α/κ0, ν0/2, s

2
0ν0/2) equal to m0 = 0, κ0 = 0.1, ν0 = 0.01 and s20 = 0.01. With

this G0 our investor initially believes a typical fund is unable on average of beating the

13Under this dogmatic prior the expected value of σ2
α is 1 with zero variance. The prior mean for µα is

m0 also with zero variance.
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passive portfolio (m0 = 0), but is also so uncertain about the level of skill the variance in

the expected performance does not exist.

3 Cross-sectional learning

The next step in our investors mutual fund investment decision is to learn about the dis-

tribution of the population mean and variance, G(µα, σ
2
α). Learning about G leads to

the investor increasing his understanding on how skill is distributed over mutual funds.

Suppose hypothetically that upon observing the return-based information from a panel of

actively managed mutual funds our investor knows the average skill level of the panel and

the variance or uncertainty around this average ability and uses them to form an opinion

on how they are distributed. For instance, after observing the performance of the first

mutual fund the investor knows µ1 is the funds average level of skill. He also knows σ21

is how the fund’s alpha varies around µ1.
14 Because the investors initial knowledge about

the unknown distribution G is the conjugate prior, DP (B,G0), after seeing µ1 and σ1 our

investors understanding about this distribution is the updated conditional DP distribution,

G|µ1, σ21 ∼ DP (1 + B,G1). Our investor refines his guess for G by using µ1 and σ21 to

update his base distribution to G1 ≡ (BG0 +1{µ1,σ2
1})/(1 +B) (see Blackwell & MacQueen

(1973) for this conjugate property of the Dirichlet Process distribution). He is also more

confident in his guess since the concentration parameter of the conditional DP distribution

has increased to 1 +B.

In G1 our investor reduces his uncertainty about G by taking his initial guess of G0

and combining it with the empirical degenerative distribution 1{µ1,σ2
1}. After marginalizing

out the uncertainty associated with G|µ1, σ21, our investors new guess for the population

distribution is the posterior predictive distribution of alpha, or in other words, the updated

prior

EG|µ1,σ2
1
[π(α)] =

∫
N(α|µα, σ2α) dG1(µα, σ

2
α),

=
B

1 +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

1

1 +B
N
(
α|µ1, σ21

)
, (12)

where 1/(1 +B) in the second right hand side term is the probability the next mutual fund

will belong to the same sub-population as the first fund and have skills that are normally

distributed with mean µ1 and variance σ21. The first right hand side term’s B/(1 + B) is

14For the time being, one can think of µ1 and σ2
1 as being the sample mean and sample variance of the

observed return vector r1. Later we provide the explicit relationship between the mean and variance of a
mutual funds skill level and the funds return-based information.
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the probability the next fund will belong to a sub-population different from the first fund.

In this case the investors level of uncertainty about the funds ability does not benefit from

knowing µ1 and σ21. Hence, the investor relies on his initial beliefs about the cross-sectional

distribution of skill π̂NIG(α) ≡ tν0

(
α
∣∣∣m0,

(
κ0+1
κ0

)
ν0s

2
0

)
to predict the new fund’s future

ability. Writing the updated guess of the population performance of mutual funds in terms

of π̂ we have the mixture π̂G1(α) = B
1+B π̂NIG(α) + 1

1+B π̂1{µ1,σ21}
(α).

Our investor continues learning in this same sequential manner as he observes a cross-

section of µis and σ2i s. Following the observation of µJ and σJ from the last of the J funds,

the investors knowledge of G has grown to G|µ1, σ21, . . . , µJ , σ2J ∼ DP (J + B,GJ), where

the investor’s guess for G is GJ ≡ (BG0 +
∑J

i=1 1{µj ,σ2
j }

)/(J +B). Note our investor is now

even more confident in his guess for G since his concentration parameter has increased to

J +B. In other words, our investor puts less and less weight on his initial beliefs about G

and relies more and more on the empirical distribution of the µis and σ2i s. The investor’s

guess for how skill is distributed across the universe of mutual funds is now

EG|µ1,σ2
1 ,...,µJ ,σ

2
J

[π(α)] =
B

J +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

1

J +B

J∑
i=1

N(α|µi, σ2i ). (13)

There is now a one-in-(J+B) chance a new funds skill will be distributed like one of the

J observed mutual funds. As long as the investor has some doubt about his initial guess G0,

in other words, as long as B is finite, there will be funds with the same mean µi and variance

σ2i as other funds. As a result some of the existing funds will have the same distribution

of idiosyncratic ability. In other words, given our investor’s initial DP beliefs for G he will

logically group together similarly skilled funds into K ≤ J sub-populations as he observes

funds having the same average ability and variance. Let µ∗k and σ∗k, k = 1, . . . ,K, denote

the means and variances of the unique sub-populations. Counting up the number of funds

belonging to a particular sub-population, the investor finds there are nk funds belonging to

the kth sub-population such that
∑K

k=1 nk = J .

Grouping the J funds into their respective sub-populations our investor’s posterior cross-

sectional distribution of alpha can be written in terms of the different sub-populations means

and variances as

π̂GJ (α) = EG|n1,µ∗1,σ
∗2
1 ,...,nK ,µ

∗
K ,σ
∗2
K

[π(α)] ,

=
B

J +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
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+
K∑
k=1

nk
J +B

N(α|µ∗k, σ2∗k ). (14)

The probability of a new fund being assigned to the kth sub-population depends on nk,

hence, our investor believes larger sub-populations have a greater chance of attracting new

funds. The Dirichlet process prior for G causes our investor to reward larger sub-populations

with new funds at the expense of smaller sub-populations. However, we need to remember

the degree of grouping also depends on how confident the investor is in his initial guess G0.

This confidence depends on his choice for the concentration parameter B. Because of the

important role B plays in the number of sub-populations, in our empirical analysis we let B

be unknown and have the investor infer it from the panel of observed mutual funds returns.

Our investor is thus learning across funds as in JS. However, our investor is dramatically

different from those in JS who implicitly assume all funds come from a normal population

distribution. Our investor assumes nothing about the cross-sectional distribution of skill.

Instead, he learns it by flexibly allowing for different sub-populations whose funds have

similar ability in terms of their average skill and variance. He does not force every fund’s

alpha to be a draw from a distribution whose average level of skill is equal to the entire

population of both skilled and unskilled funds. Instead, each fund’s alpha is a draw from

a distribution whose average skill is equal to that of other relevant funds who are similarly

skilled. This difference leads to more accurate inference about each funds alpha.

4 Inference

To resolve the uncertainty around the parameters and the unknown distribution of alpha,

our investor combines fund-level return data with his initial beliefs to form a posterior view

of the unknowns. Our investors decision to invest in a actively managed fund involves a

large number of unknowns where the joint posterior distribution of all the unknowns is not a

standard distribution. This requires the joint posterior distribution to be judiciously broken

into conditional posteriors whose distribution can be drawn from. Cross-sectional mutual

fund returns lend themselves to sampling from the conditional posteriors and enables the

investor to reduce some of their uncertainty around the unknowns.

Our blocking design of the joint posterior distribution is structured by the hierarchical

form of the investors decision. Random draws are made from the conditional posterior

distributions which upon convergence generate random draws from the joint posterior. The

conditional posterior distribution draws are

1. Draw βi and σi conditional on ri, and αi, for i = 1, . . . , J .

14



2. Draw αi conditional on ri, βi, σi and (µ∗si , σ
∗
si), for i = 1, . . . , J .

3. Draw (µ∗k, σ
∗
k), s, K and B conditional α1, . . . , αJ , for k = 1, . . . ,K.

In Step 2, si is the assignment variable where si = k when (µi, σ
2
i ) = (µ∗k, σ

2∗
k ); i.e., si is the

sub-population assignment variable for the ith fund. In Step 3, s is the J length assignment

vector comprised of si where i = 1, . . . , J .

After an initial burnin where the draws from the conditionals are thrown away allowing

the draws to converge to the posterior distribution, subsequent draws from the conditionals

generate a random sample from the joint posterior distribution. These draws of the alphas

represent the uncertainty the investor has about the skill level among actively managed

funds. Later in Section 5 we make 40,000 draws and keep the last 30,000 for making

inference.

In Step 1, our investor has no information on, nor prior beliefs about, the factor loading

vector, βi, or the return variance, σ2i . The Jeffreys prior

π(βi, σ
2
i ) ∝ 1/σ2i , (15)

accurately captures this ignorance and the investors uncertainty will be captured by a nor-

mally distributed conditional posterior for the factor loadings with mean and variance equal

to the least squares regression estimator of the dependent variable rit − αi being projected

onto the explanatory variables Fit, t = 1, . . . , Ti. The marginal conditional posterior distri-

bution for the return variance, σ2i , is an Inverse-Gamma with scale, Ti− 4, and shape equal

to the above linear regression sum of squared error divided by the scale. These conditional

posteriors depend only on the return-based information the investor has observed.

To draw the alphas, in Step 2 the investor uses the cross-sectional distribution of the sith

sub-population, N(µ∗si , σ
∗2
si ), as the prior for αi. Because the prior for the cross-sectional

distribution of alpha is a Dirichlet process mixture, the mean, µ∗si , and variance, σ2∗si , are

determined by the returns of funds belonging to the si sub-population. Our investor then

reduces his uncertainty about αi by observing the return data, ri = (ri1, . . . , riTi)
′, and

conditional on βi and σi, updates his beliefs about the ith funds ability through the normal

posterior distribution whose mean is(
µ∗si
σ2∗si

+

Ti∑
t=1

r∗i,t

)/(
1

σ2∗si
+ Ti

)
, (16)

and whose variance is (1/σ2∗si + Ti)
−1, where

r∗i,t ≡ (ri,t − β′iFi,t)/σi = αi + εi,t, (17)
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is the risk adjusted return.

We point out here that the conditional posterior distribution of αi does not depend

on the number of funds belonging to the sith sub-population. Each fund’s skill level is

independent from the other. However, the information found in the sub-population’s µ∗si
and σ∗si , is valuable to the investor especially for funds with a short performance window. For

example, if a fund with a short history belongs to a sub-population whose membership has a

small σ2∗si , in Eq. (16) our investor performance measure will be pulled towards the average

skill of sub-population, µ∗si . Since traditional performance measures for short history funds

are noisy and uncertain (see Kothari & Warner (2001)), a small sub-population variance

also helps reduce the investors level of uncertainty around his guess about the ability of a

short history fund.

This is different from how JS borrows information from other funds. While insightful,

JS shrinks every funds alpha toward the average skill level of the entire population. For

our investor this amounts to assigning every fund to the same sub-population; i.e., a priori

saying K = 1. Such an assumption implies that a surviving fund has the same ability and

talent as funds that have failed, or a extraordinary skilled fund having the same ability as

an average fund.

The above normal distribution for the alphas also shows how our investor’s performance

measure for an extremely exceptional fund is no different from the investor who does not

believe in a cross-sectional performance distribution. To our investor a truly extraordinary

fund has no other peers and hence belongs to its own sub-population. As a result, σ∗si is

infinite. Under such circumstances our investor knows not to borrow from the performance

of the other ordinary funds. He simply applies Eq. (16), which equals the OLS estimate

when σ∗si = ∞, as his guess for the exceptional funds performance measure. The level of

certainty in his guess for alpha is also the variance of the OLS alpha. Hence, our investor’s

performance measure spans the world of Jensen (1968), where every firm is unique, and

Jones & Shanken (2005), where every firm has the same average skill level, µα, and same

standard deviation, σα.

Sampling from Step 3 can be thought of as answering the question proposed by JS but

adapted to our case, when would the investor discard the information contained in the

average skill and variability of the K sub-populations, µ∗k and σ∗k, k = 1, . . . ,K? Answering

this question for each fund amounts to drawing the vector s by sequentially drawing each

fund’s si according to the probabilities

P (si = k) =
n
(−i)
k

B + J − 1
fN (αi|µ∗k, σ∗2k ), k = 1, . . . ,K(−i), (18)
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P
(
si = K(−i) + 1

)
=

B

B + J − 1
ft

(
αi|m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (19)

where n
(−i)
k is the number of funds belonging to the kth pool and K(−i) is the total number

of sub-populations, after the ith fund has been excluded from the sample. So K(−i) will

equal K−1 when the ith funds is the only member of its sub-population. Otherwise, K(−i)

equals K.

Eq. (19) is the probability our investor discards the information contain in the perfor-

mance of the other funds and rely on the fund’s ordinary least squares information when

determining the funds alpha. The odds of this occurring increase when the αi drawn in

Step 2 is “different” from the average skill of each sub-population. In other words, when

the likelihoods, fN (α|µ∗k, σ2∗k ), k = 1, . . . ,K(i), in Eq. (18) are small.

After the investor assigns every fund to a particular sub-population and in the process

determines the total number of sub-populations, K, he pools together the alphas of those

funds belonging to a particular sub-population and forms his posterior beliefs about the

average skill level and variability of the sub-populations skill and draws µ∗k and σ∗k. Given

the DP base distribution G0 ≡ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0ν0/2) from Section 2, the draws of

σ2∗k , for k = 1, . . . ,K, are from the Inverse-Gamma distribution with shape (ν0 +nk)/2 and

scale

ν0 + nk
2

ν0s20 +
∑
i:si=k

(αi − αk)2 +
nkκ0
κ0 + nk

(m0 − αk)2
/ (ν0 + nk) ,

where αk = n−1k
∑

i:si=k
αi. The µ∗ks are drawn from a Normal distribution with mean

(κ0m0 + nkαk)/(κ0 + nk) and variance σ2∗k /(κ0 + nk).

Lastly, the investor draws the concentration parameterB from π(B|K) using the sampler

in Appendix A.5 of Escobar & West (1995).

4.1 Posterior cross-sectional distribution

In Eq. (14) our investors best guess for the cross-sectional distribution of alpha depends

on having observed the means and variances of sub-population skill. After observing the

return-based information our investor best informed guess at how skill is distributed over

mutual funds is the posterior predictive distribution

π̂r1,...,rJ (α) =

∫
· · ·
∫
EG|s,µ∗1,σ∗21 ,...,µ∗K ,σ

∗2
K

[π(α)]

×π
(
s, µ∗1, σ

∗2
1 , . . . , µ

∗
K , σ

∗2
K |α1, . . . , αJ

)
×π(α1|r1, β1, σ1) · · ·π(αJ |rJ , βJ , σJ)
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×π(β1, σ1|r1) · · · , π(βJ , σJ |rJ)

×dsdµ∗1 · · · dµ∗Kdσ∗1 · · · dσ∗K
×dα1 · · · dαJ dβ1 · · · dβJdσ1 · · · dσJ , (20)

≈ M−1
M∑
l=1

[
B(l)

J +B(l)
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)

+
K(l)∑
k=1

n
(l)
k

J +B(l)
N
(
α
∣∣∣µ∗(l)k , σ

2∗(l)
k

) , (21)

where µ
∗(l)
1 , σ

∗2(l)
1 , . . . , µ

∗(l)
K , σ

∗2(l)
K is the lth draw from the conditional posterior distribution

in Step 3 of the above sampling algorithm, and the n
(l)
k s come from the information contained

in the lth draw of s(l), and B(l) is the lth draw from the sampler of Escobar & West

(1995). This posterior cross-sectional distribution calculation takes into consideration all

the uncertainty about the unknowns, including the distribution of G, by averaging over

their posterior distributions.

5 Empirical analysis

Our empirical application consists of the same mutual fund data set used by Jones &

Shanken (2005).15 This data set consists of annual mutual fund gross returns computed

monthly from January 1961 to June 2001. It is a panel with a total of 396,820 monthly

observations from 5,136 domestic equity funds.16 Like Baks et al. (2001), Jones & Shanken

(2005) and Cohen et al. (2005), we are interested in before cost performance unaffected by

idiosyncratic fee schedules so fees and expenses have been added back into the net returns

reported in CRSP Mutual Funds data files. Each fund has at least a years worth of return

data and all the funds have on average 77.3 monthly returns. Survivorship bias is eliminated

by including all domestic equity funds even the 1293 funds that no longer existed at the

end of the sample.

5.1 Shrinkage in fund performance

Figure 1 plots each of the 5,136 mutual funds highest 95 percent posterior probability density

interval (HPD) of alpha along with the fund’s posterior median (represented as dots when

visible) beginning at the top with those funds having the shortest return history and ending

at the bottom with the longest performing funds. Each funds HPD interval are those values

15We would like to thank Chris Jones for graciously providing us with their data.
16Funds were eliminated that made substantial investments in other asset classes.
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of alpha where there is a 95 percent chance the fund will select stocks that result in an

alpha within the HPD interval. Investors minimizing their expected mean absolute loss

from investing in a fund chooses a fund based on its posterior median alpha.

Each funds posterior HPD interval is calculated under three different investor beliefs

about the underlying cross-sectional distribution of skill. Panel (a) plots the posterior

beliefs of the investor who believes skill to be idiosyncratic to the mutual fund and hence,

does not believe there is any advantage to be gained by learning from the performance of

other funds. These investors prior for the cross-sectional distribution of alpha is N(0, s20),

where they assume they know an average fund can do no better than the market and that

the cross-sectional variance is s20 =∞.17

Panel (b) in Figure 1 plots the posterior beliefs for each fund’s alpha of an investor

who believes skill is normally distributed over the universe of mutual funds but do not

know the population mean or variance. This investor learns about the population mean

and variance through the past performance histories of every fund both those in and out

of business. He believes aggregating together the performance data of all funds yields

important information on the stock-picking ability of the entire population of funds. The

investor is endowed with the noninformative Jeffreys prior π(µα, σ
2
α) ∝ 1/σ2α for the cross-

sectional mean and variance; i.e., he has no prior knowledge about the population mean or

variance.

Lastly, Panel (c) of Figure 1 plots each funds posterior probability interval for the

investor who learns the entire cross-sectional distribution from the history of mutual fund

returns. His initial guess for the cross-sectional distribution of alpha is a diffuse Student-t

distribution with mean zero, scale, 0.0011, and 0.1 degrees of freedom.

17Because this is the Jeffreys prior for each alpha, the intervals in Figure 1(a) are equivalent to the 95
percent confidence intervals from the ordinary least squares (OLS) estimate of each alpha.
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Comparing the posterior HPD intervals from the three panels of Figure 1, it is clear that

an investors assumptions about the population distribution of skill affects their posterior

beliefs about a particular mutual fund skill level. Investors in Panels (b) and (c) draw on

the performance of other funds when making an informed guess about the stock-picking

ability of a particular fund. By borrowing information from other funds the HPD intervals

in these two panels are much tighter than those found in Panel (a). As a result the investors

of Panel (b) and (c) are more certain about a funds future ability to produce excess returns

than Panel (a).

Panel (a) investors are those who do not believe skill is distributed over the population of

mutual funds. As a result they are limited to the idiosyncratic performance of a fund when

inferring a funds potential skill. Hence, their posterior understanding about a particular

fund’s level of skill is heavily influenced by the length of the funds performance window.

This is evident in the large and noisy HPD intervals of the short lived funds found at the

top of Figure 1(a), but it also appears in the noisy HPD of the long lived funds.

At the other end of the spectrum are the tight and uniform posterior HPDs found

in Panel (b) of Figure 1. Believing a fund’s performance comes from a normal, cross-

sectional, distribution with an unknown population mean and variance, investors in Panel

(b) learn about the average stock-picking ability of the population across both old and new

funds, surviving and extinct funds, and from both exceptionally skilled and unskilled funds.

Posterior beliefs with an assumed symmetrically distributed population distribution having

only one mode shrinks every funds alpha towards the population mean. The larger the

number of different types of funds the more the investor mistakenly learns from dissimilar

funds. Hence, it is not surprising that the HPD of a short lived fund in Panel (b) looks so

similar to that of a longer lived fund. By treating all the alpha as draws from a distribution

with the same average ability, poor performing funds will do better than they should while

highly skilled funds do worse.

In contrast to Panel (b), the investors of Panel (c) borrow information from only those

funds belonging to the same similarly skilled group of funds. An extreme example of this

is the Schroder Ultra Fund whose alpha has the largest posterior mean of all the funds at

50 percent per annum. Since the next closest skilled fund is the Turner Funds Micro Cap

Growth fund with an alpha of 33 percent, the Schroder Ultra fund is likely the member

of a small subpopulation. Our investor relies on the performance of a few other funds

when making inference about the potential ability of the Schroeder fund. Nor does the

performance history of the Schroder Ultra funds have much bearing on our investors belief

in the ability of lesser skilled funds. Essentially, our investor treats the Schroder Ultra fund
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as a truly unique skilled fund, similar to the investor in Panel (a) who views each fund’s

ability in isolation from other funds. Hence, the Schroder Ultra fund’s posterior HPD and

median in Panels (a) and (c) look very similar. This contrasts with Panel (b) where the

Schroder Ultra fund is not even in the top ten highest performing funds. Panel (b) type

investors mistaken the Schroder Ultra fund as belonging to a group of funds consisting of

all the other funds, both skilled, unskilled and break-even funds, and thus, fails to discern

its exception stock-picking ability from an average fund.

To determine how much a specific mutual fund’s alpha is affected by the investor’s

beliefs about the cross-sectional distribution of mutual fund performance, in Figure 2 we

graph two scatter-diagrams containing each of the 5,136 fund’s posterior average alpha as

determined by our DPM type investor against the other two investor’s posterior average

alphas. In Panel (a) we plot on the horizontal axis the posterior mean of alpha for the

investor who believes skill is idiosyncratic to the fund; i.e. the OLS estimate of a fund’s

alpha. On the horizontal axis of Panel (b) we graph the posterior mean of each alpha for

the investor who believes skill is normally distributed across the universe of mutual funds

and has to infer the population mean and variance. The forty-five degree line in both panels

helps to locate where the assumptions about the cross-sectional distribution do not affect

the posterior inference of a fund’s skill level.

In Panel (a) of Figure 2 every mutual fund’s expected level of skill has moved, to

varying degrees, away from the posterior beliefs of the investor who views each fund in

isolation towards zero; i.e., the points have moved vertically away from forty-five degree

line towards the x-axis. Hence, the investor who believes there is a unknown cross-sectional

distribution of skill underlying each funds performance level, and learns about it, discovers

that funds identified by the agnostic investor as being skilled (unskilled) are actually less

(more) capable of selecting stocks that beat the market. However, there are a handful of

funds so uniquely skilled that treating them in isolation only slightly changes our investor’s

opinion about the fund’s stock-picking ability. These unique funds are those with a posterior

mean alpha closest to the forty-five degree line in Panel (a) and include both skilled and

unskilled funds. In general, there are fewer extraordinary funds when the investor does not

overfit skill but treats each fund’s performance as a draw from an unknown distribution.

By flexibly learning about the population distribution of skill our investor is able to identify

actual fund-specific performance skills while guarding against the overfitting common in the

performance measures for short history funds.

In contrast to Panel (a), many of the points in Panel (b) of Figure 2 lie on the forty-five

degree line. These points belong to funds having the same average ability and variance
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Figure 2: Scatter plots of the 5,136 points of each mutual fund’s posterior mean alpha
where along the y-axis of panel (a) and (b) are the posterior mean for the investor who
learns across fund performances about the entire cross-sectional distribution of skill. In
the panel (a) the x-axis represent the posterior mean of alpha for the uninformed investor
who treats each fund’s skill independently from the others. The x-axis in panel (b) are the
posterior mean of alpha for the investor who also learns across funds but assumes skill is
normally distributed over the mutual fund population. To provide a point of reference in
each panel a 45-degree line over the x-y space is drawn.
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as that in a normal cross-sectional distribution with only one overall mean and variance.

Modeling the performance of these funds as draws from a normal cross-sectional distribution

does not interfere with the expected value of their posterior alpha. However, identifying

this group of funds a priori would be difficult, something our investor does naturally as he

learns about the entire cross-sectional performance of mutual funds.

From the off-diagonal points of Figure 2(b) we discover there are alphas being drawn

from sub-populations whose means and variances are different from the global moments.

Without additional sub-populations many abnormally good and bad stock-picking funds

would go undetected. For example, an investor who learns the population distribution

arrives at the posterior belief that the Potomac OTC/Short fund on average loses in excess

of the market 27 percent a year (this is the worse performing fund in our panel of mutual

funds and is the point at the bottom of each panel of Figure 2). In stark contrast, an

investor who believes skill is normally distributed over the population finds the Potomac

OTC/Short fund producing on average a small excess market return. The Potomac fund is

not unique. There are many other extraordinary skilled and unskilled funds that look quite

ordinary to the investor who believes skill is normally distributed across funds. Clearly

a normally distributed cross-section has a large bearing on an investors beliefs about an

abnormal fund’s stock-picking ability.18

5.2 Cross-sectional performance

Mutual fund skill is thus neither idiosyncratic, nor is it normally distributed across the

universe of mutual funds. Instead, cross-sectional mutual fund performance is distributed

somewhere in between these two extremes. It is important then to have flexible posterior

beliefs about the cross-sectional distribution of mutual fund performance in order to learn

about the skill level of a particular fund. Such flexibility gives the investor the room needed

to allow for subpopulations of extraordinarily skilled or unskilled funds, and for grouping

together ordinary funds into their own sub-population. Better inference about a specific

funds ability will also be gained with our nonparametric approach. We now compute the

posterior cross-sectional distribution for the two types of investors who believe a funds alpha

is a draw from a common cross-sectional distribution.

Figure 3 plots in red the density of the posterior cross-sectional distribution of alpha for

the investor who learns how skill is distributed over mutual funds by computing π̂r1,...,rJ (α)

with Eq. (21). Also plotted in Figure 3 is the blue density for the posterior cross-sectional

18The performance measure of JS and Cohen et al. (2005) both suffer from this type of shrinkage toward
the average of the overall population.
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Figure 3: Posterior cross-sectional density of alpha, π(α|r1, . . . , r5136), for investors who
believe the underlying distribution is normal (dashed line) and for investors who do not
assume a particular distribution for alpha but have placed a Dirichlet Process Mixture
prior over the unknown distribution of alpha (solid line).
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distribution for those who believe skill is normally distributed but whose unknown popula-

tion mean and variance are integrated out through

π(α|r1, . . . , rj) ≈M−1
M∑
l=1

N(α|µ(l)α , σ2(l)α ),

where (µ(l), σ2(l)), l = 1, . . . ,M , are draws from the normal models posterior π(µα, σ
2
α|r1, . . . , rJ).19

Very different conclusions about the cross-sectional performance of mutual funds are

drawn from these two predictive densities. By assuming no particular form for the cross-

sectional distribution, our investor identifies three distinct sub-populations of ability within

the existing universe of mutual fund skill. There is a low probability sub-population of

unskilled funds whose average ability results in a return slightly below the market excess

return. According to this sub-population, a new fund has a twenty-two percent chance of

being an unskilled fund that produces an alpha between −5% to 0.4% a year. There is

a more probable sub-population whose expected ability results in an alpha of 1.8 percent,

which just covers the fees of the average mutual fund.20 A new fund has a seventy-three

percent chance of belonging to this group and producing an alpha between 0.4% and 4.0%.

The last of the three sub-populations is the very low probability group of highly skilled

funds diffusely distributed over the five to ten percent range. This high skilled sub-

population is initially hard to see but it becomes clearer in the log predictive density plot

of Figure 4. According to the posterior predictive density an arbitrary fund selected by our

investor, whose performance either doesn’t exist or cannot be observed, has a three percent

chance of returning the investor an excess risk factor adjusted return of between four to

ten percent a year. This is large relative to the less than a half a percent chance the fund’s

alpha will be between −4% and −10%.

This multimodal, positively skewed, population distribution stands in stark contrast

to the unimodal, symmetrical, normal, cross-sectional, distribution. As a result we find

that a fund is more likely to cover its fees, be extraordinarily skilled, or less likely to be a

zero-alpha fund than suggested by the normal, cross-sectional, performance, distribution.

In Table 1, the quantiles, standard deviation, skewness and kurtosis are listed for both

19The third type of investor from Section 5.1 does not believe the alphas come from a common cross-
sectional distribution. Instead, each funds alpha is viewed in isolation and, hence, such investors have
nothing to say about the cross-sectional distribution of mutual fund performance.

20Chen & Pennacchi (2009) report the average mutual fund’s expense fee is 1.14 percent, whereas Berk
& Green (2004) choose a slightly higher management fee of 1.5 percent to account for costs not included
in the fee when parameterizing their mutual fund model. We perform our analysis with the larger fee of
1.5 percent to compensate for missing trading costs. Wermers (2011) from ICI estimates actively managed
mandates expenses and transactions costs of mutual funds and hedge funds amount to at least two percent
a year.
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Figure 4: The log, posterior, cross-sectional, density of alpha for the investor who learns
how skill is distributed across mutual funds. This density represents the log likelihood the
alpha of a fund randomly picked from the population, with no return history, will take on.
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Percentiles
0.01 0.05 0.1 0.5 0.9 0.95 0.99 SD Skew Kurtosis

DPM −2.90 −1.40 −0.83 1.43 2.46 3.19 11.48 2.36 4.31 101.49
Normal −2.19 −1.15 −0.60 1.34 3.28 3.83 4.87 1.51 −0.0002 3.02

Table 1: Posterior cross-sectional percentiles, standard deviation (SD), skewness, and kur-
tosis for the investor who believes the underlying distribution of skill is normally distributed
(Normal) and the investor who learns how skill is distributed across mutual funds (DPM).

posterior cross-sectional distributions. Each distribution’s overall mean is slightly less than

1.5 percent a year. Having approximately the same population mean is expected since

pooling together the average skill level from the three sub-populations is the average ability

of the entire population.

Because one of our distribution’s three modes is above five percent, the cross-section is

positively skewed, and thus, puts more probability on a fund being skilled than does the

posterior population distribution under the assumption of normality. Hence, the likelihood

of an arbitrary fund being skilled is higher than previously thought. Our flexible population

distribution is also more fat tailed, with a kurtosis of 101.49, than under a normal cross-

section. So there is a greater chance that an arbitrary fund will be extraordinarily skilled, or

unskilled, than one would expect under a normally distributed population. Distributional

properties like positive skewness and excess kurtosis are just a couple of reasons for flexibly

modeling the cross-sectional distribution of mutual fund performance.

A natural question to ask of the two investor’s cross-sectional distribution is, what is the

probability an arbitrary fund possesses enough stock-picking talent to generate an alpha

in excess of its fees, and how different will this probability be for the two different type

of investors? Both investors believe there is a 81 percent chance an arbitrary fund will

generate an alpha greater than zero. Such a high probability is not surprising since JS also

found strong evidence of skill with the same panel of mutual funds. However, when fees

and expenses are considered our investor believes there is a 57 percent chance the returns

from an arbitrary fund will be large enough to cover the 1.5 percent average fee and expense

charged by mutual funds. This compares to the 46 percent chance the investor who believes

skill is normally distributed gives to the arbitrary fund. So even though the overall potential

of an arbitrary fund generating a return in excess of the market is approximately the same,

where this potential is located differs for the two investors.

An investor who believes the population distribution of skill is normally distributed

assigns a 0.8 percent chance to a arbitrary fund being skilled enough to enhance returns by

28



five percent or more. Because our investor believes there is a non-zero chance the arbitrary

fund belongs to the group of highly skilled funds, to him the chances are greater than 0.8

percent. In fact he believes the probability of the fund’s alpha exceeding five percent is

four times higher at 3.2 percent. Hence, investors who believe mutual fund performance

is normally distributed are less incline to invest in a mutual fund than the investor who

assumes nothing about the cross-sectional distribution and learns about it.

Both posterior, cross-sectional, densities in Figure 3 are consistent with Berk & Green

(2004) theoretical model where in the long run a successful fund breaks even and earns a

return that just covers its expenses. This is evident in the overall means both being approx-

imately equal to the average fee of 1.5 percent. The flexible cross-sectional distribution’s

primary mode is centered near this average fee, meaning a fund is most likely going to gen-

erate a market excess return large enough to cover its fees. But there are still the skilled and

unskilled subpopulations. One possible explanation for the highly skilled sub-population is

that it represents successful funds that have not yet experienced the increasing costs that

come from attracting more assets. This short-run versus long-run success argues for having

a flexible, time-varying, alpha model. This is the subject of ongoing research.

The flexible posterior cross-sectional distribution’s three sub-populations also supports

Barras et al. (2010) and Ferson & Chen (2015) claim that funds can be separated into

unskilled, zero-alpha, and skilled groups of funds. However, our flexible posterior cross-

sectional distribution has a lower probability of a fund being unskilled and a greater prob-

ability a fund will break-even fund than this earlier research infers. Our cross-sectional

distribution’s sub-population of superior performing funds also goes against the empirical

results of Ferson & Chen (2015) and Fama & French (2010), who could not find any evidence

of skilled funds.

5.3 Robustness to the base distribution

This posterior view of the population distribution of mutual fund skill is for the investor

whose initial level of understanding about the distribution of mutual fund skill is repre-

sented by a Student-t distribution with ν0 = 0.01 degrees of freedom, a mean, m0 = 0,

and scale, (κ0 + 1)ν0s
2
0/κ0, where s20 = 0.01 and κ0 = 0.1. To validate the robustness of

the posterior population distribution of alpha to the investor’s choice of G0, we estimate

the posterior cross-section of mutual fund skill using larger values of the degrees of free-

dom hyperparameter ν0. Larger values of ν0 reflect a lower willingness by the investor to

learn about the population distribution of alpha. We find that when ν0 is less than 0.6

the posterior cross-sectional distribution of alpha is no different from Figure 3. However,
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when ν0 is greater than or equal to 0.7, the posterior population distribution is no longer

multimodal. While the cross-sectional distribution of alpha still consists of a mixture of

multiple sub-populations, the posterior distribution is unimodal, centered over an alpha of

1.4 percent, with a skewness of 5.02 and a kurtosis of 110.

One possible explanation for the sensitivity to ν0 is found in the inter-quartile range

of the investor’s prior predictive distribution. The inter-quartile range of the investor’s

initial population distribution, π̂(α), goes from a very diffuse 10126 when ν0 = 0.01, to

a range of 3.7 when ν0 = 0.1, but then to a restrictive range of 0.18 when ν0 = 0.6.

Applying the terminology of JS to the Dirichlet process distribution, a base distribution

with a larger ν0 is a more skeptical prior about skill where learning about different sub-

populations by our investor is less pronounced. By increasing the degrees of freedom, our

investor’s prior predictive distribution of mutual fund skill is more certain about how skill

should be distributed over the population of funds. This inflexibility limits the learning by

the investor causing him to fail to identify different sub-populations and unique performers.

Instead, a wider spectrum of stock picking ability will be grouped together into fewer sub-

populations.

A more flexible, but nonconjugate, distribution is to endow our investor with the base

distribution G0(µα, σα) ≡ N(µα|0, s2µ)SM(σα|1/2, 2, A/
√

3)) where

fSM

(
σα

∣∣∣1/2, 2, A/√3
)

=
3Aσα

(A2 + 3σ2α)3/2
,

is the density function to the Singh & Maddala (1976) distribution, SM(σα|1/2, 2, A/
√

3)).

The Singh & Maddala (1976) distribution is an appealing base distribution for σα since

it allows for more weight over values of σα close to the zero than the Inverse-Gamma

distribution. Diffuse priors were then applied to the hyperparameters, s2µ and A, so that

their impact on the investor’s predictive of the population distribution of alpha could be

integrated away. Because of the nonconjugate nature of this base distribution we need

to use an alternative algorithm to Section 4 to sample the Dirichlet process distribution

unknowns. Using Algorithm 8 of Neal (2000) we find the same multimodal posterior cross-

sectional distribution plotted in Figure 3.21

5.4 Survivors cross-sectional distribution

Since the cross-sectional densities of Figure 3 are conditional on the past performance of

funds that are either still in business or no longer in business, the above result do not suffer

21These posterior results are available upon request.
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from the surviorship bias pointed out by Elton et al. (1996). In Figure 5 we plot our investors

posterior cross-sectional distribution, using only the return histories of the 3,843 funds that

survived to the end of the sample, against the above posterior cross-sectional distribution.

The two largest modes in the surviving fund’s cross-sectional distribution have tighten up

around the means of the sub-populations from the original predictive distribution. This

helps to clearly delineate the skilled from the unskilled group of funds. Also noticeable

in the densities of Figure 5 is the thinner left hand tail when the dead funds are dropped

from the analysis. This thinner tail indicates a large share of the extraordinary unskilled

funds are no longer in business, but even for the funds that are still in business there is

the potential for losing money. Lastly, the probability of the arbitrary fund belonging to

the extraordinary group of skilled funds has increased. Hence, removing the dead funds

from the investors information set has tightened up the variance of each sub-population

and increased the chances the arbitrary fund which is open for business is highly skilled. It

did not, however, eliminate the potential for an arbitrary operating fund from being poorly

managed and losing money for our investor.

Figure 5 sub-population of poorly managed funds runs counter to the model of Berk &

Green (2004). Theoretically rational investors would pull their money from underperforming

funds, causing these unskilled funds to either go out of business or experience decreasing

returns to scale enabling them to be competitive. This group of unskilled funds who have

assets under management leaves open the door that some investors act irrationally when

investing in mutual funds (see Gruber (1996)), but that also short term poor performance

is tolerated by investors.

5.5 Cross-sectional evolution

Beginning in the year 1993 the number of new mutual funds entering into the asset man-

agement business began to accelerate. In the following years more than three-hundred new

mutual funds were opening for business each year. This number peaked in 1998 with 659

new funds opening up for business. The large number of new mutual funds opening up for

business each year, along with our investor viewing each funds performance as a realization

from the unknown population distribution of mutual fund skill, provides us with an oppor-

tunity to analyze the evolution in the stock-picking ability of the mutual fund industry and

also determine if the new funds were skilled or not.

Starting in 1981 and moving in yearly increments to the year 2000, we estimate the

cross-sectional distribution of alpha using the return histories of all the funds ever to have

existed up to the specified year. Any new mutual funds were only included if they had at
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Figure 5: Posterior cross-sectional densities of alpha when investors have a Dirichlet Process
Mixture prior for the unknown cross-sectional distribution of alpha and condition their
beliefs on the information found in the returns of both existing and extinct funds (red line)
and other investors who condition their predictions using only the returns from funds that
exist at the end of the sample (blue line). Both densities are calculated from Eq. (21) with
J = 5, 136 for the information set that includes the returns of all funds and J = 3, 843 when
it only includes the returns of those fund existing at the end of the sample.
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Figure 6: Posterior cross-sectional densities of alpha for, first, a panel of mutual fund
that existed during the 1961 to 1981 period, and then increasing the panel by each year’s
new funds from 1982 to 2000 for the new funds with at least four months of returns. More
formally, posterior estimates of the cross-sectional distribution, π(α|Rt), t = 1981, . . . , 2000,
where Rt is the history of returns from 1961 up until year t of those mutual funds that had
existed up to year t. A fund is included if it has at least four months of performance history.
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least 4-months worth of returns. What we find is four different episodes or eras of population

distributions of mutual fund skill. We plot the four eras population distributions in the four

panels of Figure 6. The four eras are i) 1981 to 1897, ii) 1988 to 1993, iii) 1994 to 1996,

and iv) 1997 to 2000.

In the first panel of Figure 6 we plot the seven posterior cross-sectional distributions

from the growing number of fund histories beginning in 1981 and ending in 1987. Each

distribution is symmetrical around the average fund fee of 1.5 percent. This symmetry

indicates our investor finds funds to be on average able to cover their costs, but also equally

likely to produce abnormally high or low returns. No sub-populations of skill exist in this

panel of mutual funds for this time period, so the investor assigns a new fund to the same

population as the existing funds.

As entry into the mutual fund industry begins to accelerate from 1988 to 1993, the second

panel of Figure 6 shows our investor becoming more and more certain about the level of skill

possessed by an arbitrary fund. With each year’s inflow of new funds, the primary mode of

the population distribution tightens around a value of alpha approximately located at the

average mutual fund fee. During this time period the probability a fund selects stocks that

will result in an abnormally negative alpha declines relative to the earlier era as the left

hand tails of the distribution are now thinner. Highly skilled funds are also on the increase

as the right hand tail of the cross-sectional distribution pushes out past six percent to eight

percent. Hence, entry of new funds during this time period and performance of existing

funds improved the overall performance of mutual funds.

From 1994 to 1996 the population continues to tighten around the average fee charged

by funds. However, after 1997 the distribution of stock-picking ability begins to change. In

the bottom panel of Figure 6, the population distribution during the years of 1997 to 2000

starts to become skewed to the left. Ultimately a second mode appears in the cross-sectional

distribution at abnormally negative values of alpha. There are also more sub-populations

among the universe of mutual funds. This era corresponds to the fastest growth period

of the mutual fund industry. According to the population distribution the large number

of funds entering the business caused some funds to have very poor stock-picking ability,

hence, the negative mode.

In Figure 7 we plot the population distributions of alpha from 1995 to 2001 using only

the return histories of those funds that opened for business during the 1993 to 2001 time

period.22 Funds that were new to the business were more likely to generate a positive alpha

as seen in the positive primary mode. However, over this same time period the probability

22A new fund was only included if it had twelve months of return performance.
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Figure 7: Posterior cross-sectional densities of alpha from 1995 to 2001 using only the
performance histories of funds that entered the mutual fund business after 1992 and had a
years worth of performance data.
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Year J K Median Skewness Q0.05 Q0.95 P (α > 0)

1981 328 1 1.220 0.068 −1.139 3.700 0.812
1982 348 1 1.314 0.262 −0.957 4.069 0.853
1983 382 1 1.296 0.042 −1.121 3.774 0.816
1984 432 1 1.318 0.065 −1.122 3.888 0.820
1985 487 1 1.395 0.011 −1.173 3.982 0.816
1986 577 2 1.234 0.379 −1.342 4.987 0.838
1987 665 1 1.595 0.078 −1.288 4.654 0.828
1988 778 2 1.305 1.041 −1.795 7.516 0.892
1989 854 2 1.329 1.016 −1.368 7.703 0.900
1990 902 2 1.279 0.571 −0.951 6.203 0.921
1991 983 2 1.185 1.124 −0.782 6.015 0.920
1992 1073 3 1.036 −0.521 −1.096 5.662 0.914
1993 1258 3 0.963 −0.477 −0.846 5.970 0.918
1994 1599 2 1.303 0.861 −1.151 5.373 0.922
1995 1939 2 1.210 0.544 −1.711 5.194 0.902
1996 2275 2 1.270 0.608 −1.183 4.890 0.918
1997 2704 2 1.314 −0.064 −1.540 4.150 0.900
1998 3364 3 1.164 −4.182 −2.695 3.065 0.803
1999 3977 4 1.160 −1.448 −2.188 2.119 0.778
2000 4539 3 1.444 4.584 −0.766 4.719 0.927

Table 2: Yearly evolution of the cross-sectional mutual fund performance distribution’s
median, skewness and probability of beating the passive four-factor portfolio, P (α > 0),
where J is the number mutual fund having existed up to that year, K is the posterior
median number of sub-populations and Q0.05 and Q0.95 are the 5 percent and 95 percent
quantiles.

of a new fund generating a negative alpha is increasing as the negative mode moves further

to the left. Thus, we come to the conclusion that during the later half of the 90s when

the number of new funds entering into mutual fund industry was accelerating, a new fund

was likely to be skilled and capable of covering its fees, but with each year there was an

increasing chance the new fund would be unable to earn a high enough return to justify its

fees.

Table 2 lists the characteristics and features of each cross-sectional distribution of skill

over the years 1981 through 2000. Each line contains the total number of funds, both in,

and out of business since 1961 up to that year, J , the median number of sub-populations,

K, the median and skewness, and the 5 percent and 95 percent quantiles, Q0.05 and Q0.95,

of the cross-sectional distribution, and the probability an arbitrary mutual fund generates a

positive alpha, P (α > 0). Beginning in the 90s an arbitrary fund is exceptionally skilled, as
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defined by having an alpha in the top 5 percent of the distribution, if it generated an alpha

of two to six percent. This was less of a return over the market than a highly skilled fund

from the 80s. For example, over the 90s the Q0.95 declines from an alpha of approximately

6 percent to 2 percent per annum, where as in the 80s it was never less than 3.7 percent

and reached a high of 7.7 percent in 1989.

During the 90s the alpha of an arbitrary bad fund, as defined by the 5 percent quantile,

Q0.05, also declined but in a noisier fashion. Poor performance in the mutual fund industry

went from −0.95 percent in 1990 to a low of −2.7 percent in 1998. With the exception of

1998 and 1999, the probability our investor chooses an arbitrary mutual fund capable of gen-

erating a positive alphas stayed right around 90%. Hence, overall mutual fund performance

went down during the 90s relative to the 80s.

5.6 Individual predictive distributions

For the purpose of determining the skill level of a specific mutual fund investors form

posterior beliefs about the fund’s future performance. Called either the posterior predictive

distribution or the posterior distribution of the ith fund’s alpha, it is proportional to

π(αi|r1, . . . , rJ) ∝ f(r∗i |αi) π̂r1,...,ri−1,ri+1,...,rJ (αi), (22)

for i = 1, . . . , J , and where r∗i has been defined in Eq. (17) as the risk and factor ad-

justed return history of the ith fund. After the return histories of the other J − 1 funds

have been observed, but before observing the ith funds returns, our investor’s state of

knowledge about the ith fund’s ability is fully captured by his updated prior distribu-

tion, π̂r1,...,ri−1,ri+1,...,rJ (α). This updated prior is the posterior population distribution from

Eq. (20) but without conditioning on observing the ith fund’s empirical returns. Since J

equals 5,136 funds, letting any fund be the ith fund and dropping its return history from

the posterior analysis has virtually no effect on the posterior cross-sectional distribution

π̂r1,...,rJ (α). Hence, π̂r1,...,ri−1,ri+1,...,rJ (α) ≈ π̂r1,...,rJ (α) for i = 1, . . . , J . Applying this

approximation to our investors prior beliefs about the ith fund ability in Eq. (22), our

investor’s prior for the skill level of the ith fund is the posterior cross-sectional density in

Figure 3.23

As a measure of the investor’s state of knowledge about a fund’s level of skill, the

posterior π(αi|r1, . . . , rJ) expresses our investor’s knowledge about the ith funds alpha in

terms of the probability of its future above market risk factor adjusted returns. It is natural

23As written, the likelihood, f(r∗i |αi), from Eq. (22) implicitly assumes βi and σi are known. In the
sampler of Section 4 we have integrated out the uncertainty behind these parameters through draws from
their conditional posterior distribution.

37



and straight forward for the investor to ask and answer the question, what is the probability

the ith mutual fund will pick under priced stocks such that its future returns covers its fees?

For our purposes, we choose to denote an exceptional fund as one whose past performance

as measured by its likelihood f(ri|αi), separates it from the expected future performance

of an arbitrary fund as measured by the population distribution, π̂r1,...,...,rJ (α).

Figure 8 plots the densities of every one of the 5,136 mutual funds posterior predictive

distribution of alpha, π(αi|r1, . . . , rJ). The predictive densities of the 3,844 mutual funds

that are still open for business at the end of the sample are represented by blue lines,

and the densities of the 1,293 funds no longer in business are represented by red lines.

Transparency has been added to each fund’s density so that darker shades of red, blue,

or purple (combinations of red and blue) indicates different levels of concentration among

the individual densities. To help visually identify the exceptional funds in our panel the

posterior cross-sectional distribution’s density from Figure 3 is plotted in orange.

Most of the predictive densities for the specific funds in Figure 8, be the fund dead or

alive, resemble the multimodal, cross-sectional distribution of alpha (the orange density).

This similarity between the specific and cross-sectional posterior predictive densities shows

how much information about skill is contained in the updated prior π̂r1,...,ri−1,ri+1,...,rJ (αi)

and how much our investor relies on it when forming his beliefs about a particular funds

ability. It also indicates what little information is contained in most mutual funds likelihood

f(ri|αi, βi, σ2i ).24 For the ‘average” fund whose performance is typical and has a likelihood

which is relatively flat, the updated cross-sectional distribution resolves most of the uncer-

tainty around the number of modes and their locations for the ‘average’ funds posterior

distributions of skill.

We draw three conclusions from Figure 8 about the ability of the specific funds found

in our data set. First, regardless of a fund being in or out of business, its predictive

distribution has in general two modes. The smaller of these modes is located at an alpha

close to minus one percent, indicating that they have the potential to generate losses, costing

the investor not only the active mutual fund’s management fee but also the foregone return

from investing in the passive risk factor portfolio. These same funds also have a primary

predictive mode that is close to an excess market return of two percent. A primary mode of

two percent along with a second mode at a negative gross alpha informs the investor that

such a fund is likely to cover its fees but there is also a non-trivial chance the fund will fail

to cover its costs and could possibly loss money for the investor.

24This same point has been made by the least squares literature where the R2s for the fitted risk-factor
models are small for most funds.
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Figure 8: Posterior cross-sectional distribution of alpha in orange plotted against every fund
that existed from 1962 to 2001 posterior predictive distribution of alpha, π(αi|r1, . . . , r5136),
i = 1, . . . , 5136, where the funds that are still in business are plotted in blue, whereas those
that are no longer in business are in red. Darker shades of red or blue indicate a higher
concentration of funds having similar shaped densities.
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Second, in the individual predictive densities of Figure 8 there is credible evidence of

exceptional funds, either skilled and unskilled, existing in the population. Later we point

out that these funds are truly exceptional since they are so few in number – twenty-one

skilled and fifty unskilled. Finding so few exceptional funds runs counter to earlier empirical

mutual fund results where there is a larger presence of skilled and/or unskilled funds (see

Kosowski et al. (2006), Fama & French (2010), and Barras et al. (2010), and Ferson & Chen

(2015)). However, as we have already pointed out in Section 5.1, these earlier findings on

extraordinary fund performance suffer from noisy alpha estimates. Hence, most mutual

funds are not extraordinarily talented or unskilled. Instead, a fund has a greater chance of

being just talented enough to select stocks that on average result in a return that justifies

its costs, expenses and fees.

In Figure 8, the funds with superior stock picking skills are those whose predictive

densities have sizable probability over values of alphas between five to ten percent. A few

of these exceptional funds have modes located at alphas larger than the cross-sectional

distribution. For instance, in Panel (b) of Figure 9 we plot the individual densities of the

posterior distribution of alpha for each of the twenty-one mutual funds who have at least a

95% chance of its alpha being greater than the average fund fee of 1.5%. Half of the twenty-

one skilled funds has a primary mode near 1.5%, and only one is no longer in business. In

Table 3 we list from shortest to longest return histories each of the twenty-one skilled funds,

its years of operation, and the fund’s posterior mean alpha. Four of the funds possess the

extraordinary ability to pick stocks such that they are expected to result in an alpha that

is greater than 15% per year. However, there is sizable uncertainty around this potential as

seen in the four funds flat and diffuse predictive distributions.

The apparent success of these twenty-one highly skilled mutual funds helps answer the

question asked by Kosowski et al. (2006) and Fama & French (2010) whether such funds are

genuinely skilled or just lucky. We find luck playing no role in the success of these twenty-

one skilled funds. Because the posterior cross-sectional distribution of skill is so informative

about the typical fund’s ability when the investor has a large panel of mutual funds per-

formance, his knowledge about the skill level of an exceptional fund is distinctly different

from what he believes about the cross-section. Referring back to Panel (a) of Figure 2 in

Section 5.1, we see the posterior means of π(αi|r1, . . . , rJ) ∝ f(ri|αi)π̂r1,...,ri−1,ri+1,...,rJ (αi),

(on the vertical axis) shrinking the means of π(αi) ∝ f(ri|αi) (the horizontal axis) of the

highly skilled funds back towards the the cross-sectional distribution’s primary mode of 1.5

percent. However, because of the highly skilled fund’s superior performance histories, their

likelihoods, f(ri|αi), enables them to escape the cross-sectional distribution. Each of these
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Fund Years of Operation Alpha

Turner Funds: Micro Cap Growth 1998-2001 33.07
Schroeder Ultra Fund 1997-2001 49.77
Artisan Mid Cap Fund 1997-2001 16.77
Needham Growth Fund 1996-2001 17.40
Olstein Financial Alert Fund/C 1996-2001 13.84
Fremont Mutual Fds:US Micro Cap Fund 1994-2001 13.23
PIMCO Funds:Stocks Plus Fund/Instl 1993-2001 2.46
Fidelity Dividend Growth 1993-2001 4.87
Managers Funds:US Stock Market Plus 1992-2001 2.44
Fidelity Low Priced Stock 1990-2001 5.93
Victory Funds:Diversified Stock Fund/A 1989-2001 2.88
T Rowe Price Capital Appreciation Fund 1986-1999 3.75
JP Morgan Growth & Income Fund/A 1987-2001 6.30
Gabelli Growth Fund 1987-2001 5.29
Weitz Series Fund:Value Portfolio 1986-2001 4.50
IDEX Janus Growth Fund/A 1986-2001 4.87
Gabelli Asset Fund 1986-2001 4.99
Oppenheimer Growth/A 1973-2001 3.82
AXP Growth Fund/A 1972-2001 4.71
Janus Fund 1970-2001 3.90
Vanguard Morgan Growth/Inv 1968-2001 4.40

Table 3: Individual mutual funds who have at least a 95 percent chance of returning an
investor a market excess return larger than the average mutual fund fee of 1.5 percent, their
average posterior alpha, from the newest to oldest.
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skilled funds distinguishes itself in Panel (b) of Figure 9 from the population by having

a mode of five percent or higher. Hence, there are a few truly skilled funds among our

cross-section of mutual funds.

Our third finding concerns the stock-picking ability of funds that are unskilled but are

not dead. A number of predictive densities in Figure 8 have fat tails over negative values

of alpha, but not all of them are red. There are plenty of blue densities that place a high

level of probability on alpha being negative. In Panel (a) of Figure 9 we plot the individual

densities of the fifty funds that have a 95% chance or higher of generating an alpha less than

the average fee of 1.5%. Twenty-nine of these poor performing funds are still in business

at the end of the sample (represented by the blue densities in Panel (a)). This includes the

worse performing fund in our cross-section, the Potomac OTC/Short fund, whose expected

alpha is −26% and has a 3% chance of losing the investor between twenty to forty percent

a year. Except for the two closed funds, Bowser Growth Fund, whose expected alpha is

−24%, and Ameritor Industry Fund, with an expected alpha of −7%, the other forty-seven

unskilled funds engage in trades that are expected to result in gross losses of between zero to

five percent a year. Nine of these are funds have been in business since the early 1960s and

are still in business. So, poor performance by a fund does not necessarily lead to investors

divesting their money from a unskilled fund. Perhaps there are restrictions placed on the

fund investors prohibiting withdrawals or limiting redemptions. In other cases, investors

may not be paying attention to the losses on their mutual fund investment because they

were not the original investor.

6 Conclusion

By allowing investors to learn the cross-sectional distribution of mutual fund skill and not

just its unknown mean and variance, we find the population cross-sectional distribution of

mutual fund performance consists of three sub-populations. The most likely sub-population

has a mean gross alpha of 1.8 percent per year, followed by an unskilled group of funds whose

average alpha is −0.5 percent, and lastly, a low probability, but high performing, sub-

population whose average performance is greater than five percent a year. Since the cross-

sectional distribution is approximately the prior for a particular mutual fund’s posterior

predictive distribution of skill, we find 22 (50) funds out of our panel of 5,136 mutual funds

have a 95% chance or higher of (not) producing a gross alpha that exceeds the average fee

charged by a fund. Hence, the performance history of most funds is not more informative

than the cross-sectional distribution, but there are few skilled and unskilled funds.
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Figure 9: Specific fund’s densities for the posterior predictive distribution of future skill
where Panel (a) are the fifty unskilled fund’s who have at least a 95% chance its alpha will
be less than 1.5 percent, and Panel (b) are the twenty-one skilled funds who have at least
a 95% chance its alpha will be greater than 1.5 percent (the vertical line in both plots is
at the average fund’s fee of 1.5 percent). Densities for mutual funds that are in business at
the end of the sample are plotted blue, whereas the densities for funds that have closed are
in red. In Panel (a) there are a total of twenty-one dead unskilled funds, and in Panel (b)
there is only one dead skilled fund (the T. Rowe Price Capital Appreciation Fund).
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The approach we have taken here to learn how skill is distributed over the cross-section

of mutual funds can also be applied to other finance related questions. Bayesian updating

of an unknown distribution is applicable to any finance problem where one is interested

in making inference about a population distribution. For example, one could estimate the

unknown distribution of a time varying CAPM beta in order to forecasts beta into the

future by sampling from its updated posterior for future time periods. We are currently

investigating this and other similar types of research ideas from the standpoint of an investor

who learns about an unknown distribution.
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