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This paper uses ideas from symbolic computation to classify solutions to an important

class of problems in mathematical finance and thus provides a linkage between these two
fields. We show that Kovacic’s concept of closed-form solutions to the Riccati ordinary

differential equation can be used to provide a precise mathematical definition that is
useful in certain financial models. We extend this definition to a broader class of problems
and discuss how these ideas can be usefully applied to practical problems in the finance

area. We provide a specific application by developing a new implementation of the Cox–
Ingersoll–Ross interest-rate model that may be of practical interest.

c© 2002 Elsevier Science Ltd

1. Introduction

The concept of a closed-form solution to the Riccati equation has been given a precise
mathematical definition by Kovacic (1986). Furthermore Kovacic also gave an algorithm
that can be used to determine the closed-form solutions to the Riccati ordinary differential
equation. The Riccati equation plays an important role in the solution to a class of
problems in mathematical finance. In this paper we note that Kovacic’s definition provides
a basis for classifying solutions to an important set of what are known as interest-rate
models. It provides a precise meaning to the concept of a closed-form solution. We will
also show that the Kovacic algorithm enables us to extend the class of solutions to a
particular model that is widely used in the finance area. To provide some background we
give a short overview of relevant developments in the finance field.

A key breakthrough in finance research can be traced to the seminal Black and Scholes
(1973) paper which gave a methodology for valuing a particular type of financial contract
known as a derivative security. In this context, the word derivative means that the value
of the security depends on or is derived from some underlying security such as a common
stock or a bond. Their key insight was to use an economic principle known as the principle
of no arbitrage to value the related security. For an exposition of the no arbitrage principle
and its role in modern finance, see Duffie (1996). This methodology has been applied to
a wide range of problems in the finance area and it now provides the foundation for
countless commercial transactions.

Broadly speaking, finance models assume that movements in prices stem from uncer-
tainty in the economy. To model this uncertainty the price of the underlying asset is
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assumed to follow a stochastic differential equation. Often this equation is a continuous
time Ito diffusion and the form of the equation depends on the variable or variables
involved. By invoking the no arbitrage assumption one can construct a partial differ-
ential equation for the price of any derivative security whose value is a function of the
basic underlying security. The contract provisions of the derivative security supply the
boundary conditions for the differential equation. For example, if we assume that the
underlying asset is a share of common stock which follows geometric Brownian motion
the resulting equation is the Black–Scholes–Merton equation. If the derivative security
is a so-called European option this equation has a simple solution which can be written
in terms of the underlying variables and the cumulative normal distribution function.
This solution is known as the Black–Scholes formula and it is generally described in
the finance literature as being an analytical solution or a closed-form solution. However
in the finance literature, the concept of a closed-form solution is often imprecise. The
objective of this paper is to provide a more precise definition of this concept in finance
applications. We will use ideas from symbolic computation in setting up this definition.

One of the most active areas of current research in the finance area is in the modeling
of stochastic interest rates. There are additional complications when modeling interest
rates, since at any given instant there is a vector of interest rates related to the maturities
of the currently traded bonds. This contrasts with the case of a common stock where the
current price is just a simple scalar. In the case of stochastic interest rates we assume
the important sources of variation are captured by a small number of state variables. A
common approach is to postulate a stochastic differential equation for the dynamics of
these state variables. The Cox et al. (1985) model provides one of the best known models
of this genre. It is quite tractable since analytical expressions exist for many quantities of
interest such as bond prices and option prices. Furthermore the CIR process is based on
plausible interest-rate dynamics since interest rates always remain positive and wander
around a long-term mean.

One of the problems with the early implementations of stochastic Interest-rate models
was that the theoretical model prices did not fit the existing observed market prices of
bonds. The reason is that at any time there is a vector of current bond prices and a
model with a few parameters simply cannot fit the entire set of bond prices. With the
introduction of interest-rate derivatives the situation became worse since these derivatives
depend critically on the volatility of interest rates. It is useful for trading† purposes to
have a model which can fit exactly the prices of the currently traded instruments. One
solution to this problem was to make the parameters of the model depend on time in
a deterministic way. The actual nature of the time dependence could be computed by
comparing the model prices with the observed market prices. This process of finding time-
dependent parameters that ensures equality between model prices and market prices is
known in the finance literature as calibration.

In the case of the CIR model the calibration procedure is intimately related to the
solution of the Riccati ordinary differential equation. For a discussion of the relation-
ship, see Duffie and Kan (1996). Closed-form solutions of the Riccati equation have been
studied in the differential algebra literature. In particular, Kovacic (1986) gave a pre-
cise mathematical definition of the concept of a closed-form solution in the case of the

†This is because many derivatives can be replicated by portfolios of more basic securities. The process
of replicating a derivative by a portfolio of other securities is known as hedging. Hedging and pricing are
very closely related. It is often important to use a model which faithfully reproduces the prices of the
most commonly traded securities.
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Riccati equation and also gave an algorithm that classifies the closed-form solutions.
Kovacic’s work on the Riccati equation is thus directly relevant to the calibration exer-
cise in the CIR interest-rate model and in this paper we explain the significance of this
connection. This connection enables us to develop new implementations of the so-called
extended CIR model that may be useful in the finance area.

The remainder of this paper is as follows. In Section 2 we summarize the relevant
literature on the closed-form solutions to the Riccati equation. We describe Kovacic’s
important contributions to this field. Next we summarize some of the relevant aspects of
the Cox–Ingersoll–Ross model in Section 3. We describe in more detail the connection
between the Riccati equation and the practical implementation of the CIR model. We
also show that the basic intuition of an analytical solution that has been proposed in the
finance literature by Jamshidian (1996) ties in closely with the definition we are proposing
for closed-form solutions. Section 4 gives an explicit example of a new implementation of
the extended CIR model that we have developed using the ideas in this paper. Section 5
concludes the paper and mentions a possible extension of this application.

2. Closed-form Solutions of the Riccati Equation

In this section we review some of the relevant literature on the existence of closed-
form solutions of the Riccati ordinary differential equation. We recall the definition of a
closed-form solution of the Riccati equation and present Kovacic’s algorithm for finding
closed-form solution of the Riccati equation. The Riccati ordinary differential equation
is of the form

dy(x)
dx

+ a(x)y(x)2 + b(x)y(x) + c(x) = 0.

In the next section we provide some definitions and recall some known results from
differential algebra. We refer the reader to the excellent book by Bronstein (1997) on
this topic.

2.1. definition of closed-form solutions

A differential field (k, δ) is a field k endowed with a derivation δ. The field of constants,
Constδ(k), is the set of f ∈ k with δ(f) = 0. Consider the following Riccati ordinary
differential equation (ODE) in (k, δ):

Ra,b,c : δ(f) = af2 + bf + c, a, b, c ∈ k. (1)

The statement that the Riccati equation (1) has solution in (k, δ) means that there
exists an element f ∈ k such that δ(f) = af2 + bf + c. A differential field extension of
(k, δ) is a differential field (K, ∆) such that k ⊆ K and ∆(a) = δ(a) for any a ∈ k.

Definition 1. A differential field extension (K, ∆) of (k, δ) is called a Liouvillian ex-
tension if there is a tower of fields

k = K0 ⊆ K1 ⊆ · · · ⊆ Km = K

where Ki+1 is a simple field extension Ki(ti) of Ki, such that one of the following holds:

(i) ti is algebraic over Ki, or
(ii) ∆(ti) ∈ Ki (extension by an integral

∫
u where u = ∆(ti)), or
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(iii) ∆(ti)
ti

∈ Ki (extension by the exponential of an integral e
∫

u where u = ∆(ti)
ti

∈ Ki).

We are now able to define a closed-form solution of the Riccati equation.

Definition 2. The Riccati equation Ra,b,c has a closed form if there exists a Liouvillian
extension (K, ∆) of (k, δ) and an element t ∈ K such that

∆(t) = at2 + bt + c (2)

holds.

It is clear that any first-order linear ordinary differential equation can be solved in a
Liouvillian extension. Throughout this paper we assume that a 6= 0. It will be convenient
to reduce the Riccati equation to its standard form where the leading coefficient is equal
to 1. Let f = g

a . Then the original Riccati equation in terms of f is equivalent to the
following Riccati equation in terms of g:

δ(g) = g2 + (b +
δ(a)
a

)g + ac. (3)

Given a (standard) Riccati equation δ(y) = y2 + αy + β and one solution y, the stan-
dard transformation property (see Hille, 1969, Appendix C) of the Riccati equation,
implies that y + 1

u , for some u, is another linearly independent solution of the same Ric-
cati equation. Moreover, the function u satisfies the following linear ordinary differential
equation

δ(u) + [2y + α]u + 1 = 0. (4)
Therefore, any solution of the Riccati equation, of the form

c1y +
c2

u
, c1, c2 ∈ Constδk

is a Liouvillian solution if there exists one Liouvillian solution y. The solution is deter-
mined uniquely using the boundary conditions.

2.2. Kovacic’s algorithm

In this section we summarize Kovacic’s algorithm for determining solutions of the
Riccati equation.

By a well known result in differential algebra (see, for example, Rosenlicht, 1973), if
the Riccati equation Ra,b,c has a solution in some Liouvillian extension of k,then Ra,b,c

has an algebraic solution over k. Equivalently, Ra,b,c has one solution in an algebraic
extension of k.

To yield a complete algorithm for computing the algebraic (and thus all Liouvillian)
solutions, it is critical to obtain an upper bound on the degree of the minimal polynomials
of the algebraic function solutions. Fortunately, Kovacic’s theorem provides the answers.†

Theorem. (Kovacic) If there is an algebraic solution of the Riccati equation, then at
least one solution has degree 1, 2, 4, 6 or 12. Moreover, there exists an algorithm that

†For the details see Kovacic (1986). An accessible presentation in textbook form is given in Chapter 9
of Cohen et al. (1999)
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permits us to either (i) show that there is no Liouvillian solution, or (ii) be able to find
one (and hence all of them using the results of Section 2.1).

Kovacic’s algorithm has been implemented in the MACSYMA computer algebra system
and in the MAPLE computer algebra system. In the MAPLE V Release 5.1 package
DETools, the library function kovacicsols can be used to compute Liouvillian solutions of
a Riccati equation if one exists. Then, given an arbitrary Riccati equation, we know, by
symbolic computation, whether this Riccati equation has closed-form solutions or not;
and if one exists, all solutions are closed form and can be given explicitly.

3. The Cox–Ingersoll–Ross Interest-rate Model

In this section we explain the connection between the Riccati equation and certain
applications in finance. We describe the significance of having closed-form solutions to
the Riccati equation in the practical implementation of certain stochastic interest-rate
models.

3.1. links with Riccati equations

We first introduce a particular class of stochastic interest-rate models known as affine
term structure models. Affine models have certain attractive properties in terms of their
tractability. We need a couple of concepts from finance to proceed. The first concept
is that of a zero-coupon bond. A zero-coupon bond is a contract which will pay one
unit, with certainty, at a prespecified future date. If the current time is t and the future
payment will occur at time T > t, then we denote the current price of the zero-coupon
bond by P (t, T ). The market prices for these bonds can be obtained from traded market
instruments. The short rate of interest can be defined in terms of zero-coupon bond
prices. Let us first define the function f(t, T ) by

f(t, T ) = −∂log P (t, T )
∂T

.

This function f(t, T ) is known as the forward rate. The short rate r(t) is defined as the
limiting value of f(t, T ) as T tends to t

r(t) = lim
T−>t

f(t, T ).

The short rate can be thought of as the limiting interest rate on a bond where we let the
time to maturity tend to zero. For a more complete discussion of this concept and related
matters, see Duffie (1996). The starting point for several popular stochastic interest-
rate models is to assume that the short rate dynamics are governed by a stochastic
differential equation involving one or more state variables and a number of structural
parameters. In this paper, we assume that there is only one such state variable. Such
models are known as one factor models. Under a special class of such models, known
as the one factor affine class, the resulting model prices for the zero-coupon bonds are
exponential-linear functions of the short rate of interest. We supply specific examples
later.

Duffie and Kan (1996) derived necessary and sufficient conditions on the drift and
diffusion of the stochastic differential equation for the short rate to ensure an affine
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term structure model. Assume the short-term interest rate is described by the following
stochastic differential equation

dr = µ(t, r)dt + σ(t, r)dWt,

where Wt is a standard Brownian motion under the risk-neutral† equivalent measure.
The definition of an affine term structure model is that P (t, T ) has the form

P (t, T ) = exp[A(t, T )−B(t, T )r(t)]

and thus the yield y(t, T ) = − log(P (t,T ))
T−t is a linear function of r(t). Duffie–Kan’s result

is that P (t, T ) is exponential-affine if and only if the diffusion µ and the volatility σ have
the form

µ(t, r) = α(t)r + β(t), σ(t, r) =
√

γ(t)r + δ(t).
Moreover, the coefficients A(t, T ), B(t, T ) are determined by the following ordinary dif-
ferential equations

Bt(t, T ) =
γ(t)
2

B(t, T )2 − α(t)B(t, T )− 1, B(T, T ) = 0 (5)

and

At(t, T ) = β(t)B(t, T )− δ(t)
2

B(t, T )2, A(T, T ) = 0. (6)

The first equation for B(t, T ) is the Riccati equation and the second one is solved eas-
ily from the first one by integration. Since there is a general method (see, for example,
Heston, 1993; Duffie et al., 1999) making use of Laplace transforms to evaluate bond op-
tions and other interest-rate sensitive securities starting from the same Riccati equations,
it suffices to study the Riccati equations.‡

To give some appreciation of their significance, we review some affine term structure
models that have already been popularized in the finance literature. When γ(t) = 0, i.e.
the volatility structure is deterministic, this yields the so-called Gaussian interest-rate
model (see Jamshidian, 1992). Under this assumption, analytical formulae for bond and
European bond pricing formulae are available. This is easy to see from the point of view
of differential equations since (5) reduces to a linear ordinary differential equation, which
can be readily solved using simple methods. If all the parameters are positive constants,
this is the well known Vasicek interest-rate model (1977) which was one of the first
stochastic interest-rate models.

Another well known affine term structure model has the property that γ(t) 6= 0 and
δ(t) = 0. When all the parameters γ(t), β(t), α(t) are positive constants, we have the
square-root model of Cox et al. (1985). Hull and White (1990) discuss the model in the
form

dr = (b(t)− ar)dt + σ
√

rdW.

†For an explanation of the risk neutral measure, see Duffie (1996).
‡To value all interest-rate sensitive securities, it suffices to compute what is termed the state-price

density. By using Laplace transformations, we reduce this to the computation of the function

P (t, T ; x) = Et

[
exp

(
−

∫ T

t
rsds

)
exp(xrT )

]
where x is a parameter. In the extended CIR model, we have P (t, T ; x) = exp[A(t, T ; x)−B(t, T ; x)r(t)],
where B(t, T ; x) satisfies the same Riccati equation as B(t, T ) with different boundary condition

B(T, T ; x) = −x, and A(t, T ; x) = −
∫ T

t θ(s)B(s, T ; x)ds. See Duffie et al. (1999) for details.
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They assume that b(t) is time-dependent and then determine b(t) (calibrate the model)
using the current market prices of the zero-coupon bonds. In both the (constant param-
eter) version of the CIR model and in the Hull–White extension, analytical formulae for
zero-coupon bonds and bond options exist. This is also evident from the ordinary differ-
ential equation’s perspective, since the Riccati equation (5) has constant coefficients. A
major goal of this paper is to analyze the extended versions of CIR where γ(t), β(t), α(t)
are time-dependent functions. Hull and White (1990) claimed that no analytical expres-
sion for the bond prices is available when the model has time-dependent parameters. In
fact, as we shall show later, the closed-form theory of the Riccati equation enables us
to generate many new examples of the extended§ CIR model with analytical expressions
for the bond prices and interest-rate derivatives.

We assume the short interest rate r(t) follows the process

dr(t) = [θ(t)− κ(t)r(t)]dt + σ(t)
√

r(t)dW (t) (7)

where κ(t) denotes the speed of adjustment of the short rate process, θ(t)
κ(t) denotes its

mean, and where σ(t)
√

r(t) denotes its volatility. It is well known that, if 2θ(t) > σ(t)2

for all t, then r = 0 is an inaccessible boundary, and the interest-rate model (7) is well-
defined, and these dynamics drive the price movements of all interest-rate securities. In
this case the corresponding Riccati equation is:

Rκ,θ,σ : y(t)′ =
1
2
σ(t)2y(t)2 + κ(t)y(t)− 1 (8)

and in standard form it becomes:

d(f) = f2 +
[
κ(t) +

2σ(t)′

σ(t)

]
f − σ(t)2

2
. (9)

The corresponding second-order linear differential equation is

y(t)
′′
−

[
κ(t) +

2σ(t)′

σ(t)

]
y(t)′ − σ(t)2

2
y(t) = 0.

Definition 3. The extended CIR model (7) has a closed-form expression for the bond
price if the Riccati equation (8) has a closed-form solution.

We shall show, in the next section, that this definition corresponds to the definition
of an analytical-form expression in the finance literature. For the extended CIR model,
if the dimension of the model: 2θ(t)

σ(t)2 is a constant, this is the simple square-root model
in the sense of Jamshidian (1995).† Although he did not solve the Riccati equation
explicitly, Jamshidian showed that, for the purpose of calibration, it suffices to solve one
Riccati equation and deduce the analytical expression of the bond options. Moreover,
if the dimension is a positive integer, Maghsoodi (1996) proved that process (7) can
be recovered from the Gaussian models in a certain sense and then the bond option
valuation formula is available. Strictly speaking, the solutions derived by Jamshidian

§The extended CIR model corresponds to the case where the three structural parameters depend on
time.
†Rogers (1996) showed that the simple square-root model can be derived from the standard CIR model

by a time-scale transformation.
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and Maghsoodi are not closed-form solutions because the Riccati equation has to be
solved numerically.‡ We note that the dimension does not appear directly in the Riccati
equation (8). It is thus more natural and more general to begin with the closed-form
solution of the Riccati equation (8).

3.2. analytical solutions in finance

It is often desirable in finance practice to have very efficient methods for the valuation
of derivative securities. This property is useful in a trading environment where a trader
often needs to give a quote in real time over the telephone. It can also be important in risk
management since institutions now carry out complex calculations involving their entire
portfolios which may include millions of derivative securities. In the finance literature
the term analytical solution is often used to indicate that a particular expression can be
computed quickly and efficiently. Although this concept is not precisely defined there is
usually a general consensus on its meaning. In this section we relate the conventional
finance interpretation to our previous discussion of closed-form solutions.

We first review what is meant by analytical expression in the finance literature. We
first give the definition of a call option. A call option is a security that gives its owner
the right to buy some underlying asset in the future for a fixed price. The fixed price
is called the strike price. If the asset can only be bought at the maturity of the option
contract, the option is known as a European option.

The best known analytical expression is the Black–Scholes formula for the price of a
European call option (Black and Scholes, 1973)

c(S, t) = SN(d1)−Ker(T−t)N(d2) (10)

where S is the asset price at time t, and the asset price S follows the diffusion process

dSt

St
= µdt + σdWt.

The symbol K denotes the strike price of the option contract, r is the (assumed constant)
interest rate over the period [t, T ] and

d1 =
ln(S/K) + (r + 1

2σ2)(T − t)
σ
√

T − t

and

d2 =
ln(S/K) + (r − 1

2σ2)(T − t)
σ
√

T − t
.

The N(·) denotes the standard cumulative normal distribution function.
This valuation formula is a benchmark for many other popular valuation formulae in

finance. However, as far as we know there is, as yet, no mathematically precise definition
of an analytical solution for a valuation formula in the finance literature. We see that
the above Black–Scholes solution c(S, t) belongs to a Liouvillian extension of the rational
field C(S, t) over two variables S and t. We suggest that it is natural to give a definition
of analytical solutions in finance in terms of Liouvillian extensions.

‡By using the method in this paper, we have implemented a simple class square model in which both
the Riccati equation and the price-density have closed-form solutions, thus completing the missing part
in Jamshidian’s research.
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Consider a derivative security whose value depends on n underlying variables X1,
X2, . . . , Xn. Suppose these variables follow a Markovian stochastic process. Then the
price of the derivative security at time t is a function of the underlying(state) variables
X1, X2, . . . , Xn, and time t. Denote its price by

p(X1, X2, . . . , Xn, t).

Our proposed definition is:†

Definition 4. If the function p(X1, X2, . . . , Xn, t) is contained in a Liouvillian extension
of the rational function field of the variables X1, X2, . . . , Xn, and t, we say that the
derivative security has an analytical or closed-form valuation formula.

In this paper we discussed the extended CIR model. Because of the exponential-linear
expression (the exponential belongs to a Liouvillian extension) of the bond price, and
the integral expression of the function of A in terms of B (the integral also belongs to
a Liouvillian extension), to find the analytical expressions for the bond prices, it suffices
to study the closed-form solution of the Riccati equation Rκ,θ,σ.

In a series of investigations of the nature of solutions under one factor interest-rate
models, Jamshidian defines an analytical solution as a single integral of a function where
the integrand does not contain the integral of another function. The Black–Scholes for-
mula (10) is then an analytical solution according to this definition. Since Jamshidian’s
definition is the clearest expression in the finance literature of an analytical solution and
since his definition has been used by other researchers, it is interesting to note that our
definition ties in nicely with Jamshidian’s definition.

At first sight, our definition of the analytical solution looks different since we do not
restrict the number of integral symbols in the Liouvillian extension, whereas there is at
most one integral in Jamshidian’s definition. For example, functions such as∫

exp(x2)
( ∫ x

−∞
exp(u2)du

)
dx

are not allowed in Jamshidian’s framework but they are permitted in a Liouvillian exten-
sion. Hence, a natural abstraction of Jamshidian’s concept is to define a special Liouvillian
extension in which only one primitive extension, which corresponds to a single integral,
should be used. But as we know from Section 2.2, in solving the Riccati equation and
thus for the extended CIR model, these two concepts are equivalent. In fact, if there
exists a Liouvillian extension of the Riccati equation, then there is an algebraic function
solution f of the original Riccati equation. Thus, any other solution must be of the form

c1f +
c2

u

where u is a solution of one linear ordinary differential equation. It is known that u can
be expressed by a single integral. This means that if we can solve a Riccati equation in a
Liouvillian extension, we can also solve it in a special Liouvillian extension in the above
sense as well. We have thus demonstrated that our definition is a suitable abstraction of
Jamshidian’s concept, at least for the extended CIR model.

†We plan to investigate, in future work, the extent to which all existing analytical solutions in finance
conform to this definition.
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4. An Application

In this section we shall show how our analysis of closed-form solutions can be applied
to develop a new implementation of the extended CIR model. We have discovered that
this implementation appears to provide a promising approach to the calibration of actual
interest-rate data.‡

We now give a functional form of the extended CIR model that we have found very
useful in our empirical work. We emphasize that this is just one of the many solutions
that we can generate using the ideas of this paper. In the extended CIR model the short
rate satisfies:

dr(t) = (θ(t)− κ(t)r(t))dt + σ(t)
√

r(t)dW (t). (11)

In our implementation† the functional forms for the time-dependent parameters are:

σ(t)2

2
= θ2

1 − θ1θ3 +
2θ1θ2 − θ1θ4 − θ2θ3

t + θ5
+

θ2
2 + θ2 − θ2θ4

(t + θ5)2
(12)

and the speed of adjustment, κ(t) is given by

− θ3 −
θ4

t + θ5

+
2(θ2

2 + θ2 − θ2θ4) + (2θ1θ2 − θ1θ4 − θ2θ3)(t + θ5)
(θ2

2 + θ2 − θ2θ4)(t + θ5) + (2θ1θ2 − θ1θ4 − θ2θ3)(t + θ5)2 + (θ2
1 − θ1θ3)(t + θ5)3

.

There are five constant parameters θ1, . . . , θ5 in this model in addition to the (as yet)
unspecified drift term θ(t). By selecting different values for these parameters, a rich
variety of volatility structures can be generated.‡ By letting the parameters θ2 and θ4

be zero, the interest-rate process reverts to the classical CIR interest-rate process. As
the time parameter, t, tends to infinity, the time-dependence of the parameters vanishes,
that is, the adjustment speed κ(t) and the volatility σ(t) become constant.

One advantage of this version over some other versions of the extended CIR model is
that the drift term can be chosen independent of other parameters. Moreover, the Riccati
equation has a closed-form solution in our model. In particular, by choosing the drift term
according to Jamshidian (1995), we thus obtain a simple-class square model in which the
bond price has a closed-form expression and the bond option has an analytical expression
in terms of a chi-square density function. The parameters can be estimated by fitting
the market prices of bonds and various interest-rate derivatives to their corresponding
model prices. This is the so-called calibration procedure in financial practice.

‡We shall demonstrate the implementation and calibration in detail in another paper.
†Our implementation comes from a modified Riccati equation based on the closed form in Bronstein

(1997, pp. 98, 99). The Riccati equation given there is

df = f2 −
3

2x
f −

1

2x

with solution

f =
1

2x
+

√
1

2x
.

By comparing this equation with equation (9) we see that the choice of σ(t) and κ(t) are not suitable
for our application when t → ∞. However, by modifying the solution we obtain the parameters in the
current form and this works well.
‡Although the volatility structure σ(t) and the speed of adjustments κ(t) may appear complicated at

first sight, they can be used to match the movements of the real data better than the constant assumption
such as in Cox et al. (1985) and Hull and White (1990).
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The Riccati equation corresponding to our implementation is

d(f) = f(t)2 −
[
θ3 +

θ4

t + θ5

]
f(t)− σ(t)2

2
(13)

and the corresponding second-order linear equation is

y(t)
′′

+
[
θ3 +

θ4

t + θ5

]
y(t)′ − σ(t)2

2
y(t) = 0. (14)

By Kovacic’s algorithm one Liouvillian solution of this second-order linear differential
equation is

f1(t) = θ1 +
θ2

t + θ5
(15)

and another independent solution is

f2(t) = f1(t) +
1

u(t)
(16)

where

u(t)′ + m(t)u(t) + 1 = 0 (17)

and

m(t) = 2θ1 − θ3 +
2θ2 − θ4

t + θ5
. (18)

We now determine the time t-price P (t, T ) of the zero-coupon bond maturing at T .
Write

P (t, T ) = exp[A(t, T )−B(t, T )r(t)]

where f(t) = B(t,T )σ(t)2

2 is one solution of the Riccati equation (13) with the boundary
condition f(T ) = 0. The usual way in (mathematical) finance is to choose u(t) such that
f1(T ) + 1

u(T ) = 0, as the other boundary condition, and thus uniquely determine the
function u(t). We thus obtain

B(t, T ) =
2

σ(t)2

[
θ1 +

θ2

t + θ5

+1
/{

−1
f1(T )

exp

[ ∫ T

t

m(s)ds

]
+

∫ T

t

exp

[ ∫ u

t

m(s)ds

]
du

}]
and

A(t, T ) = −
∫ T

t

θ(s)B(s, T )ds. (19)

The price of any interest-rate sensitive derivative can be given explicitly. As an appli-
cation, we might assume that all parameters (θ(t), θ1, . . . , θ5) are constants and are cal-
ibrated to match market yield curves. These yield curves can assume a wide range of
shapes and it is well known that the standard CIR model does a poor job in reproducing
them. Our preliminary analysis indicates that even when the parameters are constant,
these yield curves can be well matched with our implementation.†

†Moreover, our implementation results also show that it is possible to calibrate the volatility curve as
well. See Tian et al. (2000).
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5. Conclusions and Further Research

In this paper we have shown that concepts from symbolic computation are useful in
developing new solutions for an important class of stochastic interest-rate models. These
interest-rate models are known as affine models and we discussed the one-factor extended
CIR versions. If the corresponding Riccati equation has a closed-form (Liouvillian) solu-
tion, we show that there exists an analytical expression for any interest-rate derivative
in the extended CIR interest-rate model. To the best of our knowledge, these analytical
expressions for derivatives under the extended CIR represent a new implementation of
the extended interest-rate model. Moreover, we plan to show, using actual data, how our
model can be used to match the market data much better than the classic CIR model.

The interest-rate process developed in this paper is time-inhomogeneous. Time-inhomo-
geneity implies that, looking forward, security prices might be different for similar con-
tracts starting from different times in the future. Many important market variables such
as forward volatilities are indeed time-inhomogeneous. Consequently, such interest-rate
processes have advantages for practitioners who wish to have a very good fit to market
prices.

A natural extension of these ideas would be to apply them to multifactor affine models.
We briefly outline the structure of these models. For more details, see Duffie and Kan
(1996). Suppose that there exist n state variables X1, . . . , Xn such that

dXt = (K0 + K1Xt)dt + σ(Xt)dWt (20)

where τ will denote the matrix transpose, Xt = (X1(t), . . . , Xn(t))τ ,K0 ∈ Rn,K1 ∈
Rn×n, (σ(x)σ(x)τ )ij = Hij(x),H = (Hij) ∈ Rn×n, σ : Rn → Rn×n. In addition Wt =
(W1(t), . . . ,Wn(t))τ is an n-dimensional Brownian motion.

The short rate is given by r(t) = X1(t)+ · · ·+Xn(t). With this set-up the time t price
of the zero-coupon bond maturing at time T is

P (t, T ) = exp[A(t, T )−B(t, T )Xt]

where B satisfies the matrix Riccati equation:

Bt(t, T ) =
1
2
B(t, T )τHB(t, T )−Kτ

1 B(t, T )− a (21)

At(t, T ) = K0B(t, T ) (22)

where a = (1, . . . , 1)τ .
We see that the matrix Riccati equation now plays the same role as the scalar Riccati

equation did in the case of the one factor model. An interesting extension of this work
would be to classify the closed-form solutions of the matrix Riccati equation. Such an
analysis may assist us in deriving new solutions in the multifactor case along the lines
used in this paper for the one factor model. We leave this task for future research.
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